1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
73 #include <linux/uaccess.h>
75 #include <trace/events/vmscan.h>
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
94 #define do_swap_account 0
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
103 static const char *const mem_cgroup_lru_names[] = {
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
126 struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
133 struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
139 * cgroup_event represents events which userspace want to receive.
141 struct mem_cgroup_event {
143 * memcg which the event belongs to.
145 struct mem_cgroup *memcg;
147 * eventfd to signal userspace about the event.
149 struct eventfd_ctx *eventfd;
151 * Each of these stored in a list by the cgroup.
153 struct list_head list;
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
181 /* Stuffs for move charges at task migration. */
183 * Types of charges to be moved.
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
221 /* for encoding cft->private value on file */
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
236 /* Some nice accessors for the vmpressure. */
237 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
244 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
249 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
251 return (memcg == root_mem_cgroup);
256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
266 static DEFINE_IDA(memcg_cache_ida);
267 int memcg_nr_cache_ids;
269 /* Protects memcg_nr_cache_ids */
270 static DECLARE_RWSEM(memcg_cache_ids_sem);
272 void memcg_get_cache_ids(void)
274 down_read(&memcg_cache_ids_sem);
277 void memcg_put_cache_ids(void)
279 up_read(&memcg_cache_ids_sem);
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 * increase ours as well if it increases.
294 #define MEMCG_CACHES_MIN_SIZE 4
295 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
303 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304 EXPORT_SYMBOL(memcg_kmem_enabled_key);
306 struct workqueue_struct *memcg_kmem_cache_wq;
308 #endif /* !CONFIG_SLOB */
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
321 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
323 struct mem_cgroup *memcg;
325 memcg = page->mem_cgroup;
327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 memcg = root_mem_cgroup;
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
346 ino_t page_cgroup_ino(struct page *page)
348 struct mem_cgroup *memcg;
349 unsigned long ino = 0;
352 memcg = READ_ONCE(page->mem_cgroup);
353 while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 memcg = parent_mem_cgroup(memcg);
356 ino = cgroup_ino(memcg->css.cgroup);
361 static struct mem_cgroup_per_node *
362 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
364 int nid = page_to_nid(page);
366 return memcg->nodeinfo[nid];
369 static struct mem_cgroup_tree_per_node *
370 soft_limit_tree_node(int nid)
372 return soft_limit_tree.rb_tree_per_node[nid];
375 static struct mem_cgroup_tree_per_node *
376 soft_limit_tree_from_page(struct page *page)
378 int nid = page_to_nid(page);
380 return soft_limit_tree.rb_tree_per_node[nid];
383 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 struct mem_cgroup_tree_per_node *mctz,
385 unsigned long new_usage_in_excess)
387 struct rb_node **p = &mctz->rb_root.rb_node;
388 struct rb_node *parent = NULL;
389 struct mem_cgroup_per_node *mz_node;
390 bool rightmost = true;
395 mz->usage_in_excess = new_usage_in_excess;
396 if (!mz->usage_in_excess)
400 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
402 if (mz->usage_in_excess < mz_node->usage_in_excess) {
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
411 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
416 mctz->rb_rightmost = &mz->tree_node;
418 rb_link_node(&mz->tree_node, parent, p);
419 rb_insert_color(&mz->tree_node, &mctz->rb_root);
423 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
429 if (&mz->tree_node == mctz->rb_rightmost)
430 mctz->rb_rightmost = rb_prev(&mz->tree_node);
432 rb_erase(&mz->tree_node, &mctz->rb_root);
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
464 mctz = soft_limit_tree_from_page(page);
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472 mz = mem_cgroup_page_nodeinfo(memcg, page);
473 excess = soft_limit_excess(memcg);
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
478 if (excess || mz->on_tree) {
481 spin_lock_irqsave(&mctz->lock, flags);
482 /* if on-tree, remove it */
484 __mem_cgroup_remove_exceeded(mz, mctz);
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
490 spin_unlock_irqrestore(&mctz->lock, flags);
495 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
505 mem_cgroup_remove_exceeded(mz, mctz);
509 static struct mem_cgroup_per_node *
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
512 struct mem_cgroup_per_node *mz;
516 if (!mctz->rb_rightmost)
517 goto done; /* Nothing to reclaim from */
519 mz = rb_entry(mctz->rb_rightmost,
520 struct mem_cgroup_per_node, tree_node);
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
526 __mem_cgroup_remove_exceeded(mz, mctz);
527 if (!soft_limit_excess(mz->memcg) ||
528 !css_tryget_online(&mz->memcg->css))
534 static struct mem_cgroup_per_node *
535 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
537 struct mem_cgroup_per_node *mz;
539 spin_lock_irq(&mctz->lock);
540 mz = __mem_cgroup_largest_soft_limit_node(mctz);
541 spin_unlock_irq(&mctz->lock);
545 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
548 return atomic_long_read(&memcg->events[event]);
551 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
553 bool compound, int nr_pages)
556 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
557 * counted as CACHE even if it's on ANON LRU.
560 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
562 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
563 if (PageSwapBacked(page))
564 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
568 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
569 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
572 /* pagein of a big page is an event. So, ignore page size */
574 __count_memcg_events(memcg, PGPGIN, 1);
576 __count_memcg_events(memcg, PGPGOUT, 1);
577 nr_pages = -nr_pages; /* for event */
580 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
583 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
584 int nid, unsigned int lru_mask)
586 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
587 unsigned long nr = 0;
590 VM_BUG_ON((unsigned)nid >= nr_node_ids);
593 if (!(BIT(lru) & lru_mask))
595 nr += mem_cgroup_get_lru_size(lruvec, lru);
600 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
601 unsigned int lru_mask)
603 unsigned long nr = 0;
606 for_each_node_state(nid, N_MEMORY)
607 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
611 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
612 enum mem_cgroup_events_target target)
614 unsigned long val, next;
616 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
617 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
618 /* from time_after() in jiffies.h */
619 if ((long)(next - val) < 0) {
621 case MEM_CGROUP_TARGET_THRESH:
622 next = val + THRESHOLDS_EVENTS_TARGET;
624 case MEM_CGROUP_TARGET_SOFTLIMIT:
625 next = val + SOFTLIMIT_EVENTS_TARGET;
627 case MEM_CGROUP_TARGET_NUMAINFO:
628 next = val + NUMAINFO_EVENTS_TARGET;
633 __this_cpu_write(memcg->stat_cpu->targets[target], next);
640 * Check events in order.
643 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
645 /* threshold event is triggered in finer grain than soft limit */
646 if (unlikely(mem_cgroup_event_ratelimit(memcg,
647 MEM_CGROUP_TARGET_THRESH))) {
649 bool do_numainfo __maybe_unused;
651 do_softlimit = mem_cgroup_event_ratelimit(memcg,
652 MEM_CGROUP_TARGET_SOFTLIMIT);
654 do_numainfo = mem_cgroup_event_ratelimit(memcg,
655 MEM_CGROUP_TARGET_NUMAINFO);
657 mem_cgroup_threshold(memcg);
658 if (unlikely(do_softlimit))
659 mem_cgroup_update_tree(memcg, page);
661 if (unlikely(do_numainfo))
662 atomic_inc(&memcg->numainfo_events);
667 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
670 * mm_update_next_owner() may clear mm->owner to NULL
671 * if it races with swapoff, page migration, etc.
672 * So this can be called with p == NULL.
677 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
679 EXPORT_SYMBOL(mem_cgroup_from_task);
681 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
683 struct mem_cgroup *memcg = NULL;
688 * Page cache insertions can happen withou an
689 * actual mm context, e.g. during disk probing
690 * on boot, loopback IO, acct() writes etc.
693 memcg = root_mem_cgroup;
695 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
696 if (unlikely(!memcg))
697 memcg = root_mem_cgroup;
699 } while (!css_tryget_online(&memcg->css));
705 * mem_cgroup_iter - iterate over memory cgroup hierarchy
706 * @root: hierarchy root
707 * @prev: previously returned memcg, NULL on first invocation
708 * @reclaim: cookie for shared reclaim walks, NULL for full walks
710 * Returns references to children of the hierarchy below @root, or
711 * @root itself, or %NULL after a full round-trip.
713 * Caller must pass the return value in @prev on subsequent
714 * invocations for reference counting, or use mem_cgroup_iter_break()
715 * to cancel a hierarchy walk before the round-trip is complete.
717 * Reclaimers can specify a node and a priority level in @reclaim to
718 * divide up the memcgs in the hierarchy among all concurrent
719 * reclaimers operating on the same node and priority.
721 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
722 struct mem_cgroup *prev,
723 struct mem_cgroup_reclaim_cookie *reclaim)
725 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
726 struct cgroup_subsys_state *css = NULL;
727 struct mem_cgroup *memcg = NULL;
728 struct mem_cgroup *pos = NULL;
730 if (mem_cgroup_disabled())
734 root = root_mem_cgroup;
736 if (prev && !reclaim)
739 if (!root->use_hierarchy && root != root_mem_cgroup) {
748 struct mem_cgroup_per_node *mz;
750 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
751 iter = &mz->iter[reclaim->priority];
753 if (prev && reclaim->generation != iter->generation)
757 pos = READ_ONCE(iter->position);
758 if (!pos || css_tryget(&pos->css))
761 * css reference reached zero, so iter->position will
762 * be cleared by ->css_released. However, we should not
763 * rely on this happening soon, because ->css_released
764 * is called from a work queue, and by busy-waiting we
765 * might block it. So we clear iter->position right
768 (void)cmpxchg(&iter->position, pos, NULL);
776 css = css_next_descendant_pre(css, &root->css);
779 * Reclaimers share the hierarchy walk, and a
780 * new one might jump in right at the end of
781 * the hierarchy - make sure they see at least
782 * one group and restart from the beginning.
790 * Verify the css and acquire a reference. The root
791 * is provided by the caller, so we know it's alive
792 * and kicking, and don't take an extra reference.
794 memcg = mem_cgroup_from_css(css);
796 if (css == &root->css)
807 * The position could have already been updated by a competing
808 * thread, so check that the value hasn't changed since we read
809 * it to avoid reclaiming from the same cgroup twice.
811 (void)cmpxchg(&iter->position, pos, memcg);
819 reclaim->generation = iter->generation;
825 if (prev && prev != root)
832 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
833 * @root: hierarchy root
834 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
836 void mem_cgroup_iter_break(struct mem_cgroup *root,
837 struct mem_cgroup *prev)
840 root = root_mem_cgroup;
841 if (prev && prev != root)
845 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
847 struct mem_cgroup *memcg = dead_memcg;
848 struct mem_cgroup_reclaim_iter *iter;
849 struct mem_cgroup_per_node *mz;
853 while ((memcg = parent_mem_cgroup(memcg))) {
855 mz = mem_cgroup_nodeinfo(memcg, nid);
856 for (i = 0; i <= DEF_PRIORITY; i++) {
858 cmpxchg(&iter->position,
866 * Iteration constructs for visiting all cgroups (under a tree). If
867 * loops are exited prematurely (break), mem_cgroup_iter_break() must
868 * be used for reference counting.
870 #define for_each_mem_cgroup_tree(iter, root) \
871 for (iter = mem_cgroup_iter(root, NULL, NULL); \
873 iter = mem_cgroup_iter(root, iter, NULL))
875 #define for_each_mem_cgroup(iter) \
876 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
878 iter = mem_cgroup_iter(NULL, iter, NULL))
881 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
882 * @memcg: hierarchy root
883 * @fn: function to call for each task
884 * @arg: argument passed to @fn
886 * This function iterates over tasks attached to @memcg or to any of its
887 * descendants and calls @fn for each task. If @fn returns a non-zero
888 * value, the function breaks the iteration loop and returns the value.
889 * Otherwise, it will iterate over all tasks and return 0.
891 * This function must not be called for the root memory cgroup.
893 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
894 int (*fn)(struct task_struct *, void *), void *arg)
896 struct mem_cgroup *iter;
899 BUG_ON(memcg == root_mem_cgroup);
901 for_each_mem_cgroup_tree(iter, memcg) {
902 struct css_task_iter it;
903 struct task_struct *task;
905 css_task_iter_start(&iter->css, 0, &it);
906 while (!ret && (task = css_task_iter_next(&it)))
908 css_task_iter_end(&it);
910 mem_cgroup_iter_break(memcg, iter);
918 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
920 * @pgdat: pgdat of the page
922 * This function is only safe when following the LRU page isolation
923 * and putback protocol: the LRU lock must be held, and the page must
924 * either be PageLRU() or the caller must have isolated/allocated it.
926 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
928 struct mem_cgroup_per_node *mz;
929 struct mem_cgroup *memcg;
930 struct lruvec *lruvec;
932 if (mem_cgroup_disabled()) {
933 lruvec = &pgdat->lruvec;
937 memcg = page->mem_cgroup;
939 * Swapcache readahead pages are added to the LRU - and
940 * possibly migrated - before they are charged.
943 memcg = root_mem_cgroup;
945 mz = mem_cgroup_page_nodeinfo(memcg, page);
946 lruvec = &mz->lruvec;
949 * Since a node can be onlined after the mem_cgroup was created,
950 * we have to be prepared to initialize lruvec->zone here;
951 * and if offlined then reonlined, we need to reinitialize it.
953 if (unlikely(lruvec->pgdat != pgdat))
954 lruvec->pgdat = pgdat;
959 * mem_cgroup_update_lru_size - account for adding or removing an lru page
960 * @lruvec: mem_cgroup per zone lru vector
961 * @lru: index of lru list the page is sitting on
962 * @zid: zone id of the accounted pages
963 * @nr_pages: positive when adding or negative when removing
965 * This function must be called under lru_lock, just before a page is added
966 * to or just after a page is removed from an lru list (that ordering being
967 * so as to allow it to check that lru_size 0 is consistent with list_empty).
969 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
970 int zid, int nr_pages)
972 struct mem_cgroup_per_node *mz;
973 unsigned long *lru_size;
976 if (mem_cgroup_disabled())
979 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
980 lru_size = &mz->lru_zone_size[zid][lru];
983 *lru_size += nr_pages;
986 if (WARN_ONCE(size < 0,
987 "%s(%p, %d, %d): lru_size %ld\n",
988 __func__, lruvec, lru, nr_pages, size)) {
994 *lru_size += nr_pages;
997 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
999 struct mem_cgroup *task_memcg;
1000 struct task_struct *p;
1003 p = find_lock_task_mm(task);
1005 task_memcg = get_mem_cgroup_from_mm(p->mm);
1009 * All threads may have already detached their mm's, but the oom
1010 * killer still needs to detect if they have already been oom
1011 * killed to prevent needlessly killing additional tasks.
1014 task_memcg = mem_cgroup_from_task(task);
1015 css_get(&task_memcg->css);
1018 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1019 css_put(&task_memcg->css);
1024 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1025 * @memcg: the memory cgroup
1027 * Returns the maximum amount of memory @mem can be charged with, in
1030 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1032 unsigned long margin = 0;
1033 unsigned long count;
1034 unsigned long limit;
1036 count = page_counter_read(&memcg->memory);
1037 limit = READ_ONCE(memcg->memory.max);
1039 margin = limit - count;
1041 if (do_memsw_account()) {
1042 count = page_counter_read(&memcg->memsw);
1043 limit = READ_ONCE(memcg->memsw.max);
1045 margin = min(margin, limit - count);
1054 * A routine for checking "mem" is under move_account() or not.
1056 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1057 * moving cgroups. This is for waiting at high-memory pressure
1060 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1062 struct mem_cgroup *from;
1063 struct mem_cgroup *to;
1066 * Unlike task_move routines, we access mc.to, mc.from not under
1067 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1069 spin_lock(&mc.lock);
1075 ret = mem_cgroup_is_descendant(from, memcg) ||
1076 mem_cgroup_is_descendant(to, memcg);
1078 spin_unlock(&mc.lock);
1082 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1084 if (mc.moving_task && current != mc.moving_task) {
1085 if (mem_cgroup_under_move(memcg)) {
1087 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1088 /* moving charge context might have finished. */
1091 finish_wait(&mc.waitq, &wait);
1098 static const unsigned int memcg1_stats[] = {
1109 static const char *const memcg1_stat_names[] = {
1120 #define K(x) ((x) << (PAGE_SHIFT-10))
1122 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1123 * @memcg: The memory cgroup that went over limit
1124 * @p: Task that is going to be killed
1126 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1129 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1131 struct mem_cgroup *iter;
1137 pr_info("Task in ");
1138 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1139 pr_cont(" killed as a result of limit of ");
1141 pr_info("Memory limit reached of cgroup ");
1144 pr_cont_cgroup_path(memcg->css.cgroup);
1149 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1150 K((u64)page_counter_read(&memcg->memory)),
1151 K((u64)memcg->memory.max), memcg->memory.failcnt);
1152 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1153 K((u64)page_counter_read(&memcg->memsw)),
1154 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1155 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1156 K((u64)page_counter_read(&memcg->kmem)),
1157 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1159 for_each_mem_cgroup_tree(iter, memcg) {
1160 pr_info("Memory cgroup stats for ");
1161 pr_cont_cgroup_path(iter->css.cgroup);
1164 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1165 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1167 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1168 K(memcg_page_state(iter, memcg1_stats[i])));
1171 for (i = 0; i < NR_LRU_LISTS; i++)
1172 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1173 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1180 * Return the memory (and swap, if configured) limit for a memcg.
1182 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1186 max = memcg->memory.max;
1187 if (mem_cgroup_swappiness(memcg)) {
1188 unsigned long memsw_max;
1189 unsigned long swap_max;
1191 memsw_max = memcg->memsw.max;
1192 swap_max = memcg->swap.max;
1193 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1194 max = min(max + swap_max, memsw_max);
1199 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1202 struct oom_control oc = {
1206 .gfp_mask = gfp_mask,
1211 mutex_lock(&oom_lock);
1212 ret = out_of_memory(&oc);
1213 mutex_unlock(&oom_lock);
1217 #if MAX_NUMNODES > 1
1220 * test_mem_cgroup_node_reclaimable
1221 * @memcg: the target memcg
1222 * @nid: the node ID to be checked.
1223 * @noswap : specify true here if the user wants flle only information.
1225 * This function returns whether the specified memcg contains any
1226 * reclaimable pages on a node. Returns true if there are any reclaimable
1227 * pages in the node.
1229 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1230 int nid, bool noswap)
1232 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1234 if (noswap || !total_swap_pages)
1236 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1243 * Always updating the nodemask is not very good - even if we have an empty
1244 * list or the wrong list here, we can start from some node and traverse all
1245 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1248 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1252 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1253 * pagein/pageout changes since the last update.
1255 if (!atomic_read(&memcg->numainfo_events))
1257 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1260 /* make a nodemask where this memcg uses memory from */
1261 memcg->scan_nodes = node_states[N_MEMORY];
1263 for_each_node_mask(nid, node_states[N_MEMORY]) {
1265 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1266 node_clear(nid, memcg->scan_nodes);
1269 atomic_set(&memcg->numainfo_events, 0);
1270 atomic_set(&memcg->numainfo_updating, 0);
1274 * Selecting a node where we start reclaim from. Because what we need is just
1275 * reducing usage counter, start from anywhere is O,K. Considering
1276 * memory reclaim from current node, there are pros. and cons.
1278 * Freeing memory from current node means freeing memory from a node which
1279 * we'll use or we've used. So, it may make LRU bad. And if several threads
1280 * hit limits, it will see a contention on a node. But freeing from remote
1281 * node means more costs for memory reclaim because of memory latency.
1283 * Now, we use round-robin. Better algorithm is welcomed.
1285 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1289 mem_cgroup_may_update_nodemask(memcg);
1290 node = memcg->last_scanned_node;
1292 node = next_node_in(node, memcg->scan_nodes);
1294 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1295 * last time it really checked all the LRUs due to rate limiting.
1296 * Fallback to the current node in that case for simplicity.
1298 if (unlikely(node == MAX_NUMNODES))
1299 node = numa_node_id();
1301 memcg->last_scanned_node = node;
1305 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1311 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1314 unsigned long *total_scanned)
1316 struct mem_cgroup *victim = NULL;
1319 unsigned long excess;
1320 unsigned long nr_scanned;
1321 struct mem_cgroup_reclaim_cookie reclaim = {
1326 excess = soft_limit_excess(root_memcg);
1329 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1334 * If we have not been able to reclaim
1335 * anything, it might because there are
1336 * no reclaimable pages under this hierarchy
1341 * We want to do more targeted reclaim.
1342 * excess >> 2 is not to excessive so as to
1343 * reclaim too much, nor too less that we keep
1344 * coming back to reclaim from this cgroup
1346 if (total >= (excess >> 2) ||
1347 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1352 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1353 pgdat, &nr_scanned);
1354 *total_scanned += nr_scanned;
1355 if (!soft_limit_excess(root_memcg))
1358 mem_cgroup_iter_break(root_memcg, victim);
1362 #ifdef CONFIG_LOCKDEP
1363 static struct lockdep_map memcg_oom_lock_dep_map = {
1364 .name = "memcg_oom_lock",
1368 static DEFINE_SPINLOCK(memcg_oom_lock);
1371 * Check OOM-Killer is already running under our hierarchy.
1372 * If someone is running, return false.
1374 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1376 struct mem_cgroup *iter, *failed = NULL;
1378 spin_lock(&memcg_oom_lock);
1380 for_each_mem_cgroup_tree(iter, memcg) {
1381 if (iter->oom_lock) {
1383 * this subtree of our hierarchy is already locked
1384 * so we cannot give a lock.
1387 mem_cgroup_iter_break(memcg, iter);
1390 iter->oom_lock = true;
1395 * OK, we failed to lock the whole subtree so we have
1396 * to clean up what we set up to the failing subtree
1398 for_each_mem_cgroup_tree(iter, memcg) {
1399 if (iter == failed) {
1400 mem_cgroup_iter_break(memcg, iter);
1403 iter->oom_lock = false;
1406 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1408 spin_unlock(&memcg_oom_lock);
1413 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1415 struct mem_cgroup *iter;
1417 spin_lock(&memcg_oom_lock);
1418 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1419 for_each_mem_cgroup_tree(iter, memcg)
1420 iter->oom_lock = false;
1421 spin_unlock(&memcg_oom_lock);
1424 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1426 struct mem_cgroup *iter;
1428 spin_lock(&memcg_oom_lock);
1429 for_each_mem_cgroup_tree(iter, memcg)
1431 spin_unlock(&memcg_oom_lock);
1434 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1436 struct mem_cgroup *iter;
1439 * When a new child is created while the hierarchy is under oom,
1440 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1442 spin_lock(&memcg_oom_lock);
1443 for_each_mem_cgroup_tree(iter, memcg)
1444 if (iter->under_oom > 0)
1446 spin_unlock(&memcg_oom_lock);
1449 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1451 struct oom_wait_info {
1452 struct mem_cgroup *memcg;
1453 wait_queue_entry_t wait;
1456 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1457 unsigned mode, int sync, void *arg)
1459 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1460 struct mem_cgroup *oom_wait_memcg;
1461 struct oom_wait_info *oom_wait_info;
1463 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1464 oom_wait_memcg = oom_wait_info->memcg;
1466 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1467 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1469 return autoremove_wake_function(wait, mode, sync, arg);
1472 static void memcg_oom_recover(struct mem_cgroup *memcg)
1475 * For the following lockless ->under_oom test, the only required
1476 * guarantee is that it must see the state asserted by an OOM when
1477 * this function is called as a result of userland actions
1478 * triggered by the notification of the OOM. This is trivially
1479 * achieved by invoking mem_cgroup_mark_under_oom() before
1480 * triggering notification.
1482 if (memcg && memcg->under_oom)
1483 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1486 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1488 if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
1491 * We are in the middle of the charge context here, so we
1492 * don't want to block when potentially sitting on a callstack
1493 * that holds all kinds of filesystem and mm locks.
1495 * Also, the caller may handle a failed allocation gracefully
1496 * (like optional page cache readahead) and so an OOM killer
1497 * invocation might not even be necessary.
1499 * That's why we don't do anything here except remember the
1500 * OOM context and then deal with it at the end of the page
1501 * fault when the stack is unwound, the locks are released,
1502 * and when we know whether the fault was overall successful.
1504 css_get(&memcg->css);
1505 current->memcg_in_oom = memcg;
1506 current->memcg_oom_gfp_mask = mask;
1507 current->memcg_oom_order = order;
1511 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1512 * @handle: actually kill/wait or just clean up the OOM state
1514 * This has to be called at the end of a page fault if the memcg OOM
1515 * handler was enabled.
1517 * Memcg supports userspace OOM handling where failed allocations must
1518 * sleep on a waitqueue until the userspace task resolves the
1519 * situation. Sleeping directly in the charge context with all kinds
1520 * of locks held is not a good idea, instead we remember an OOM state
1521 * in the task and mem_cgroup_oom_synchronize() has to be called at
1522 * the end of the page fault to complete the OOM handling.
1524 * Returns %true if an ongoing memcg OOM situation was detected and
1525 * completed, %false otherwise.
1527 bool mem_cgroup_oom_synchronize(bool handle)
1529 struct mem_cgroup *memcg = current->memcg_in_oom;
1530 struct oom_wait_info owait;
1533 /* OOM is global, do not handle */
1540 owait.memcg = memcg;
1541 owait.wait.flags = 0;
1542 owait.wait.func = memcg_oom_wake_function;
1543 owait.wait.private = current;
1544 INIT_LIST_HEAD(&owait.wait.entry);
1546 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1547 mem_cgroup_mark_under_oom(memcg);
1549 locked = mem_cgroup_oom_trylock(memcg);
1552 mem_cgroup_oom_notify(memcg);
1554 if (locked && !memcg->oom_kill_disable) {
1555 mem_cgroup_unmark_under_oom(memcg);
1556 finish_wait(&memcg_oom_waitq, &owait.wait);
1557 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1558 current->memcg_oom_order);
1561 mem_cgroup_unmark_under_oom(memcg);
1562 finish_wait(&memcg_oom_waitq, &owait.wait);
1566 mem_cgroup_oom_unlock(memcg);
1568 * There is no guarantee that an OOM-lock contender
1569 * sees the wakeups triggered by the OOM kill
1570 * uncharges. Wake any sleepers explicitely.
1572 memcg_oom_recover(memcg);
1575 current->memcg_in_oom = NULL;
1576 css_put(&memcg->css);
1581 * lock_page_memcg - lock a page->mem_cgroup binding
1584 * This function protects unlocked LRU pages from being moved to
1587 * It ensures lifetime of the returned memcg. Caller is responsible
1588 * for the lifetime of the page; __unlock_page_memcg() is available
1589 * when @page might get freed inside the locked section.
1591 struct mem_cgroup *lock_page_memcg(struct page *page)
1593 struct mem_cgroup *memcg;
1594 unsigned long flags;
1597 * The RCU lock is held throughout the transaction. The fast
1598 * path can get away without acquiring the memcg->move_lock
1599 * because page moving starts with an RCU grace period.
1601 * The RCU lock also protects the memcg from being freed when
1602 * the page state that is going to change is the only thing
1603 * preventing the page itself from being freed. E.g. writeback
1604 * doesn't hold a page reference and relies on PG_writeback to
1605 * keep off truncation, migration and so forth.
1609 if (mem_cgroup_disabled())
1612 memcg = page->mem_cgroup;
1613 if (unlikely(!memcg))
1616 if (atomic_read(&memcg->moving_account) <= 0)
1619 spin_lock_irqsave(&memcg->move_lock, flags);
1620 if (memcg != page->mem_cgroup) {
1621 spin_unlock_irqrestore(&memcg->move_lock, flags);
1626 * When charge migration first begins, we can have locked and
1627 * unlocked page stat updates happening concurrently. Track
1628 * the task who has the lock for unlock_page_memcg().
1630 memcg->move_lock_task = current;
1631 memcg->move_lock_flags = flags;
1635 EXPORT_SYMBOL(lock_page_memcg);
1638 * __unlock_page_memcg - unlock and unpin a memcg
1641 * Unlock and unpin a memcg returned by lock_page_memcg().
1643 void __unlock_page_memcg(struct mem_cgroup *memcg)
1645 if (memcg && memcg->move_lock_task == current) {
1646 unsigned long flags = memcg->move_lock_flags;
1648 memcg->move_lock_task = NULL;
1649 memcg->move_lock_flags = 0;
1651 spin_unlock_irqrestore(&memcg->move_lock, flags);
1658 * unlock_page_memcg - unlock a page->mem_cgroup binding
1661 void unlock_page_memcg(struct page *page)
1663 __unlock_page_memcg(page->mem_cgroup);
1665 EXPORT_SYMBOL(unlock_page_memcg);
1667 struct memcg_stock_pcp {
1668 struct mem_cgroup *cached; /* this never be root cgroup */
1669 unsigned int nr_pages;
1670 struct work_struct work;
1671 unsigned long flags;
1672 #define FLUSHING_CACHED_CHARGE 0
1674 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675 static DEFINE_MUTEX(percpu_charge_mutex);
1678 * consume_stock: Try to consume stocked charge on this cpu.
1679 * @memcg: memcg to consume from.
1680 * @nr_pages: how many pages to charge.
1682 * The charges will only happen if @memcg matches the current cpu's memcg
1683 * stock, and at least @nr_pages are available in that stock. Failure to
1684 * service an allocation will refill the stock.
1686 * returns true if successful, false otherwise.
1688 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1690 struct memcg_stock_pcp *stock;
1691 unsigned long flags;
1694 if (nr_pages > MEMCG_CHARGE_BATCH)
1697 local_irq_save(flags);
1699 stock = this_cpu_ptr(&memcg_stock);
1700 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1701 stock->nr_pages -= nr_pages;
1705 local_irq_restore(flags);
1711 * Returns stocks cached in percpu and reset cached information.
1713 static void drain_stock(struct memcg_stock_pcp *stock)
1715 struct mem_cgroup *old = stock->cached;
1717 if (stock->nr_pages) {
1718 page_counter_uncharge(&old->memory, stock->nr_pages);
1719 if (do_memsw_account())
1720 page_counter_uncharge(&old->memsw, stock->nr_pages);
1721 css_put_many(&old->css, stock->nr_pages);
1722 stock->nr_pages = 0;
1724 stock->cached = NULL;
1727 static void drain_local_stock(struct work_struct *dummy)
1729 struct memcg_stock_pcp *stock;
1730 unsigned long flags;
1733 * The only protection from memory hotplug vs. drain_stock races is
1734 * that we always operate on local CPU stock here with IRQ disabled
1736 local_irq_save(flags);
1738 stock = this_cpu_ptr(&memcg_stock);
1740 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1742 local_irq_restore(flags);
1746 * Cache charges(val) to local per_cpu area.
1747 * This will be consumed by consume_stock() function, later.
1749 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1751 struct memcg_stock_pcp *stock;
1752 unsigned long flags;
1754 local_irq_save(flags);
1756 stock = this_cpu_ptr(&memcg_stock);
1757 if (stock->cached != memcg) { /* reset if necessary */
1759 stock->cached = memcg;
1761 stock->nr_pages += nr_pages;
1763 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1766 local_irq_restore(flags);
1770 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1771 * of the hierarchy under it.
1773 static void drain_all_stock(struct mem_cgroup *root_memcg)
1777 /* If someone's already draining, avoid adding running more workers. */
1778 if (!mutex_trylock(&percpu_charge_mutex))
1781 * Notify other cpus that system-wide "drain" is running
1782 * We do not care about races with the cpu hotplug because cpu down
1783 * as well as workers from this path always operate on the local
1784 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1787 for_each_online_cpu(cpu) {
1788 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1789 struct mem_cgroup *memcg;
1791 memcg = stock->cached;
1792 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1794 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1795 css_put(&memcg->css);
1798 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1800 drain_local_stock(&stock->work);
1802 schedule_work_on(cpu, &stock->work);
1804 css_put(&memcg->css);
1807 mutex_unlock(&percpu_charge_mutex);
1810 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1812 struct memcg_stock_pcp *stock;
1813 struct mem_cgroup *memcg;
1815 stock = &per_cpu(memcg_stock, cpu);
1818 for_each_mem_cgroup(memcg) {
1821 for (i = 0; i < MEMCG_NR_STAT; i++) {
1825 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
1827 atomic_long_add(x, &memcg->stat[i]);
1829 if (i >= NR_VM_NODE_STAT_ITEMS)
1832 for_each_node(nid) {
1833 struct mem_cgroup_per_node *pn;
1835 pn = mem_cgroup_nodeinfo(memcg, nid);
1836 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
1838 atomic_long_add(x, &pn->lruvec_stat[i]);
1842 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
1845 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
1847 atomic_long_add(x, &memcg->events[i]);
1854 static void reclaim_high(struct mem_cgroup *memcg,
1855 unsigned int nr_pages,
1859 if (page_counter_read(&memcg->memory) <= memcg->high)
1861 memcg_memory_event(memcg, MEMCG_HIGH);
1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863 } while ((memcg = parent_mem_cgroup(memcg)));
1866 static void high_work_func(struct work_struct *work)
1868 struct mem_cgroup *memcg;
1870 memcg = container_of(work, struct mem_cgroup, high_work);
1871 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1878 void mem_cgroup_handle_over_high(void)
1880 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881 struct mem_cgroup *memcg;
1883 if (likely(!nr_pages))
1886 memcg = get_mem_cgroup_from_mm(current->mm);
1887 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888 css_put(&memcg->css);
1889 current->memcg_nr_pages_over_high = 0;
1892 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893 unsigned int nr_pages)
1895 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897 struct mem_cgroup *mem_over_limit;
1898 struct page_counter *counter;
1899 unsigned long nr_reclaimed;
1900 bool may_swap = true;
1901 bool drained = false;
1903 if (mem_cgroup_is_root(memcg))
1906 if (consume_stock(memcg, nr_pages))
1909 if (!do_memsw_account() ||
1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1913 if (do_memsw_account())
1914 page_counter_uncharge(&memcg->memsw, batch);
1915 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1921 if (batch > nr_pages) {
1927 * Unlike in global OOM situations, memcg is not in a physical
1928 * memory shortage. Allow dying and OOM-killed tasks to
1929 * bypass the last charges so that they can exit quickly and
1930 * free their memory.
1932 if (unlikely(tsk_is_oom_victim(current) ||
1933 fatal_signal_pending(current) ||
1934 current->flags & PF_EXITING))
1938 * Prevent unbounded recursion when reclaim operations need to
1939 * allocate memory. This might exceed the limits temporarily,
1940 * but we prefer facilitating memory reclaim and getting back
1941 * under the limit over triggering OOM kills in these cases.
1943 if (unlikely(current->flags & PF_MEMALLOC))
1946 if (unlikely(task_in_memcg_oom(current)))
1949 if (!gfpflags_allow_blocking(gfp_mask))
1952 memcg_memory_event(mem_over_limit, MEMCG_MAX);
1954 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1955 gfp_mask, may_swap);
1957 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1961 drain_all_stock(mem_over_limit);
1966 if (gfp_mask & __GFP_NORETRY)
1969 * Even though the limit is exceeded at this point, reclaim
1970 * may have been able to free some pages. Retry the charge
1971 * before killing the task.
1973 * Only for regular pages, though: huge pages are rather
1974 * unlikely to succeed so close to the limit, and we fall back
1975 * to regular pages anyway in case of failure.
1977 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1980 * At task move, charge accounts can be doubly counted. So, it's
1981 * better to wait until the end of task_move if something is going on.
1983 if (mem_cgroup_wait_acct_move(mem_over_limit))
1989 if (gfp_mask & __GFP_NOFAIL)
1992 if (fatal_signal_pending(current))
1995 memcg_memory_event(mem_over_limit, MEMCG_OOM);
1997 mem_cgroup_oom(mem_over_limit, gfp_mask,
1998 get_order(nr_pages * PAGE_SIZE));
2000 if (!(gfp_mask & __GFP_NOFAIL))
2004 * The allocation either can't fail or will lead to more memory
2005 * being freed very soon. Allow memory usage go over the limit
2006 * temporarily by force charging it.
2008 page_counter_charge(&memcg->memory, nr_pages);
2009 if (do_memsw_account())
2010 page_counter_charge(&memcg->memsw, nr_pages);
2011 css_get_many(&memcg->css, nr_pages);
2016 css_get_many(&memcg->css, batch);
2017 if (batch > nr_pages)
2018 refill_stock(memcg, batch - nr_pages);
2021 * If the hierarchy is above the normal consumption range, schedule
2022 * reclaim on returning to userland. We can perform reclaim here
2023 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2024 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2025 * not recorded as it most likely matches current's and won't
2026 * change in the meantime. As high limit is checked again before
2027 * reclaim, the cost of mismatch is negligible.
2030 if (page_counter_read(&memcg->memory) > memcg->high) {
2031 /* Don't bother a random interrupted task */
2032 if (in_interrupt()) {
2033 schedule_work(&memcg->high_work);
2036 current->memcg_nr_pages_over_high += batch;
2037 set_notify_resume(current);
2040 } while ((memcg = parent_mem_cgroup(memcg)));
2045 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2047 if (mem_cgroup_is_root(memcg))
2050 page_counter_uncharge(&memcg->memory, nr_pages);
2051 if (do_memsw_account())
2052 page_counter_uncharge(&memcg->memsw, nr_pages);
2054 css_put_many(&memcg->css, nr_pages);
2057 static void lock_page_lru(struct page *page, int *isolated)
2059 struct zone *zone = page_zone(page);
2061 spin_lock_irq(zone_lru_lock(zone));
2062 if (PageLRU(page)) {
2063 struct lruvec *lruvec;
2065 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2067 del_page_from_lru_list(page, lruvec, page_lru(page));
2073 static void unlock_page_lru(struct page *page, int isolated)
2075 struct zone *zone = page_zone(page);
2078 struct lruvec *lruvec;
2080 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2081 VM_BUG_ON_PAGE(PageLRU(page), page);
2083 add_page_to_lru_list(page, lruvec, page_lru(page));
2085 spin_unlock_irq(zone_lru_lock(zone));
2088 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2093 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2096 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2097 * may already be on some other mem_cgroup's LRU. Take care of it.
2100 lock_page_lru(page, &isolated);
2103 * Nobody should be changing or seriously looking at
2104 * page->mem_cgroup at this point:
2106 * - the page is uncharged
2108 * - the page is off-LRU
2110 * - an anonymous fault has exclusive page access, except for
2111 * a locked page table
2113 * - a page cache insertion, a swapin fault, or a migration
2114 * have the page locked
2116 page->mem_cgroup = memcg;
2119 unlock_page_lru(page, isolated);
2123 static int memcg_alloc_cache_id(void)
2128 id = ida_simple_get(&memcg_cache_ida,
2129 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2133 if (id < memcg_nr_cache_ids)
2137 * There's no space for the new id in memcg_caches arrays,
2138 * so we have to grow them.
2140 down_write(&memcg_cache_ids_sem);
2142 size = 2 * (id + 1);
2143 if (size < MEMCG_CACHES_MIN_SIZE)
2144 size = MEMCG_CACHES_MIN_SIZE;
2145 else if (size > MEMCG_CACHES_MAX_SIZE)
2146 size = MEMCG_CACHES_MAX_SIZE;
2148 err = memcg_update_all_caches(size);
2150 err = memcg_update_all_list_lrus(size);
2152 memcg_nr_cache_ids = size;
2154 up_write(&memcg_cache_ids_sem);
2157 ida_simple_remove(&memcg_cache_ida, id);
2163 static void memcg_free_cache_id(int id)
2165 ida_simple_remove(&memcg_cache_ida, id);
2168 struct memcg_kmem_cache_create_work {
2169 struct mem_cgroup *memcg;
2170 struct kmem_cache *cachep;
2171 struct work_struct work;
2174 static void memcg_kmem_cache_create_func(struct work_struct *w)
2176 struct memcg_kmem_cache_create_work *cw =
2177 container_of(w, struct memcg_kmem_cache_create_work, work);
2178 struct mem_cgroup *memcg = cw->memcg;
2179 struct kmem_cache *cachep = cw->cachep;
2181 memcg_create_kmem_cache(memcg, cachep);
2183 css_put(&memcg->css);
2188 * Enqueue the creation of a per-memcg kmem_cache.
2190 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2191 struct kmem_cache *cachep)
2193 struct memcg_kmem_cache_create_work *cw;
2195 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2199 css_get(&memcg->css);
2202 cw->cachep = cachep;
2203 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2205 queue_work(memcg_kmem_cache_wq, &cw->work);
2208 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2209 struct kmem_cache *cachep)
2212 * We need to stop accounting when we kmalloc, because if the
2213 * corresponding kmalloc cache is not yet created, the first allocation
2214 * in __memcg_schedule_kmem_cache_create will recurse.
2216 * However, it is better to enclose the whole function. Depending on
2217 * the debugging options enabled, INIT_WORK(), for instance, can
2218 * trigger an allocation. This too, will make us recurse. Because at
2219 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2220 * the safest choice is to do it like this, wrapping the whole function.
2222 current->memcg_kmem_skip_account = 1;
2223 __memcg_schedule_kmem_cache_create(memcg, cachep);
2224 current->memcg_kmem_skip_account = 0;
2227 static inline bool memcg_kmem_bypass(void)
2229 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2235 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2236 * @cachep: the original global kmem cache
2238 * Return the kmem_cache we're supposed to use for a slab allocation.
2239 * We try to use the current memcg's version of the cache.
2241 * If the cache does not exist yet, if we are the first user of it, we
2242 * create it asynchronously in a workqueue and let the current allocation
2243 * go through with the original cache.
2245 * This function takes a reference to the cache it returns to assure it
2246 * won't get destroyed while we are working with it. Once the caller is
2247 * done with it, memcg_kmem_put_cache() must be called to release the
2250 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2252 struct mem_cgroup *memcg;
2253 struct kmem_cache *memcg_cachep;
2256 VM_BUG_ON(!is_root_cache(cachep));
2258 if (memcg_kmem_bypass())
2261 if (current->memcg_kmem_skip_account)
2264 memcg = get_mem_cgroup_from_mm(current->mm);
2265 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2269 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2270 if (likely(memcg_cachep))
2271 return memcg_cachep;
2274 * If we are in a safe context (can wait, and not in interrupt
2275 * context), we could be be predictable and return right away.
2276 * This would guarantee that the allocation being performed
2277 * already belongs in the new cache.
2279 * However, there are some clashes that can arrive from locking.
2280 * For instance, because we acquire the slab_mutex while doing
2281 * memcg_create_kmem_cache, this means no further allocation
2282 * could happen with the slab_mutex held. So it's better to
2285 memcg_schedule_kmem_cache_create(memcg, cachep);
2287 css_put(&memcg->css);
2292 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2293 * @cachep: the cache returned by memcg_kmem_get_cache
2295 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2297 if (!is_root_cache(cachep))
2298 css_put(&cachep->memcg_params.memcg->css);
2302 * memcg_kmem_charge_memcg: charge a kmem page
2303 * @page: page to charge
2304 * @gfp: reclaim mode
2305 * @order: allocation order
2306 * @memcg: memory cgroup to charge
2308 * Returns 0 on success, an error code on failure.
2310 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2311 struct mem_cgroup *memcg)
2313 unsigned int nr_pages = 1 << order;
2314 struct page_counter *counter;
2317 ret = try_charge(memcg, gfp, nr_pages);
2321 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2322 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2323 cancel_charge(memcg, nr_pages);
2327 page->mem_cgroup = memcg;
2333 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2334 * @page: page to charge
2335 * @gfp: reclaim mode
2336 * @order: allocation order
2338 * Returns 0 on success, an error code on failure.
2340 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2342 struct mem_cgroup *memcg;
2345 if (memcg_kmem_bypass())
2348 memcg = get_mem_cgroup_from_mm(current->mm);
2349 if (!mem_cgroup_is_root(memcg)) {
2350 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2352 __SetPageKmemcg(page);
2354 css_put(&memcg->css);
2358 * memcg_kmem_uncharge: uncharge a kmem page
2359 * @page: page to uncharge
2360 * @order: allocation order
2362 void memcg_kmem_uncharge(struct page *page, int order)
2364 struct mem_cgroup *memcg = page->mem_cgroup;
2365 unsigned int nr_pages = 1 << order;
2370 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2373 page_counter_uncharge(&memcg->kmem, nr_pages);
2375 page_counter_uncharge(&memcg->memory, nr_pages);
2376 if (do_memsw_account())
2377 page_counter_uncharge(&memcg->memsw, nr_pages);
2379 page->mem_cgroup = NULL;
2381 /* slab pages do not have PageKmemcg flag set */
2382 if (PageKmemcg(page))
2383 __ClearPageKmemcg(page);
2385 css_put_many(&memcg->css, nr_pages);
2387 #endif /* !CONFIG_SLOB */
2389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2392 * Because tail pages are not marked as "used", set it. We're under
2393 * zone_lru_lock and migration entries setup in all page mappings.
2395 void mem_cgroup_split_huge_fixup(struct page *head)
2399 if (mem_cgroup_disabled())
2402 for (i = 1; i < HPAGE_PMD_NR; i++)
2403 head[i].mem_cgroup = head->mem_cgroup;
2405 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2407 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2409 #ifdef CONFIG_MEMCG_SWAP
2411 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2412 * @entry: swap entry to be moved
2413 * @from: mem_cgroup which the entry is moved from
2414 * @to: mem_cgroup which the entry is moved to
2416 * It succeeds only when the swap_cgroup's record for this entry is the same
2417 * as the mem_cgroup's id of @from.
2419 * Returns 0 on success, -EINVAL on failure.
2421 * The caller must have charged to @to, IOW, called page_counter_charge() about
2422 * both res and memsw, and called css_get().
2424 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2425 struct mem_cgroup *from, struct mem_cgroup *to)
2427 unsigned short old_id, new_id;
2429 old_id = mem_cgroup_id(from);
2430 new_id = mem_cgroup_id(to);
2432 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2433 mod_memcg_state(from, MEMCG_SWAP, -1);
2434 mod_memcg_state(to, MEMCG_SWAP, 1);
2440 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2441 struct mem_cgroup *from, struct mem_cgroup *to)
2447 static DEFINE_MUTEX(memcg_max_mutex);
2449 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2450 unsigned long max, bool memsw)
2452 bool enlarge = false;
2453 bool drained = false;
2455 bool limits_invariant;
2456 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2459 if (signal_pending(current)) {
2464 mutex_lock(&memcg_max_mutex);
2466 * Make sure that the new limit (memsw or memory limit) doesn't
2467 * break our basic invariant rule memory.max <= memsw.max.
2469 limits_invariant = memsw ? max >= memcg->memory.max :
2470 max <= memcg->memsw.max;
2471 if (!limits_invariant) {
2472 mutex_unlock(&memcg_max_mutex);
2476 if (max > counter->max)
2478 ret = page_counter_set_max(counter, max);
2479 mutex_unlock(&memcg_max_mutex);
2485 drain_all_stock(memcg);
2490 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2491 GFP_KERNEL, !memsw)) {
2497 if (!ret && enlarge)
2498 memcg_oom_recover(memcg);
2503 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2505 unsigned long *total_scanned)
2507 unsigned long nr_reclaimed = 0;
2508 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2509 unsigned long reclaimed;
2511 struct mem_cgroup_tree_per_node *mctz;
2512 unsigned long excess;
2513 unsigned long nr_scanned;
2518 mctz = soft_limit_tree_node(pgdat->node_id);
2521 * Do not even bother to check the largest node if the root
2522 * is empty. Do it lockless to prevent lock bouncing. Races
2523 * are acceptable as soft limit is best effort anyway.
2525 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2529 * This loop can run a while, specially if mem_cgroup's continuously
2530 * keep exceeding their soft limit and putting the system under
2537 mz = mem_cgroup_largest_soft_limit_node(mctz);
2542 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2543 gfp_mask, &nr_scanned);
2544 nr_reclaimed += reclaimed;
2545 *total_scanned += nr_scanned;
2546 spin_lock_irq(&mctz->lock);
2547 __mem_cgroup_remove_exceeded(mz, mctz);
2550 * If we failed to reclaim anything from this memory cgroup
2551 * it is time to move on to the next cgroup
2555 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2557 excess = soft_limit_excess(mz->memcg);
2559 * One school of thought says that we should not add
2560 * back the node to the tree if reclaim returns 0.
2561 * But our reclaim could return 0, simply because due
2562 * to priority we are exposing a smaller subset of
2563 * memory to reclaim from. Consider this as a longer
2566 /* If excess == 0, no tree ops */
2567 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2568 spin_unlock_irq(&mctz->lock);
2569 css_put(&mz->memcg->css);
2572 * Could not reclaim anything and there are no more
2573 * mem cgroups to try or we seem to be looping without
2574 * reclaiming anything.
2576 if (!nr_reclaimed &&
2578 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2580 } while (!nr_reclaimed);
2582 css_put(&next_mz->memcg->css);
2583 return nr_reclaimed;
2587 * Test whether @memcg has children, dead or alive. Note that this
2588 * function doesn't care whether @memcg has use_hierarchy enabled and
2589 * returns %true if there are child csses according to the cgroup
2590 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2592 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2597 ret = css_next_child(NULL, &memcg->css);
2603 * Reclaims as many pages from the given memcg as possible.
2605 * Caller is responsible for holding css reference for memcg.
2607 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2609 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2611 /* we call try-to-free pages for make this cgroup empty */
2612 lru_add_drain_all();
2614 drain_all_stock(memcg);
2616 /* try to free all pages in this cgroup */
2617 while (nr_retries && page_counter_read(&memcg->memory)) {
2620 if (signal_pending(current))
2623 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2627 /* maybe some writeback is necessary */
2628 congestion_wait(BLK_RW_ASYNC, HZ/10);
2636 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2637 char *buf, size_t nbytes,
2640 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2642 if (mem_cgroup_is_root(memcg))
2644 return mem_cgroup_force_empty(memcg) ?: nbytes;
2647 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2650 return mem_cgroup_from_css(css)->use_hierarchy;
2653 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2654 struct cftype *cft, u64 val)
2657 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2658 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2660 if (memcg->use_hierarchy == val)
2664 * If parent's use_hierarchy is set, we can't make any modifications
2665 * in the child subtrees. If it is unset, then the change can
2666 * occur, provided the current cgroup has no children.
2668 * For the root cgroup, parent_mem is NULL, we allow value to be
2669 * set if there are no children.
2671 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2672 (val == 1 || val == 0)) {
2673 if (!memcg_has_children(memcg))
2674 memcg->use_hierarchy = val;
2683 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2685 struct mem_cgroup *iter;
2688 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2690 for_each_mem_cgroup_tree(iter, memcg) {
2691 for (i = 0; i < MEMCG_NR_STAT; i++)
2692 stat[i] += memcg_page_state(iter, i);
2696 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2698 struct mem_cgroup *iter;
2701 memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2703 for_each_mem_cgroup_tree(iter, memcg) {
2704 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2705 events[i] += memcg_sum_events(iter, i);
2709 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2711 unsigned long val = 0;
2713 if (mem_cgroup_is_root(memcg)) {
2714 struct mem_cgroup *iter;
2716 for_each_mem_cgroup_tree(iter, memcg) {
2717 val += memcg_page_state(iter, MEMCG_CACHE);
2718 val += memcg_page_state(iter, MEMCG_RSS);
2720 val += memcg_page_state(iter, MEMCG_SWAP);
2724 val = page_counter_read(&memcg->memory);
2726 val = page_counter_read(&memcg->memsw);
2739 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2742 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2743 struct page_counter *counter;
2745 switch (MEMFILE_TYPE(cft->private)) {
2747 counter = &memcg->memory;
2750 counter = &memcg->memsw;
2753 counter = &memcg->kmem;
2756 counter = &memcg->tcpmem;
2762 switch (MEMFILE_ATTR(cft->private)) {
2764 if (counter == &memcg->memory)
2765 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2766 if (counter == &memcg->memsw)
2767 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2768 return (u64)page_counter_read(counter) * PAGE_SIZE;
2770 return (u64)counter->max * PAGE_SIZE;
2772 return (u64)counter->watermark * PAGE_SIZE;
2774 return counter->failcnt;
2775 case RES_SOFT_LIMIT:
2776 return (u64)memcg->soft_limit * PAGE_SIZE;
2783 static int memcg_online_kmem(struct mem_cgroup *memcg)
2787 if (cgroup_memory_nokmem)
2790 BUG_ON(memcg->kmemcg_id >= 0);
2791 BUG_ON(memcg->kmem_state);
2793 memcg_id = memcg_alloc_cache_id();
2797 static_branch_inc(&memcg_kmem_enabled_key);
2799 * A memory cgroup is considered kmem-online as soon as it gets
2800 * kmemcg_id. Setting the id after enabling static branching will
2801 * guarantee no one starts accounting before all call sites are
2804 memcg->kmemcg_id = memcg_id;
2805 memcg->kmem_state = KMEM_ONLINE;
2806 INIT_LIST_HEAD(&memcg->kmem_caches);
2811 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2813 struct cgroup_subsys_state *css;
2814 struct mem_cgroup *parent, *child;
2817 if (memcg->kmem_state != KMEM_ONLINE)
2820 * Clear the online state before clearing memcg_caches array
2821 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2822 * guarantees that no cache will be created for this cgroup
2823 * after we are done (see memcg_create_kmem_cache()).
2825 memcg->kmem_state = KMEM_ALLOCATED;
2827 memcg_deactivate_kmem_caches(memcg);
2829 kmemcg_id = memcg->kmemcg_id;
2830 BUG_ON(kmemcg_id < 0);
2832 parent = parent_mem_cgroup(memcg);
2834 parent = root_mem_cgroup;
2837 * Change kmemcg_id of this cgroup and all its descendants to the
2838 * parent's id, and then move all entries from this cgroup's list_lrus
2839 * to ones of the parent. After we have finished, all list_lrus
2840 * corresponding to this cgroup are guaranteed to remain empty. The
2841 * ordering is imposed by list_lru_node->lock taken by
2842 * memcg_drain_all_list_lrus().
2844 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2845 css_for_each_descendant_pre(css, &memcg->css) {
2846 child = mem_cgroup_from_css(css);
2847 BUG_ON(child->kmemcg_id != kmemcg_id);
2848 child->kmemcg_id = parent->kmemcg_id;
2849 if (!memcg->use_hierarchy)
2854 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2856 memcg_free_cache_id(kmemcg_id);
2859 static void memcg_free_kmem(struct mem_cgroup *memcg)
2861 /* css_alloc() failed, offlining didn't happen */
2862 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2863 memcg_offline_kmem(memcg);
2865 if (memcg->kmem_state == KMEM_ALLOCATED) {
2866 memcg_destroy_kmem_caches(memcg);
2867 static_branch_dec(&memcg_kmem_enabled_key);
2868 WARN_ON(page_counter_read(&memcg->kmem));
2872 static int memcg_online_kmem(struct mem_cgroup *memcg)
2876 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2879 static void memcg_free_kmem(struct mem_cgroup *memcg)
2882 #endif /* !CONFIG_SLOB */
2884 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
2889 mutex_lock(&memcg_max_mutex);
2890 ret = page_counter_set_max(&memcg->kmem, max);
2891 mutex_unlock(&memcg_max_mutex);
2895 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
2899 mutex_lock(&memcg_max_mutex);
2901 ret = page_counter_set_max(&memcg->tcpmem, max);
2905 if (!memcg->tcpmem_active) {
2907 * The active flag needs to be written after the static_key
2908 * update. This is what guarantees that the socket activation
2909 * function is the last one to run. See mem_cgroup_sk_alloc()
2910 * for details, and note that we don't mark any socket as
2911 * belonging to this memcg until that flag is up.
2913 * We need to do this, because static_keys will span multiple
2914 * sites, but we can't control their order. If we mark a socket
2915 * as accounted, but the accounting functions are not patched in
2916 * yet, we'll lose accounting.
2918 * We never race with the readers in mem_cgroup_sk_alloc(),
2919 * because when this value change, the code to process it is not
2922 static_branch_inc(&memcg_sockets_enabled_key);
2923 memcg->tcpmem_active = true;
2926 mutex_unlock(&memcg_max_mutex);
2931 * The user of this function is...
2934 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2935 char *buf, size_t nbytes, loff_t off)
2937 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2938 unsigned long nr_pages;
2941 buf = strstrip(buf);
2942 ret = page_counter_memparse(buf, "-1", &nr_pages);
2946 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2948 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2952 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2954 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
2957 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
2960 ret = memcg_update_kmem_max(memcg, nr_pages);
2963 ret = memcg_update_tcp_max(memcg, nr_pages);
2967 case RES_SOFT_LIMIT:
2968 memcg->soft_limit = nr_pages;
2972 return ret ?: nbytes;
2975 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2976 size_t nbytes, loff_t off)
2978 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2979 struct page_counter *counter;
2981 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2983 counter = &memcg->memory;
2986 counter = &memcg->memsw;
2989 counter = &memcg->kmem;
2992 counter = &memcg->tcpmem;
2998 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3000 page_counter_reset_watermark(counter);
3003 counter->failcnt = 0;
3012 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3015 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3019 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3020 struct cftype *cft, u64 val)
3022 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3024 if (val & ~MOVE_MASK)
3028 * No kind of locking is needed in here, because ->can_attach() will
3029 * check this value once in the beginning of the process, and then carry
3030 * on with stale data. This means that changes to this value will only
3031 * affect task migrations starting after the change.
3033 memcg->move_charge_at_immigrate = val;
3037 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3038 struct cftype *cft, u64 val)
3045 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3049 unsigned int lru_mask;
3052 static const struct numa_stat stats[] = {
3053 { "total", LRU_ALL },
3054 { "file", LRU_ALL_FILE },
3055 { "anon", LRU_ALL_ANON },
3056 { "unevictable", BIT(LRU_UNEVICTABLE) },
3058 const struct numa_stat *stat;
3061 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3063 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3064 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3065 seq_printf(m, "%s=%lu", stat->name, nr);
3066 for_each_node_state(nid, N_MEMORY) {
3067 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3069 seq_printf(m, " N%d=%lu", nid, nr);
3074 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3075 struct mem_cgroup *iter;
3078 for_each_mem_cgroup_tree(iter, memcg)
3079 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3080 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3081 for_each_node_state(nid, N_MEMORY) {
3083 for_each_mem_cgroup_tree(iter, memcg)
3084 nr += mem_cgroup_node_nr_lru_pages(
3085 iter, nid, stat->lru_mask);
3086 seq_printf(m, " N%d=%lu", nid, nr);
3093 #endif /* CONFIG_NUMA */
3095 /* Universal VM events cgroup1 shows, original sort order */
3096 static const unsigned int memcg1_events[] = {
3103 static const char *const memcg1_event_names[] = {
3110 static int memcg_stat_show(struct seq_file *m, void *v)
3112 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3113 unsigned long memory, memsw;
3114 struct mem_cgroup *mi;
3117 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3118 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3120 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3121 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3123 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3124 memcg_page_state(memcg, memcg1_stats[i]) *
3128 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3129 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3130 memcg_sum_events(memcg, memcg1_events[i]));
3132 for (i = 0; i < NR_LRU_LISTS; i++)
3133 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3134 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3136 /* Hierarchical information */
3137 memory = memsw = PAGE_COUNTER_MAX;
3138 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3139 memory = min(memory, mi->memory.max);
3140 memsw = min(memsw, mi->memsw.max);
3142 seq_printf(m, "hierarchical_memory_limit %llu\n",
3143 (u64)memory * PAGE_SIZE);
3144 if (do_memsw_account())
3145 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3146 (u64)memsw * PAGE_SIZE);
3148 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3149 unsigned long long val = 0;
3151 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3153 for_each_mem_cgroup_tree(mi, memcg)
3154 val += memcg_page_state(mi, memcg1_stats[i]) *
3156 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3159 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3160 unsigned long long val = 0;
3162 for_each_mem_cgroup_tree(mi, memcg)
3163 val += memcg_sum_events(mi, memcg1_events[i]);
3164 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3167 for (i = 0; i < NR_LRU_LISTS; i++) {
3168 unsigned long long val = 0;
3170 for_each_mem_cgroup_tree(mi, memcg)
3171 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3172 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3175 #ifdef CONFIG_DEBUG_VM
3178 struct mem_cgroup_per_node *mz;
3179 struct zone_reclaim_stat *rstat;
3180 unsigned long recent_rotated[2] = {0, 0};
3181 unsigned long recent_scanned[2] = {0, 0};
3183 for_each_online_pgdat(pgdat) {
3184 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3185 rstat = &mz->lruvec.reclaim_stat;
3187 recent_rotated[0] += rstat->recent_rotated[0];
3188 recent_rotated[1] += rstat->recent_rotated[1];
3189 recent_scanned[0] += rstat->recent_scanned[0];
3190 recent_scanned[1] += rstat->recent_scanned[1];
3192 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3193 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3194 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3195 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3202 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3205 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3207 return mem_cgroup_swappiness(memcg);
3210 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3211 struct cftype *cft, u64 val)
3213 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3219 memcg->swappiness = val;
3221 vm_swappiness = val;
3226 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3228 struct mem_cgroup_threshold_ary *t;
3229 unsigned long usage;
3234 t = rcu_dereference(memcg->thresholds.primary);
3236 t = rcu_dereference(memcg->memsw_thresholds.primary);
3241 usage = mem_cgroup_usage(memcg, swap);
3244 * current_threshold points to threshold just below or equal to usage.
3245 * If it's not true, a threshold was crossed after last
3246 * call of __mem_cgroup_threshold().
3248 i = t->current_threshold;
3251 * Iterate backward over array of thresholds starting from
3252 * current_threshold and check if a threshold is crossed.
3253 * If none of thresholds below usage is crossed, we read
3254 * only one element of the array here.
3256 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3257 eventfd_signal(t->entries[i].eventfd, 1);
3259 /* i = current_threshold + 1 */
3263 * Iterate forward over array of thresholds starting from
3264 * current_threshold+1 and check if a threshold is crossed.
3265 * If none of thresholds above usage is crossed, we read
3266 * only one element of the array here.
3268 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3269 eventfd_signal(t->entries[i].eventfd, 1);
3271 /* Update current_threshold */
3272 t->current_threshold = i - 1;
3277 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3280 __mem_cgroup_threshold(memcg, false);
3281 if (do_memsw_account())
3282 __mem_cgroup_threshold(memcg, true);
3284 memcg = parent_mem_cgroup(memcg);
3288 static int compare_thresholds(const void *a, const void *b)
3290 const struct mem_cgroup_threshold *_a = a;
3291 const struct mem_cgroup_threshold *_b = b;
3293 if (_a->threshold > _b->threshold)
3296 if (_a->threshold < _b->threshold)
3302 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3304 struct mem_cgroup_eventfd_list *ev;
3306 spin_lock(&memcg_oom_lock);
3308 list_for_each_entry(ev, &memcg->oom_notify, list)
3309 eventfd_signal(ev->eventfd, 1);
3311 spin_unlock(&memcg_oom_lock);
3315 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3317 struct mem_cgroup *iter;
3319 for_each_mem_cgroup_tree(iter, memcg)
3320 mem_cgroup_oom_notify_cb(iter);
3323 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3324 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3326 struct mem_cgroup_thresholds *thresholds;
3327 struct mem_cgroup_threshold_ary *new;
3328 unsigned long threshold;
3329 unsigned long usage;
3332 ret = page_counter_memparse(args, "-1", &threshold);
3336 mutex_lock(&memcg->thresholds_lock);
3339 thresholds = &memcg->thresholds;
3340 usage = mem_cgroup_usage(memcg, false);
3341 } else if (type == _MEMSWAP) {
3342 thresholds = &memcg->memsw_thresholds;
3343 usage = mem_cgroup_usage(memcg, true);
3347 /* Check if a threshold crossed before adding a new one */
3348 if (thresholds->primary)
3349 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3351 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3353 /* Allocate memory for new array of thresholds */
3354 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3362 /* Copy thresholds (if any) to new array */
3363 if (thresholds->primary) {
3364 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3365 sizeof(struct mem_cgroup_threshold));
3368 /* Add new threshold */
3369 new->entries[size - 1].eventfd = eventfd;
3370 new->entries[size - 1].threshold = threshold;
3372 /* Sort thresholds. Registering of new threshold isn't time-critical */
3373 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3374 compare_thresholds, NULL);
3376 /* Find current threshold */
3377 new->current_threshold = -1;
3378 for (i = 0; i < size; i++) {
3379 if (new->entries[i].threshold <= usage) {
3381 * new->current_threshold will not be used until
3382 * rcu_assign_pointer(), so it's safe to increment
3385 ++new->current_threshold;
3390 /* Free old spare buffer and save old primary buffer as spare */
3391 kfree(thresholds->spare);
3392 thresholds->spare = thresholds->primary;
3394 rcu_assign_pointer(thresholds->primary, new);
3396 /* To be sure that nobody uses thresholds */
3400 mutex_unlock(&memcg->thresholds_lock);
3405 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3406 struct eventfd_ctx *eventfd, const char *args)
3408 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3411 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3412 struct eventfd_ctx *eventfd, const char *args)
3414 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3417 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3418 struct eventfd_ctx *eventfd, enum res_type type)
3420 struct mem_cgroup_thresholds *thresholds;
3421 struct mem_cgroup_threshold_ary *new;
3422 unsigned long usage;
3425 mutex_lock(&memcg->thresholds_lock);
3428 thresholds = &memcg->thresholds;
3429 usage = mem_cgroup_usage(memcg, false);
3430 } else if (type == _MEMSWAP) {
3431 thresholds = &memcg->memsw_thresholds;
3432 usage = mem_cgroup_usage(memcg, true);
3436 if (!thresholds->primary)
3439 /* Check if a threshold crossed before removing */
3440 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3442 /* Calculate new number of threshold */
3444 for (i = 0; i < thresholds->primary->size; i++) {
3445 if (thresholds->primary->entries[i].eventfd != eventfd)
3449 new = thresholds->spare;
3451 /* Set thresholds array to NULL if we don't have thresholds */
3460 /* Copy thresholds and find current threshold */
3461 new->current_threshold = -1;
3462 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3463 if (thresholds->primary->entries[i].eventfd == eventfd)
3466 new->entries[j] = thresholds->primary->entries[i];
3467 if (new->entries[j].threshold <= usage) {
3469 * new->current_threshold will not be used
3470 * until rcu_assign_pointer(), so it's safe to increment
3473 ++new->current_threshold;
3479 /* Swap primary and spare array */
3480 thresholds->spare = thresholds->primary;
3482 rcu_assign_pointer(thresholds->primary, new);
3484 /* To be sure that nobody uses thresholds */
3487 /* If all events are unregistered, free the spare array */
3489 kfree(thresholds->spare);
3490 thresholds->spare = NULL;
3493 mutex_unlock(&memcg->thresholds_lock);
3496 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3497 struct eventfd_ctx *eventfd)
3499 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3502 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3503 struct eventfd_ctx *eventfd)
3505 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3508 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3509 struct eventfd_ctx *eventfd, const char *args)
3511 struct mem_cgroup_eventfd_list *event;
3513 event = kmalloc(sizeof(*event), GFP_KERNEL);
3517 spin_lock(&memcg_oom_lock);
3519 event->eventfd = eventfd;
3520 list_add(&event->list, &memcg->oom_notify);
3522 /* already in OOM ? */
3523 if (memcg->under_oom)
3524 eventfd_signal(eventfd, 1);
3525 spin_unlock(&memcg_oom_lock);
3530 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3531 struct eventfd_ctx *eventfd)
3533 struct mem_cgroup_eventfd_list *ev, *tmp;
3535 spin_lock(&memcg_oom_lock);
3537 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3538 if (ev->eventfd == eventfd) {
3539 list_del(&ev->list);
3544 spin_unlock(&memcg_oom_lock);
3547 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3549 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3551 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3552 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3553 seq_printf(sf, "oom_kill %lu\n",
3554 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3558 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3559 struct cftype *cft, u64 val)
3561 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3563 /* cannot set to root cgroup and only 0 and 1 are allowed */
3564 if (!css->parent || !((val == 0) || (val == 1)))
3567 memcg->oom_kill_disable = val;
3569 memcg_oom_recover(memcg);
3574 #ifdef CONFIG_CGROUP_WRITEBACK
3576 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3578 return wb_domain_init(&memcg->cgwb_domain, gfp);
3581 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3583 wb_domain_exit(&memcg->cgwb_domain);
3586 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3588 wb_domain_size_changed(&memcg->cgwb_domain);
3591 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3593 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3595 if (!memcg->css.parent)
3598 return &memcg->cgwb_domain;
3602 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3603 * @wb: bdi_writeback in question
3604 * @pfilepages: out parameter for number of file pages
3605 * @pheadroom: out parameter for number of allocatable pages according to memcg
3606 * @pdirty: out parameter for number of dirty pages
3607 * @pwriteback: out parameter for number of pages under writeback
3609 * Determine the numbers of file, headroom, dirty, and writeback pages in
3610 * @wb's memcg. File, dirty and writeback are self-explana