2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
109 * Array of node states.
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
119 [N_MEMORY] = { { [0] = 1UL } },
120 [N_CPU] = { { [0] = 1UL } },
123 EXPORT_SYMBOL(node_states);
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
143 static inline int get_pcppage_migratetype(struct page *page)
148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150 page->index = migratetype;
153 #ifdef CONFIG_PM_SLEEP
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
160 * guaranteed not to run in parallel with that modification).
163 static gfp_t saved_gfp_mask;
165 void pm_restore_gfp_mask(void)
167 WARN_ON(!mutex_is_locked(&pm_mutex));
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
174 void pm_restrict_gfp_mask(void)
176 WARN_ON(!mutex_is_locked(&pm_mutex));
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
182 bool pm_suspended_storage(void)
184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
188 #endif /* CONFIG_PM_SLEEP */
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
194 static void __free_pages_ok(struct page *page, unsigned int order);
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
208 #ifdef CONFIG_ZONE_DMA
211 #ifdef CONFIG_ZONE_DMA32
215 #ifdef CONFIG_HIGHMEM
221 EXPORT_SYMBOL(totalram_pages);
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
227 #ifdef CONFIG_ZONE_DMA32
231 #ifdef CONFIG_HIGHMEM
235 #ifdef CONFIG_ZONE_DEVICE
240 char * const migratetype_names[MIGRATE_TYPES] = {
248 #ifdef CONFIG_MEMORY_ISOLATION
253 compound_page_dtor * const compound_page_dtors[] = {
256 #ifdef CONFIG_HUGETLB_PAGE
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
268 static unsigned long nr_kernel_pages __meminitdata;
269 static unsigned long nr_all_pages __meminitdata;
270 static unsigned long dma_reserve __meminitdata;
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long required_kernelcore __initdata;
276 static unsigned long required_kernelcore_percent __initdata;
277 static unsigned long required_movablecore __initdata;
278 static unsigned long required_movablecore_percent __initdata;
279 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280 static bool mirrored_kernelcore __meminitdata;
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
284 EXPORT_SYMBOL(movable_zone);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
288 int nr_node_ids __read_mostly = MAX_NUMNODES;
289 int nr_online_nodes __read_mostly = 1;
290 EXPORT_SYMBOL(nr_node_ids);
291 EXPORT_SYMBOL(nr_online_nodes);
294 int page_group_by_mobility_disabled __read_mostly;
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300 int nid = early_pfn_to_nid(pfn);
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
312 static inline bool update_defer_init(pg_data_t *pgdat,
313 unsigned long pfn, unsigned long zone_end,
314 unsigned long *nr_initialised)
316 /* Always populate low zones for address-constrained allocations */
317 if (zone_end < pgdat_end_pfn(pgdat))
320 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
321 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
322 pgdat->first_deferred_pfn = pfn;
329 static inline bool early_page_uninitialised(unsigned long pfn)
334 static inline bool update_defer_init(pg_data_t *pgdat,
335 unsigned long pfn, unsigned long zone_end,
336 unsigned long *nr_initialised)
342 /* Return a pointer to the bitmap storing bits affecting a block of pages */
343 static inline unsigned long *get_pageblock_bitmap(struct page *page,
346 #ifdef CONFIG_SPARSEMEM
347 return __pfn_to_section(pfn)->pageblock_flags;
349 return page_zone(page)->pageblock_flags;
350 #endif /* CONFIG_SPARSEMEM */
353 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
355 #ifdef CONFIG_SPARSEMEM
356 pfn &= (PAGES_PER_SECTION-1);
357 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
359 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #endif /* CONFIG_SPARSEMEM */
365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366 * @page: The page within the block of interest
367 * @pfn: The target page frame number
368 * @end_bitidx: The last bit of interest to retrieve
369 * @mask: mask of bits that the caller is interested in
371 * Return: pageblock_bits flags
373 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
375 unsigned long end_bitidx,
378 unsigned long *bitmap;
379 unsigned long bitidx, word_bitidx;
382 bitmap = get_pageblock_bitmap(page, pfn);
383 bitidx = pfn_to_bitidx(page, pfn);
384 word_bitidx = bitidx / BITS_PER_LONG;
385 bitidx &= (BITS_PER_LONG-1);
387 word = bitmap[word_bitidx];
388 bitidx += end_bitidx;
389 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
392 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
393 unsigned long end_bitidx,
396 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
399 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
401 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
406 * @page: The page within the block of interest
407 * @flags: The flags to set
408 * @pfn: The target page frame number
409 * @end_bitidx: The last bit of interest
410 * @mask: mask of bits that the caller is interested in
412 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
414 unsigned long end_bitidx,
417 unsigned long *bitmap;
418 unsigned long bitidx, word_bitidx;
419 unsigned long old_word, word;
421 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
423 bitmap = get_pageblock_bitmap(page, pfn);
424 bitidx = pfn_to_bitidx(page, pfn);
425 word_bitidx = bitidx / BITS_PER_LONG;
426 bitidx &= (BITS_PER_LONG-1);
428 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
430 bitidx += end_bitidx;
431 mask <<= (BITS_PER_LONG - bitidx - 1);
432 flags <<= (BITS_PER_LONG - bitidx - 1);
434 word = READ_ONCE(bitmap[word_bitidx]);
436 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
437 if (word == old_word)
443 void set_pageblock_migratetype(struct page *page, int migratetype)
445 if (unlikely(page_group_by_mobility_disabled &&
446 migratetype < MIGRATE_PCPTYPES))
447 migratetype = MIGRATE_UNMOVABLE;
449 set_pageblock_flags_group(page, (unsigned long)migratetype,
450 PB_migrate, PB_migrate_end);
453 #ifdef CONFIG_DEBUG_VM
454 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
458 unsigned long pfn = page_to_pfn(page);
459 unsigned long sp, start_pfn;
462 seq = zone_span_seqbegin(zone);
463 start_pfn = zone->zone_start_pfn;
464 sp = zone->spanned_pages;
465 if (!zone_spans_pfn(zone, pfn))
467 } while (zone_span_seqretry(zone, seq));
470 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
471 pfn, zone_to_nid(zone), zone->name,
472 start_pfn, start_pfn + sp);
477 static int page_is_consistent(struct zone *zone, struct page *page)
479 if (!pfn_valid_within(page_to_pfn(page)))
481 if (zone != page_zone(page))
487 * Temporary debugging check for pages not lying within a given zone.
489 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
491 if (page_outside_zone_boundaries(zone, page))
493 if (!page_is_consistent(zone, page))
499 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
505 static void bad_page(struct page *page, const char *reason,
506 unsigned long bad_flags)
508 static unsigned long resume;
509 static unsigned long nr_shown;
510 static unsigned long nr_unshown;
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
516 if (nr_shown == 60) {
517 if (time_before(jiffies, resume)) {
523 "BUG: Bad page state: %lu messages suppressed\n",
530 resume = jiffies + 60 * HZ;
532 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
533 current->comm, page_to_pfn(page));
534 __dump_page(page, reason);
535 bad_flags &= page->flags;
537 pr_alert("bad because of flags: %#lx(%pGp)\n",
538 bad_flags, &bad_flags);
539 dump_page_owner(page);
544 /* Leave bad fields for debug, except PageBuddy could make trouble */
545 page_mapcount_reset(page); /* remove PageBuddy */
546 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 * Higher-order pages are called "compound pages". They are structured thusly:
552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
557 * The first tail page's ->compound_dtor holds the offset in array of compound
558 * page destructors. See compound_page_dtors.
560 * The first tail page's ->compound_order holds the order of allocation.
561 * This usage means that zero-order pages may not be compound.
564 void free_compound_page(struct page *page)
566 __free_pages_ok(page, compound_order(page));
569 void prep_compound_page(struct page *page, unsigned int order)
572 int nr_pages = 1 << order;
574 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
575 set_compound_order(page, order);
577 for (i = 1; i < nr_pages; i++) {
578 struct page *p = page + i;
579 set_page_count(p, 0);
580 p->mapping = TAIL_MAPPING;
581 set_compound_head(p, page);
583 atomic_set(compound_mapcount_ptr(page), -1);
586 #ifdef CONFIG_DEBUG_PAGEALLOC
587 unsigned int _debug_guardpage_minorder;
588 bool _debug_pagealloc_enabled __read_mostly
589 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
590 EXPORT_SYMBOL(_debug_pagealloc_enabled);
591 bool _debug_guardpage_enabled __read_mostly;
593 static int __init early_debug_pagealloc(char *buf)
597 return kstrtobool(buf, &_debug_pagealloc_enabled);
599 early_param("debug_pagealloc", early_debug_pagealloc);
601 static bool need_debug_guardpage(void)
603 /* If we don't use debug_pagealloc, we don't need guard page */
604 if (!debug_pagealloc_enabled())
607 if (!debug_guardpage_minorder())
613 static void init_debug_guardpage(void)
615 if (!debug_pagealloc_enabled())
618 if (!debug_guardpage_minorder())
621 _debug_guardpage_enabled = true;
624 struct page_ext_operations debug_guardpage_ops = {
625 .need = need_debug_guardpage,
626 .init = init_debug_guardpage,
629 static int __init debug_guardpage_minorder_setup(char *buf)
633 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
634 pr_err("Bad debug_guardpage_minorder value\n");
637 _debug_guardpage_minorder = res;
638 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
641 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
643 static inline bool set_page_guard(struct zone *zone, struct page *page,
644 unsigned int order, int migratetype)
646 struct page_ext *page_ext;
648 if (!debug_guardpage_enabled())
651 if (order >= debug_guardpage_minorder())
654 page_ext = lookup_page_ext(page);
655 if (unlikely(!page_ext))
658 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
660 INIT_LIST_HEAD(&page->lru);
661 set_page_private(page, order);
662 /* Guard pages are not available for any usage */
663 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
668 static inline void clear_page_guard(struct zone *zone, struct page *page,
669 unsigned int order, int migratetype)
671 struct page_ext *page_ext;
673 if (!debug_guardpage_enabled())
676 page_ext = lookup_page_ext(page);
677 if (unlikely(!page_ext))
680 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
682 set_page_private(page, 0);
683 if (!is_migrate_isolate(migratetype))
684 __mod_zone_freepage_state(zone, (1 << order), migratetype);
687 struct page_ext_operations debug_guardpage_ops;
688 static inline bool set_page_guard(struct zone *zone, struct page *page,
689 unsigned int order, int migratetype) { return false; }
690 static inline void clear_page_guard(struct zone *zone, struct page *page,
691 unsigned int order, int migratetype) {}
694 static inline void set_page_order(struct page *page, unsigned int order)
696 set_page_private(page, order);
697 __SetPageBuddy(page);
700 static inline void rmv_page_order(struct page *page)
702 __ClearPageBuddy(page);
703 set_page_private(page, 0);
707 * This function checks whether a page is free && is the buddy
708 * we can coalesce a page and its buddy if
709 * (a) the buddy is not in a hole (check before calling!) &&
710 * (b) the buddy is in the buddy system &&
711 * (c) a page and its buddy have the same order &&
712 * (d) a page and its buddy are in the same zone.
714 * For recording whether a page is in the buddy system, we set PageBuddy.
715 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
717 * For recording page's order, we use page_private(page).
719 static inline int page_is_buddy(struct page *page, struct page *buddy,
722 if (page_is_guard(buddy) && page_order(buddy) == order) {
723 if (page_zone_id(page) != page_zone_id(buddy))
726 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
731 if (PageBuddy(buddy) && page_order(buddy) == order) {
733 * zone check is done late to avoid uselessly
734 * calculating zone/node ids for pages that could
737 if (page_zone_id(page) != page_zone_id(buddy))
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
748 * Freeing function for a buddy system allocator.
750 * The concept of a buddy system is to maintain direct-mapped table
751 * (containing bit values) for memory blocks of various "orders".
752 * The bottom level table contains the map for the smallest allocatable
753 * units of memory (here, pages), and each level above it describes
754 * pairs of units from the levels below, hence, "buddies".
755 * At a high level, all that happens here is marking the table entry
756 * at the bottom level available, and propagating the changes upward
757 * as necessary, plus some accounting needed to play nicely with other
758 * parts of the VM system.
759 * At each level, we keep a list of pages, which are heads of continuous
760 * free pages of length of (1 << order) and marked with PageBuddy.
761 * Page's order is recorded in page_private(page) field.
762 * So when we are allocating or freeing one, we can derive the state of the
763 * other. That is, if we allocate a small block, and both were
764 * free, the remainder of the region must be split into blocks.
765 * If a block is freed, and its buddy is also free, then this
766 * triggers coalescing into a block of larger size.
771 static inline void __free_one_page(struct page *page,
773 struct zone *zone, unsigned int order,
776 unsigned long combined_pfn;
777 unsigned long uninitialized_var(buddy_pfn);
779 unsigned int max_order;
781 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
783 VM_BUG_ON(!zone_is_initialized(zone));
784 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
786 VM_BUG_ON(migratetype == -1);
787 if (likely(!is_migrate_isolate(migratetype)))
788 __mod_zone_freepage_state(zone, 1 << order, migratetype);
790 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
791 VM_BUG_ON_PAGE(bad_range(zone, page), page);
794 while (order < max_order - 1) {
795 buddy_pfn = __find_buddy_pfn(pfn, order);
796 buddy = page + (buddy_pfn - pfn);
798 if (!pfn_valid_within(buddy_pfn))
800 if (!page_is_buddy(page, buddy, order))
803 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
804 * merge with it and move up one order.
806 if (page_is_guard(buddy)) {
807 clear_page_guard(zone, buddy, order, migratetype);
809 list_del(&buddy->lru);
810 zone->free_area[order].nr_free--;
811 rmv_page_order(buddy);
813 combined_pfn = buddy_pfn & pfn;
814 page = page + (combined_pfn - pfn);
818 if (max_order < MAX_ORDER) {
819 /* If we are here, it means order is >= pageblock_order.
820 * We want to prevent merge between freepages on isolate
821 * pageblock and normal pageblock. Without this, pageblock
822 * isolation could cause incorrect freepage or CMA accounting.
824 * We don't want to hit this code for the more frequent
827 if (unlikely(has_isolate_pageblock(zone))) {
830 buddy_pfn = __find_buddy_pfn(pfn, order);
831 buddy = page + (buddy_pfn - pfn);
832 buddy_mt = get_pageblock_migratetype(buddy);
834 if (migratetype != buddy_mt
835 && (is_migrate_isolate(migratetype) ||
836 is_migrate_isolate(buddy_mt)))
840 goto continue_merging;
844 set_page_order(page, order);
847 * If this is not the largest possible page, check if the buddy
848 * of the next-highest order is free. If it is, it's possible
849 * that pages are being freed that will coalesce soon. In case,
850 * that is happening, add the free page to the tail of the list
851 * so it's less likely to be used soon and more likely to be merged
852 * as a higher order page
854 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
855 struct page *higher_page, *higher_buddy;
856 combined_pfn = buddy_pfn & pfn;
857 higher_page = page + (combined_pfn - pfn);
858 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
859 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
860 if (pfn_valid_within(buddy_pfn) &&
861 page_is_buddy(higher_page, higher_buddy, order + 1)) {
862 list_add_tail(&page->lru,
863 &zone->free_area[order].free_list[migratetype]);
868 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
870 zone->free_area[order].nr_free++;
874 * A bad page could be due to a number of fields. Instead of multiple branches,
875 * try and check multiple fields with one check. The caller must do a detailed
876 * check if necessary.
878 static inline bool page_expected_state(struct page *page,
879 unsigned long check_flags)
881 if (unlikely(atomic_read(&page->_mapcount) != -1))
884 if (unlikely((unsigned long)page->mapping |
885 page_ref_count(page) |
887 (unsigned long)page->mem_cgroup |
889 (page->flags & check_flags)))
895 static void free_pages_check_bad(struct page *page)
897 const char *bad_reason;
898 unsigned long bad_flags;
903 if (unlikely(atomic_read(&page->_mapcount) != -1))
904 bad_reason = "nonzero mapcount";
905 if (unlikely(page->mapping != NULL))
906 bad_reason = "non-NULL mapping";
907 if (unlikely(page_ref_count(page) != 0))
908 bad_reason = "nonzero _refcount";
909 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
910 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
911 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
914 if (unlikely(page->mem_cgroup))
915 bad_reason = "page still charged to cgroup";
917 bad_page(page, bad_reason, bad_flags);
920 static inline int free_pages_check(struct page *page)
922 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
925 /* Something has gone sideways, find it */
926 free_pages_check_bad(page);
930 static int free_tail_pages_check(struct page *head_page, struct page *page)
935 * We rely page->lru.next never has bit 0 set, unless the page
936 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
938 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
940 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
944 switch (page - head_page) {
946 /* the first tail page: ->mapping may be compound_mapcount() */
947 if (unlikely(compound_mapcount(page))) {
948 bad_page(page, "nonzero compound_mapcount", 0);
954 * the second tail page: ->mapping is
955 * deferred_list.next -- ignore value.
959 if (page->mapping != TAIL_MAPPING) {
960 bad_page(page, "corrupted mapping in tail page", 0);
965 if (unlikely(!PageTail(page))) {
966 bad_page(page, "PageTail not set", 0);
969 if (unlikely(compound_head(page) != head_page)) {
970 bad_page(page, "compound_head not consistent", 0);
975 page->mapping = NULL;
976 clear_compound_head(page);
980 static __always_inline bool free_pages_prepare(struct page *page,
981 unsigned int order, bool check_free)
985 VM_BUG_ON_PAGE(PageTail(page), page);
987 trace_mm_page_free(page, order);
990 * Check tail pages before head page information is cleared to
991 * avoid checking PageCompound for order-0 pages.
993 if (unlikely(order)) {
994 bool compound = PageCompound(page);
997 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1000 ClearPageDoubleMap(page);
1001 for (i = 1; i < (1 << order); i++) {
1003 bad += free_tail_pages_check(page, page + i);
1004 if (unlikely(free_pages_check(page + i))) {
1008 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1011 if (PageMappingFlags(page))
1012 page->mapping = NULL;
1013 if (memcg_kmem_enabled() && PageKmemcg(page))
1014 memcg_kmem_uncharge(page, order);
1016 bad += free_pages_check(page);
1020 page_cpupid_reset_last(page);
1021 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1022 reset_page_owner(page, order);
1024 if (!PageHighMem(page)) {
1025 debug_check_no_locks_freed(page_address(page),
1026 PAGE_SIZE << order);
1027 debug_check_no_obj_freed(page_address(page),
1028 PAGE_SIZE << order);
1030 arch_free_page(page, order);
1031 kernel_poison_pages(page, 1 << order, 0);
1032 kernel_map_pages(page, 1 << order, 0);
1033 kasan_free_pages(page, order);
1038 #ifdef CONFIG_DEBUG_VM
1039 static inline bool free_pcp_prepare(struct page *page)
1041 return free_pages_prepare(page, 0, true);
1044 static inline bool bulkfree_pcp_prepare(struct page *page)
1049 static bool free_pcp_prepare(struct page *page)
1051 return free_pages_prepare(page, 0, false);
1054 static bool bulkfree_pcp_prepare(struct page *page)
1056 return free_pages_check(page);
1058 #endif /* CONFIG_DEBUG_VM */
1060 static inline void prefetch_buddy(struct page *page)
1062 unsigned long pfn = page_to_pfn(page);
1063 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1064 struct page *buddy = page + (buddy_pfn - pfn);
1070 * Frees a number of pages from the PCP lists
1071 * Assumes all pages on list are in same zone, and of same order.
1072 * count is the number of pages to free.
1074 * If the zone was previously in an "all pages pinned" state then look to
1075 * see if this freeing clears that state.
1077 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1078 * pinned" detection logic.
1080 static void free_pcppages_bulk(struct zone *zone, int count,
1081 struct per_cpu_pages *pcp)
1083 int migratetype = 0;
1085 int prefetch_nr = 0;
1086 bool isolated_pageblocks;
1087 struct page *page, *tmp;
1091 struct list_head *list;
1094 * Remove pages from lists in a round-robin fashion. A
1095 * batch_free count is maintained that is incremented when an
1096 * empty list is encountered. This is so more pages are freed
1097 * off fuller lists instead of spinning excessively around empty
1102 if (++migratetype == MIGRATE_PCPTYPES)
1104 list = &pcp->lists[migratetype];
1105 } while (list_empty(list));
1107 /* This is the only non-empty list. Free them all. */
1108 if (batch_free == MIGRATE_PCPTYPES)
1112 page = list_last_entry(list, struct page, lru);
1113 /* must delete to avoid corrupting pcp list */
1114 list_del(&page->lru);
1117 if (bulkfree_pcp_prepare(page))
1120 list_add_tail(&page->lru, &head);
1123 * We are going to put the page back to the global
1124 * pool, prefetch its buddy to speed up later access
1125 * under zone->lock. It is believed the overhead of
1126 * an additional test and calculating buddy_pfn here
1127 * can be offset by reduced memory latency later. To
1128 * avoid excessive prefetching due to large count, only
1129 * prefetch buddy for the first pcp->batch nr of pages.
1131 if (prefetch_nr++ < pcp->batch)
1132 prefetch_buddy(page);
1133 } while (--count && --batch_free && !list_empty(list));
1136 spin_lock(&zone->lock);
1137 isolated_pageblocks = has_isolate_pageblock(zone);
1140 * Use safe version since after __free_one_page(),
1141 * page->lru.next will not point to original list.
1143 list_for_each_entry_safe(page, tmp, &head, lru) {
1144 int mt = get_pcppage_migratetype(page);
1145 /* MIGRATE_ISOLATE page should not go to pcplists */
1146 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1147 /* Pageblock could have been isolated meanwhile */
1148 if (unlikely(isolated_pageblocks))
1149 mt = get_pageblock_migratetype(page);
1151 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1152 trace_mm_page_pcpu_drain(page, 0, mt);
1154 spin_unlock(&zone->lock);
1157 static void free_one_page(struct zone *zone,
1158 struct page *page, unsigned long pfn,
1162 spin_lock(&zone->lock);
1163 if (unlikely(has_isolate_pageblock(zone) ||
1164 is_migrate_isolate(migratetype))) {
1165 migratetype = get_pfnblock_migratetype(page, pfn);
1167 __free_one_page(page, pfn, zone, order, migratetype);
1168 spin_unlock(&zone->lock);
1171 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1172 unsigned long zone, int nid)
1174 mm_zero_struct_page(page);
1175 set_page_links(page, zone, nid, pfn);
1176 init_page_count(page);
1177 page_mapcount_reset(page);
1178 page_cpupid_reset_last(page);
1180 INIT_LIST_HEAD(&page->lru);
1181 #ifdef WANT_PAGE_VIRTUAL
1182 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1183 if (!is_highmem_idx(zone))
1184 set_page_address(page, __va(pfn << PAGE_SHIFT));
1188 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1189 static void __meminit init_reserved_page(unsigned long pfn)
1194 if (!early_page_uninitialised(pfn))
1197 nid = early_pfn_to_nid(pfn);
1198 pgdat = NODE_DATA(nid);
1200 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1201 struct zone *zone = &pgdat->node_zones[zid];
1203 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1206 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1209 static inline void init_reserved_page(unsigned long pfn)
1212 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1215 * Initialised pages do not have PageReserved set. This function is
1216 * called for each range allocated by the bootmem allocator and
1217 * marks the pages PageReserved. The remaining valid pages are later
1218 * sent to the buddy page allocator.
1220 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1222 unsigned long start_pfn = PFN_DOWN(start);
1223 unsigned long end_pfn = PFN_UP(end);
1225 for (; start_pfn < end_pfn; start_pfn++) {
1226 if (pfn_valid(start_pfn)) {
1227 struct page *page = pfn_to_page(start_pfn);
1229 init_reserved_page(start_pfn);
1231 /* Avoid false-positive PageTail() */
1232 INIT_LIST_HEAD(&page->lru);
1234 SetPageReserved(page);
1239 static void __free_pages_ok(struct page *page, unsigned int order)
1241 unsigned long flags;
1243 unsigned long pfn = page_to_pfn(page);
1245 if (!free_pages_prepare(page, order, true))
1248 migratetype = get_pfnblock_migratetype(page, pfn);
1249 local_irq_save(flags);
1250 __count_vm_events(PGFREE, 1 << order);
1251 free_one_page(page_zone(page), page, pfn, order, migratetype);
1252 local_irq_restore(flags);
1255 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1257 unsigned int nr_pages = 1 << order;
1258 struct page *p = page;
1262 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1264 __ClearPageReserved(p);
1265 set_page_count(p, 0);
1267 __ClearPageReserved(p);
1268 set_page_count(p, 0);
1270 page_zone(page)->managed_pages += nr_pages;
1271 set_page_refcounted(page);
1272 __free_pages(page, order);
1275 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1276 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1278 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1280 int __meminit early_pfn_to_nid(unsigned long pfn)
1282 static DEFINE_SPINLOCK(early_pfn_lock);
1285 spin_lock(&early_pfn_lock);
1286 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1288 nid = first_online_node;
1289 spin_unlock(&early_pfn_lock);
1295 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1296 static inline bool __meminit __maybe_unused
1297 meminit_pfn_in_nid(unsigned long pfn, int node,
1298 struct mminit_pfnnid_cache *state)
1302 nid = __early_pfn_to_nid(pfn, state);
1303 if (nid >= 0 && nid != node)
1308 /* Only safe to use early in boot when initialisation is single-threaded */
1309 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1311 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1316 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320 static inline bool __meminit __maybe_unused
1321 meminit_pfn_in_nid(unsigned long pfn, int node,
1322 struct mminit_pfnnid_cache *state)
1329 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1332 if (early_page_uninitialised(pfn))
1334 return __free_pages_boot_core(page, order);
1338 * Check that the whole (or subset of) a pageblock given by the interval of
1339 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1340 * with the migration of free compaction scanner. The scanners then need to
1341 * use only pfn_valid_within() check for arches that allow holes within
1344 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1346 * It's possible on some configurations to have a setup like node0 node1 node0
1347 * i.e. it's possible that all pages within a zones range of pages do not
1348 * belong to a single zone. We assume that a border between node0 and node1
1349 * can occur within a single pageblock, but not a node0 node1 node0
1350 * interleaving within a single pageblock. It is therefore sufficient to check
1351 * the first and last page of a pageblock and avoid checking each individual
1352 * page in a pageblock.
1354 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1355 unsigned long end_pfn, struct zone *zone)
1357 struct page *start_page;
1358 struct page *end_page;
1360 /* end_pfn is one past the range we are checking */
1363 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1366 start_page = pfn_to_online_page(start_pfn);
1370 if (page_zone(start_page) != zone)
1373 end_page = pfn_to_page(end_pfn);
1375 /* This gives a shorter code than deriving page_zone(end_page) */
1376 if (page_zone_id(start_page) != page_zone_id(end_page))
1382 void set_zone_contiguous(struct zone *zone)
1384 unsigned long block_start_pfn = zone->zone_start_pfn;
1385 unsigned long block_end_pfn;
1387 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1388 for (; block_start_pfn < zone_end_pfn(zone);
1389 block_start_pfn = block_end_pfn,
1390 block_end_pfn += pageblock_nr_pages) {
1392 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1394 if (!__pageblock_pfn_to_page(block_start_pfn,
1395 block_end_pfn, zone))
1399 /* We confirm that there is no hole */
1400 zone->contiguous = true;
1403 void clear_zone_contiguous(struct zone *zone)
1405 zone->contiguous = false;
1408 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1409 static void __init deferred_free_range(unsigned long pfn,
1410 unsigned long nr_pages)
1418 page = pfn_to_page(pfn);
1420 /* Free a large naturally-aligned chunk if possible */
1421 if (nr_pages == pageblock_nr_pages &&
1422 (pfn & (pageblock_nr_pages - 1)) == 0) {
1423 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1424 __free_pages_boot_core(page, pageblock_order);
1428 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1429 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1430 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1431 __free_pages_boot_core(page, 0);
1435 /* Completion tracking for deferred_init_memmap() threads */
1436 static atomic_t pgdat_init_n_undone __initdata;
1437 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1439 static inline void __init pgdat_init_report_one_done(void)
1441 if (atomic_dec_and_test(&pgdat_init_n_undone))
1442 complete(&pgdat_init_all_done_comp);
1446 * Returns true if page needs to be initialized or freed to buddy allocator.
1448 * First we check if pfn is valid on architectures where it is possible to have
1449 * holes within pageblock_nr_pages. On systems where it is not possible, this
1450 * function is optimized out.
1452 * Then, we check if a current large page is valid by only checking the validity
1455 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1456 * within a node: a pfn is between start and end of a node, but does not belong
1457 * to this memory node.
1459 static inline bool __init
1460 deferred_pfn_valid(int nid, unsigned long pfn,
1461 struct mminit_pfnnid_cache *nid_init_state)
1463 if (!pfn_valid_within(pfn))
1465 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1467 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1473 * Free pages to buddy allocator. Try to free aligned pages in
1474 * pageblock_nr_pages sizes.
1476 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1477 unsigned long end_pfn)
1479 struct mminit_pfnnid_cache nid_init_state = { };
1480 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1481 unsigned long nr_free = 0;
1483 for (; pfn < end_pfn; pfn++) {
1484 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1485 deferred_free_range(pfn - nr_free, nr_free);
1487 } else if (!(pfn & nr_pgmask)) {
1488 deferred_free_range(pfn - nr_free, nr_free);
1490 touch_nmi_watchdog();
1495 /* Free the last block of pages to allocator */
1496 deferred_free_range(pfn - nr_free, nr_free);
1500 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1501 * by performing it only once every pageblock_nr_pages.
1502 * Return number of pages initialized.
1504 static unsigned long __init deferred_init_pages(int nid, int zid,
1506 unsigned long end_pfn)
1508 struct mminit_pfnnid_cache nid_init_state = { };
1509 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1510 unsigned long nr_pages = 0;
1511 struct page *page = NULL;
1513 for (; pfn < end_pfn; pfn++) {
1514 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1517 } else if (!page || !(pfn & nr_pgmask)) {
1518 page = pfn_to_page(pfn);
1519 touch_nmi_watchdog();
1523 __init_single_page(page, pfn, zid, nid);
1529 /* Initialise remaining memory on a node */
1530 static int __init deferred_init_memmap(void *data)
1532 pg_data_t *pgdat = data;
1533 int nid = pgdat->node_id;
1534 unsigned long start = jiffies;
1535 unsigned long nr_pages = 0;
1536 unsigned long spfn, epfn, first_init_pfn, flags;
1537 phys_addr_t spa, epa;
1540 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1543 /* Bind memory initialisation thread to a local node if possible */
1544 if (!cpumask_empty(cpumask))
1545 set_cpus_allowed_ptr(current, cpumask);
1547 pgdat_resize_lock(pgdat, &flags);
1548 first_init_pfn = pgdat->first_deferred_pfn;
1549 if (first_init_pfn == ULONG_MAX) {
1550 pgdat_resize_unlock(pgdat, &flags);
1551 pgdat_init_report_one_done();
1555 /* Sanity check boundaries */
1556 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1557 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1558 pgdat->first_deferred_pfn = ULONG_MAX;
1560 /* Only the highest zone is deferred so find it */
1561 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1562 zone = pgdat->node_zones + zid;
1563 if (first_init_pfn < zone_end_pfn(zone))
1566 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1569 * Initialize and free pages. We do it in two loops: first we initialize
1570 * struct page, than free to buddy allocator, because while we are
1571 * freeing pages we can access pages that are ahead (computing buddy
1572 * page in __free_one_page()).
1574 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1575 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1576 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1577 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1579 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1580 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1581 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1582 deferred_free_pages(nid, zid, spfn, epfn);
1584 pgdat_resize_unlock(pgdat, &flags);
1586 /* Sanity check that the next zone really is unpopulated */
1587 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1589 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1590 jiffies_to_msecs(jiffies - start));
1592 pgdat_init_report_one_done();
1597 * During boot we initialize deferred pages on-demand, as needed, but once
1598 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1599 * and we can permanently disable that path.
1601 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1604 * If this zone has deferred pages, try to grow it by initializing enough
1605 * deferred pages to satisfy the allocation specified by order, rounded up to
1606 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1607 * of SECTION_SIZE bytes by initializing struct pages in increments of
1608 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1610 * Return true when zone was grown, otherwise return false. We return true even
1611 * when we grow less than requested, to let the caller decide if there are
1612 * enough pages to satisfy the allocation.
1614 * Note: We use noinline because this function is needed only during boot, and
1615 * it is called from a __ref function _deferred_grow_zone. This way we are
1616 * making sure that it is not inlined into permanent text section.
1618 static noinline bool __init
1619 deferred_grow_zone(struct zone *zone, unsigned int order)
1621 int zid = zone_idx(zone);
1622 int nid = zone_to_nid(zone);
1623 pg_data_t *pgdat = NODE_DATA(nid);
1624 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1625 unsigned long nr_pages = 0;
1626 unsigned long first_init_pfn, spfn, epfn, t, flags;
1627 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1628 phys_addr_t spa, epa;
1631 /* Only the last zone may have deferred pages */
1632 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1635 pgdat_resize_lock(pgdat, &flags);
1638 * If deferred pages have been initialized while we were waiting for
1639 * the lock, return true, as the zone was grown. The caller will retry
1640 * this zone. We won't return to this function since the caller also
1641 * has this static branch.
1643 if (!static_branch_unlikely(&deferred_pages)) {
1644 pgdat_resize_unlock(pgdat, &flags);
1649 * If someone grew this zone while we were waiting for spinlock, return
1650 * true, as there might be enough pages already.
1652 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1653 pgdat_resize_unlock(pgdat, &flags);
1657 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1659 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1660 pgdat_resize_unlock(pgdat, &flags);
1664 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1665 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1666 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1668 while (spfn < epfn && nr_pages < nr_pages_needed) {
1669 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1670 first_deferred_pfn = min(t, epfn);
1671 nr_pages += deferred_init_pages(nid, zid, spfn,
1672 first_deferred_pfn);
1673 spfn = first_deferred_pfn;
1676 if (nr_pages >= nr_pages_needed)
1680 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1681 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1682 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1683 deferred_free_pages(nid, zid, spfn, epfn);
1685 if (first_deferred_pfn == epfn)
1688 pgdat->first_deferred_pfn = first_deferred_pfn;
1689 pgdat_resize_unlock(pgdat, &flags);
1691 return nr_pages > 0;
1695 * deferred_grow_zone() is __init, but it is called from
1696 * get_page_from_freelist() during early boot until deferred_pages permanently
1697 * disables this call. This is why we have refdata wrapper to avoid warning,
1698 * and to ensure that the function body gets unloaded.
1701 _deferred_grow_zone(struct zone *zone, unsigned int order)
1703 return deferred_grow_zone(zone, order);
1706 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1708 void __init page_alloc_init_late(void)
1712 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1715 /* There will be num_node_state(N_MEMORY) threads */
1716 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1717 for_each_node_state(nid, N_MEMORY) {
1718 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1721 /* Block until all are initialised */
1722 wait_for_completion(&pgdat_init_all_done_comp);
1725 * We initialized the rest of the deferred pages. Permanently disable
1726 * on-demand struct page initialization.
1728 static_branch_disable(&deferred_pages);
1730 /* Reinit limits that are based on free pages after the kernel is up */
1731 files_maxfiles_init();
1733 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1734 /* Discard memblock private memory */
1738 for_each_populated_zone(zone)
1739 set_zone_contiguous(zone);
1743 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1744 void __init init_cma_reserved_pageblock(struct page *page)
1746 unsigned i = pageblock_nr_pages;
1747 struct page *p = page;
1750 __ClearPageReserved(p);
1751 set_page_count(p, 0);
1754 set_pageblock_migratetype(page, MIGRATE_CMA);
1756 if (pageblock_order >= MAX_ORDER) {
1757 i = pageblock_nr_pages;
1760 set_page_refcounted(p);
1761 __free_pages(p, MAX_ORDER - 1);
1762 p += MAX_ORDER_NR_PAGES;
1763 } while (i -= MAX_ORDER_NR_PAGES);
1765 set_page_refcounted(page);
1766 __free_pages(page, pageblock_order);
1769 adjust_managed_page_count(page, pageblock_nr_pages);
1774 * The order of subdivision here is critical for the IO subsystem.
1775 * Please do not alter this order without good reasons and regression
1776 * testing. Specifically, as large blocks of memory are subdivided,
1777 * the order in which smaller blocks are delivered depends on the order
1778 * they're subdivided in this function. This is the primary factor
1779 * influencing the order in which pages are delivered to the IO
1780 * subsystem according to empirical testing, and this is also justified
1781 * by considering the behavior of a buddy system containing a single
1782 * large block of memory acted on by a series of small allocations.
1783 * This behavior is a critical factor in sglist merging's success.
1787 static inline void expand(struct zone *zone, struct page *page,
1788 int low, int high, struct free_area *area,
1791 unsigned long size = 1 << high;
1793 while (high > low) {
1797 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1800 * Mark as guard pages (or page), that will allow to
1801 * merge back to allocator when buddy will be freed.
1802 * Corresponding page table entries will not be touched,
1803 * pages will stay not present in virtual address space
1805 if (set_page_guard(zone, &page[size], high, migratetype))
1808 list_add(&page[size].lru, &area->free_list[migratetype]);
1810 set_page_order(&page[size], high);
1814 static void check_new_page_bad(struct page *page)
1816 const char *bad_reason = NULL;
1817 unsigned long bad_flags = 0;
1819 if (unlikely(atomic_read(&page->_mapcount) != -1))
1820 bad_reason = "nonzero mapcount";
1821 if (unlikely(page->mapping != NULL))
1822 bad_reason = "non-NULL mapping";
1823 if (unlikely(page_ref_count(page) != 0))
1824 bad_reason = "nonzero _count";
1825 if (unlikely(page->flags & __PG_HWPOISON)) {
1826 bad_reason = "HWPoisoned (hardware-corrupted)";
1827 bad_flags = __PG_HWPOISON;
1828 /* Don't complain about hwpoisoned pages */
1829 page_mapcount_reset(page); /* remove PageBuddy */
1832 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1833 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1834 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1837 if (unlikely(page->mem_cgroup))
1838 bad_reason = "page still charged to cgroup";
1840 bad_page(page, bad_reason, bad_flags);
1844 * This page is about to be returned from the page allocator
1846 static inline int check_new_page(struct page *page)
1848 if (likely(page_expected_state(page,
1849 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1852 check_new_page_bad(page);
1856 static inline bool free_pages_prezeroed(void)
1858 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1859 page_poisoning_enabled();
1862 #ifdef CONFIG_DEBUG_VM
1863 static bool check_pcp_refill(struct page *page)
1868 static bool check_new_pcp(struct page *page)
1870 return check_new_page(page);
1873 static bool check_pcp_refill(struct page *page)
1875 return check_new_page(page);
1877 static bool check_new_pcp(struct page *page)
1881 #endif /* CONFIG_DEBUG_VM */
1883 static bool check_new_pages(struct page *page, unsigned int order)
1886 for (i = 0; i < (1 << order); i++) {
1887 struct page *p = page + i;
1889 if (unlikely(check_new_page(p)))
1896 inline void post_alloc_hook(struct page *page, unsigned int order,
1899 set_page_private(page, 0);
1900 set_page_refcounted(page);
1902 arch_alloc_page(page, order);
1903 kernel_map_pages(page, 1 << order, 1);
1904 kernel_poison_pages(page, 1 << order, 1);
1905 kasan_alloc_pages(page, order);
1906 set_page_owner(page, order, gfp_flags);
1909 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1910 unsigned int alloc_flags)
1914 post_alloc_hook(page, order, gfp_flags);
1916 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1917 for (i = 0; i < (1 << order); i++)
1918 clear_highpage(page + i);
1920 if (order && (gfp_flags & __GFP_COMP))
1921 prep_compound_page(page, order);
1924 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1925 * allocate the page. The expectation is that the caller is taking
1926 * steps that will free more memory. The caller should avoid the page
1927 * being used for !PFMEMALLOC purposes.
1929 if (alloc_flags & ALLOC_NO_WATERMARKS)
1930 set_page_pfmemalloc(page);
1932 clear_page_pfmemalloc(page);
1936 * Go through the free lists for the given migratetype and remove
1937 * the smallest available page from the freelists
1939 static __always_inline
1940 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1943 unsigned int current_order;
1944 struct free_area *area;
1947 /* Find a page of the appropriate size in the preferred list */
1948 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1949 area = &(zone->free_area[current_order]);
1950 page = list_first_entry_or_null(&area->free_list[migratetype],
1954 list_del(&page->lru);
1955 rmv_page_order(page);
1957 expand(zone, page, order, current_order, area, migratetype);
1958 set_pcppage_migratetype(page, migratetype);
1967 * This array describes the order lists are fallen back to when
1968 * the free lists for the desirable migrate type are depleted
1970 static int fallbacks[MIGRATE_TYPES][4] = {
1971 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1972 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1973 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1975 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1977 #ifdef CONFIG_MEMORY_ISOLATION
1978 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1983 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1986 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1989 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1990 unsigned int order) { return NULL; }
1994 * Move the free pages in a range to the free lists of the requested type.
1995 * Note that start_page and end_pages are not aligned on a pageblock
1996 * boundary. If alignment is required, use move_freepages_block()
1998 static int move_freepages(struct zone *zone,
1999 struct page *start_page, struct page *end_page,
2000 int migratetype, int *num_movable)
2004 int pages_moved = 0;
2006 #ifndef CONFIG_HOLES_IN_ZONE
2008 * page_zone is not safe to call in this context when
2009 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2010 * anyway as we check zone boundaries in move_freepages_block().
2011 * Remove at a later date when no bug reports exist related to
2012 * grouping pages by mobility
2014 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2015 pfn_valid(page_to_pfn(end_page)) &&
2016 page_zone(start_page) != page_zone(end_page));
2022 for (page = start_page; page <= end_page;) {
2023 if (!pfn_valid_within(page_to_pfn(page))) {
2028 /* Make sure we are not inadvertently changing nodes */
2029 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2031 if (!PageBuddy(page)) {
2033 * We assume that pages that could be isolated for
2034 * migration are movable. But we don't actually try
2035 * isolating, as that would be expensive.
2038 (PageLRU(page) || __PageMovable(page)))
2045 order = page_order(page);
2046 list_move(&page->lru,
2047 &zone->free_area[order].free_list[migratetype]);
2049 pages_moved += 1 << order;
2055 int move_freepages_block(struct zone *zone, struct page *page,
2056 int migratetype, int *num_movable)
2058 unsigned long start_pfn, end_pfn;
2059 struct page *start_page, *end_page;
2061 start_pfn = page_to_pfn(page);
2062 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2063 start_page = pfn_to_page(start_pfn);
2064 end_page = start_page + pageblock_nr_pages - 1;
2065 end_pfn = start_pfn + pageblock_nr_pages - 1;
2067 /* Do not cross zone boundaries */
2068 if (!zone_spans_pfn(zone, start_pfn))
2070 if (!zone_spans_pfn(zone, end_pfn))
2073 return move_freepages(zone, start_page, end_page, migratetype,
2077 static void change_pageblock_range(struct page *pageblock_page,
2078 int start_order, int migratetype)
2080 int nr_pageblocks = 1 << (start_order - pageblock_order);
2082 while (nr_pageblocks--) {
2083 set_pageblock_migratetype(pageblock_page, migratetype);
2084 pageblock_page += pageblock_nr_pages;
2089 * When we are falling back to another migratetype during allocation, try to
2090 * steal extra free pages from the same pageblocks to satisfy further
2091 * allocations, instead of polluting multiple pageblocks.
2093 * If we are stealing a relatively large buddy page, it is likely there will
2094 * be more free pages in the pageblock, so try to steal them all. For
2095 * reclaimable and unmovable allocations, we steal regardless of page size,
2096 * as fragmentation caused by those allocations polluting movable pageblocks
2097 * is worse than movable allocations stealing from unmovable and reclaimable
2100 static bool can_steal_fallback(unsigned int order, int start_mt)
2103 * Leaving this order check is intended, although there is
2104 * relaxed order check in next check. The reason is that
2105 * we can actually steal whole pageblock if this condition met,
2106 * but, below check doesn't guarantee it and that is just heuristic
2107 * so could be changed anytime.
2109 if (order >= pageblock_order)
2112 if (order >= pageblock_order / 2 ||
2113 start_mt == MIGRATE_RECLAIMABLE ||
2114 start_mt == MIGRATE_UNMOVABLE ||
2115 page_group_by_mobility_disabled)
2122 * This function implements actual steal behaviour. If order is large enough,
2123 * we can steal whole pageblock. If not, we first move freepages in this
2124 * pageblock to our migratetype and determine how many already-allocated pages
2125 * are there in the pageblock with a compatible migratetype. If at least half
2126 * of pages are free or compatible, we can change migratetype of the pageblock
2127 * itself, so pages freed in the future will be put on the correct free list.
2129 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2130 int start_type, bool whole_block)
2132 unsigned int current_order = page_order(page);
2133 struct free_area *area;
2134 int free_pages, movable_pages, alike_pages;
2137 old_block_type = get_pageblock_migratetype(page);
2140 * This can happen due to races and we want to prevent broken
2141 * highatomic accounting.
2143 if (is_migrate_highatomic(old_block_type))
2146 /* Take ownership for orders >= pageblock_order */
2147 if (current_order >= pageblock_order) {
2148 change_pageblock_range(page, current_order, start_type);
2152 /* We are not allowed to try stealing from the whole block */
2156 free_pages = move_freepages_block(zone, page, start_type,
2159 * Determine how many pages are compatible with our allocation.
2160 * For movable allocation, it's the number of movable pages which
2161 * we just obtained. For other types it's a bit more tricky.
2163 if (start_type == MIGRATE_MOVABLE) {
2164 alike_pages = movable_pages;
2167 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2168 * to MOVABLE pageblock, consider all non-movable pages as
2169 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2170 * vice versa, be conservative since we can't distinguish the
2171 * exact migratetype of non-movable pages.
2173 if (old_block_type == MIGRATE_MOVABLE)
2174 alike_pages = pageblock_nr_pages
2175 - (free_pages + movable_pages);
2180 /* moving whole block can fail due to zone boundary conditions */
2185 * If a sufficient number of pages in the block are either free or of
2186 * comparable migratability as our allocation, claim the whole block.
2188 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2189 page_group_by_mobility_disabled)
2190 set_pageblock_migratetype(page, start_type);
2195 area = &zone->free_area[current_order];
2196 list_move(&page->lru, &area->free_list[start_type]);
2200 * Check whether there is a suitable fallback freepage with requested order.
2201 * If only_stealable is true, this function returns fallback_mt only if
2202 * we can steal other freepages all together. This would help to reduce
2203 * fragmentation due to mixed migratetype pages in one pageblock.
2205 int find_suitable_fallback(struct free_area *area, unsigned int order,
2206 int migratetype, bool only_stealable, bool *can_steal)
2211 if (area->nr_free == 0)
2216 fallback_mt = fallbacks[migratetype][i];
2217 if (fallback_mt == MIGRATE_TYPES)
2220 if (list_empty(&area->free_list[fallback_mt]))
2223 if (can_steal_fallback(order, migratetype))
2226 if (!only_stealable)
2237 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2238 * there are no empty page blocks that contain a page with a suitable order
2240 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2241 unsigned int alloc_order)
2244 unsigned long max_managed, flags;
2247 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2248 * Check is race-prone but harmless.
2250 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2251 if (zone->nr_reserved_highatomic >= max_managed)
2254 spin_lock_irqsave(&zone->lock, flags);
2256 /* Recheck the nr_reserved_highatomic limit under the lock */
2257 if (zone->nr_reserved_highatomic >= max_managed)
2261 mt = get_pageblock_migratetype(page);
2262 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2263 && !is_migrate_cma(mt)) {
2264 zone->nr_reserved_highatomic += pageblock_nr_pages;
2265 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2266 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2270 spin_unlock_irqrestore(&zone->lock, flags);
2274 * Used when an allocation is about to fail under memory pressure. This
2275 * potentially hurts the reliability of high-order allocations when under
2276 * intense memory pressure but failed atomic allocations should be easier
2277 * to recover from than an OOM.
2279 * If @force is true, try to unreserve a pageblock even though highatomic
2280 * pageblock is exhausted.
2282 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2285 struct zonelist *zonelist = ac->zonelist;
2286 unsigned long flags;
2293 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2296 * Preserve at least one pageblock unless memory pressure
2299 if (!force && zone->nr_reserved_highatomic <=
2303 spin_lock_irqsave(&zone->lock, flags);
2304 for (order = 0; order < MAX_ORDER; order++) {
2305 struct free_area *area = &(zone->free_area[order]);
2307 page = list_first_entry_or_null(
2308 &area->free_list[MIGRATE_HIGHATOMIC],
2314 * In page freeing path, migratetype change is racy so
2315 * we can counter several free pages in a pageblock
2316 * in this loop althoug we changed the pageblock type
2317 * from highatomic to ac->migratetype. So we should
2318 * adjust the count once.
2320 if (is_migrate_highatomic_page(page)) {
2322 * It should never happen but changes to
2323 * locking could inadvertently allow a per-cpu
2324 * drain to add pages to MIGRATE_HIGHATOMIC
2325 * while unreserving so be safe and watch for
2328 zone->nr_reserved_highatomic -= min(
2330 zone->nr_reserved_highatomic);
2334 * Convert to ac->migratetype and avoid the normal
2335 * pageblock stealing heuristics. Minimally, the caller
2336 * is doing the work and needs the pages. More
2337 * importantly, if the block was always converted to
2338 * MIGRATE_UNMOVABLE or another type then the number
2339 * of pageblocks that cannot be completely freed
2342 set_pageblock_migratetype(page, ac->migratetype);
2343 ret = move_freepages_block(zone, page, ac->migratetype,
2346 spin_unlock_irqrestore(&zone->lock, flags);
2350 spin_unlock_irqrestore(&zone->lock, flags);
2357 * Try finding a free buddy page on the fallback list and put it on the free
2358 * list of requested migratetype, possibly along with other pages from the same
2359 * block, depending on fragmentation avoidance heuristics. Returns true if
2360 * fallback was found so that __rmqueue_smallest() can grab it.
2362 * The use of signed ints for order and current_order is a deliberate
2363 * deviation from the rest of this file, to make the for loop
2364 * condition simpler.
2366 static __always_inline bool
2367 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2369 struct free_area *area;
2376 * Find the largest available free page in the other list. This roughly
2377 * approximates finding the pageblock with the most free pages, which
2378 * would be too costly to do exactly.
2380 for (current_order = MAX_ORDER - 1; current_order >= order;
2382 area = &(zone->free_area[current_order]);
2383 fallback_mt = find_suitable_fallback(area, current_order,
2384 start_migratetype, false, &can_steal);
2385 if (fallback_mt == -1)
2389 * We cannot steal all free pages from the pageblock and the
2390 * requested migratetype is movable. In that case it's better to
2391 * steal and split the smallest available page instead of the
2392 * largest available page, because even if the next movable
2393 * allocation falls back into a different pageblock than this
2394 * one, it won't cause permanent fragmentation.
2396 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2397 && current_order > order)
2406 for (current_order = order; current_order < MAX_ORDER;
2408 area = &(zone->free_area[current_order]);
2409 fallback_mt = find_suitable_fallback(area, current_order,
2410 start_migratetype, false, &can_steal);
2411 if (fallback_mt != -1)
2416 * This should not happen - we already found a suitable fallback
2417 * when looking for the largest page.
2419 VM_BUG_ON(current_order == MAX_ORDER);
2422 page = list_first_entry(&area->free_list[fallback_mt],
2425 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2427 trace_mm_page_alloc_extfrag(page, order, current_order,
2428 start_migratetype, fallback_mt);
2435 * Do the hard work of removing an element from the buddy allocator.
2436 * Call me with the zone->lock already held.
2438 static __always_inline struct page *
2439 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2444 page = __rmqueue_smallest(zone, order, migratetype);
2445 if (unlikely(!page)) {
2446 if (migratetype == MIGRATE_MOVABLE)
2447 page = __rmqueue_cma_fallback(zone, order);
2449 if (!page && __rmqueue_fallback(zone, order, migratetype))
2453 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2458 * Obtain a specified number of elements from the buddy allocator, all under
2459 * a single hold of the lock, for efficiency. Add them to the supplied list.
2460 * Returns the number of new pages which were placed at *list.
2462 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2463 unsigned long count, struct list_head *list,
2468 spin_lock(&zone->lock);
2469 for (i = 0; i < count; ++i) {
2470 struct page *page = __rmqueue(zone, order, migratetype);
2471 if (unlikely(page == NULL))
2474 if (unlikely(check_pcp_refill(page)))
2478 * Split buddy pages returned by expand() are received here in
2479 * physical page order. The page is added to the tail of
2480 * caller's list. From the callers perspective, the linked list
2481 * is ordered by page number under some conditions. This is
2482 * useful for IO devices that can forward direction from the
2483 * head, thus also in the physical page order. This is useful
2484 * for IO devices that can merge IO requests if the physical
2485 * pages are ordered properly.
2487 list_add_tail(&page->lru, list);
2489 if (is_migrate_cma(get_pcppage_migratetype(page)))
2490 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2495 * i pages were removed from the buddy list even if some leak due
2496 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2497 * on i. Do not confuse with 'alloced' which is the number of
2498 * pages added to the pcp list.
2500 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2501 spin_unlock(&zone->lock);
2507 * Called from the vmstat counter updater to drain pagesets of this
2508 * currently executing processor on remote nodes after they have
2511 * Note that this function must be called with the thread pinned to
2512 * a single processor.
2514 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2516 unsigned long flags;
2517 int to_drain, batch;
2519 local_irq_save(flags);
2520 batch = READ_ONCE(pcp->batch);
2521 to_drain = min(pcp->count, batch);
2523 free_pcppages_bulk(zone, to_drain, pcp);
2524 local_irq_restore(flags);
2529 * Drain pcplists of the indicated processor and zone.
2531 * The processor must either be the current processor and the
2532 * thread pinned to the current processor or a processor that
2535 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2537 unsigned long flags;
2538 struct per_cpu_pageset *pset;
2539 struct per_cpu_pages *pcp;
2541 local_irq_save(flags);
2542 pset = per_cpu_ptr(zone->pageset, cpu);
2546 free_pcppages_bulk(zone, pcp->count, pcp);
2547 local_irq_restore(flags);
2551 * Drain pcplists of all zones on the indicated processor.
2553 * The processor must either be the current processor and the
2554 * thread pinned to the current processor or a processor that
2557 static void drain_pages(unsigned int cpu)
2561 for_each_populated_zone(zone) {
2562 drain_pages_zone(cpu, zone);
2567 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2569 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2570 * the single zone's pages.
2572 void drain_local_pages(struct zone *zone)
2574 int cpu = smp_processor_id();
2577 drain_pages_zone(cpu, zone);
2582 static void drain_local_pages_wq(struct work_struct *work)
2585 * drain_all_pages doesn't use proper cpu hotplug protection so
2586 * we can race with cpu offline when the WQ can move this from
2587 * a cpu pinned worker to an unbound one. We can operate on a different
2588 * cpu which is allright but we also have to make sure to not move to
2592 drain_local_pages(NULL);
2597 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2599 * When zone parameter is non-NULL, spill just the single zone's pages.
2601 * Note that this can be extremely slow as the draining happens in a workqueue.
2603 void drain_all_pages(struct zone *zone)
2608 * Allocate in the BSS so we wont require allocation in
2609 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2611 static cpumask_t cpus_with_pcps;
2614 * Make sure nobody triggers this path before mm_percpu_wq is fully
2617 if (WARN_ON_ONCE(!mm_percpu_wq))
2621 * Do not drain if one is already in progress unless it's specific to
2622 * a zone. Such callers are primarily CMA and memory hotplug and need
2623 * the drain to be complete when the call returns.
2625 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2628 mutex_lock(&pcpu_drain_mutex);
2632 * We don't care about racing with CPU hotplug event
2633 * as offline notification will cause the notified
2634 * cpu to drain that CPU pcps and on_each_cpu_mask
2635 * disables preemption as part of its processing
2637 for_each_online_cpu(cpu) {
2638 struct per_cpu_pageset *pcp;
2640 bool has_pcps = false;
2643 pcp = per_cpu_ptr(zone->pageset, cpu);
2647 for_each_populated_zone(z) {
2648 pcp = per_cpu_ptr(z->pageset, cpu);
2649 if (pcp->pcp.count) {
2657 cpumask_set_cpu(cpu, &cpus_with_pcps);
2659 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2662 for_each_cpu(cpu, &cpus_with_pcps) {
2663 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2664 INIT_WORK(work, drain_local_pages_wq);
2665 queue_work_on(cpu, mm_percpu_wq, work);
2667 for_each_cpu(cpu, &cpus_with_pcps)
2668 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2670 mutex_unlock(&pcpu_drain_mutex);
2673 #ifdef CONFIG_HIBERNATION
2676 * Touch the watchdog for every WD_PAGE_COUNT pages.
2678 #define WD_PAGE_COUNT (128*1024)
2680 void mark_free_pages(struct zone *zone)
2682 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2683 unsigned long flags;
2684 unsigned int order, t;
2687 if (zone_is_empty(zone))
2690 spin_lock_irqsave(&zone->lock, flags);
2692 max_zone_pfn = zone_end_pfn(zone);
2693 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2694 if (pfn_valid(pfn)) {
2695 page = pfn_to_page(pfn);
2697 if (!--page_count) {
2698 touch_nmi_watchdog();
2699 page_count = WD_PAGE_COUNT;
2702 if (page_zone(page) != zone)
2705 if (!swsusp_page_is_forbidden(page))
2706 swsusp_unset_page_free(page);
2709 for_each_migratetype_order(order, t) {
2710 list_for_each_entry(page,
2711 &zone->free_area[order].free_list[t], lru) {
2714 pfn = page_to_pfn(page);
2715 for (i = 0; i < (1UL << order); i++) {
2716 if (!--page_count) {
2717 touch_nmi_watchdog();
2718 page_count = WD_PAGE_COUNT;
2720 swsusp_set_page_free(pfn_to_page(pfn + i));
2724 spin_unlock_irqrestore(&zone->lock, flags);
2726 #endif /* CONFIG_PM */
2728 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2732 if (!free_pcp_prepare(page))
2735 migratetype = get_pfnblock_migratetype(page, pfn);
2736 set_pcppage_migratetype(page, migratetype);
2740 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2742 struct zone *zone = page_zone(page);
2743 struct per_cpu_pages *pcp;
2746 migratetype = get_pcppage_migratetype(page);
2747 __count_vm_event(PGFREE);
2750 * We only track unmovable, reclaimable and movable on pcp lists.
2751 * Free ISOLATE pages back to the allocator because they are being
2752 * offlined but treat HIGHATOMIC as movable pages so we can get those
2753 * areas back if necessary. Otherwise, we may have to free
2754 * excessively into the page allocator
2756 if (migratetype >= MIGRATE_PCPTYPES) {
2757 if (unlikely(is_migrate_isolate(migratetype))) {
2758 free_one_page(zone, page, pfn, 0, migratetype);
2761 migratetype = MIGRATE_MOVABLE;
2764 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2765 list_add(&page->lru, &pcp->lists[migratetype]);
2767 if (pcp->count >= pcp->high) {
2768 unsigned long batch = READ_ONCE(pcp->batch);
2769 free_pcppages_bulk(zone, batch, pcp);
2774 * Free a 0-order page
2776 void free_unref_page(struct page *page)
2778 unsigned long flags;
2779 unsigned long pfn = page_to_pfn(page);
2781 if (!free_unref_page_prepare(page, pfn))
2784 local_irq_save(flags);
2785 free_unref_page_commit(page, pfn);
2786 local_irq_restore(flags);
2790 * Free a list of 0-order pages
2792 void free_unref_page_list(struct list_head *list)
2794 struct page *page, *next;
2795 unsigned long flags, pfn;
2796 int batch_count = 0;
2798 /* Prepare pages for freeing */
2799 list_for_each_entry_safe(page, next, list, lru) {
2800 pfn = page_to_pfn(page);
2801 if (!free_unref_page_prepare(page, pfn))
2802 list_del(&page->lru);
2803 set_page_private(page, pfn);
2806 local_irq_save(flags);
2807 list_for_each_entry_safe(page, next, list, lru) {
2808 unsigned long pfn = page_private(page);
2810 set_page_private(page, 0);
2811 trace_mm_page_free_batched(page);
2812 free_unref_page_commit(page, pfn);
2815 * Guard against excessive IRQ disabled times when we get
2816 * a large list of pages to free.
2818 if (++batch_count == SWAP_CLUSTER_MAX) {
2819 local_irq_restore(flags);
2821 local_irq_save(flags);
2824 local_irq_restore(flags);
2828 * split_page takes a non-compound higher-order page, and splits it into
2829 * n (1<<order) sub-pages: page[0..n]
2830 * Each sub-page must be freed individually.
2832 * Note: this is probably too low level an operation for use in drivers.
2833 * Please consult with lkml before using this in your driver.
2835 void split_page(struct page *page, unsigned int order)
2839 VM_BUG_ON_PAGE(PageCompound(page), page);
2840 VM_BUG_ON_PAGE(!page_count(page), page);
2842 for (i = 1; i < (1 << order); i++)
2843 set_page_refcounted(page + i);
2844 split_page_owner(page, order);
2846 EXPORT_SYMBOL_GPL(split_page);
2848 int __isolate_free_page(struct page *page, unsigned int order)
2850 unsigned long watermark;
2854 BUG_ON(!PageBuddy(page));
2856 zone = page_zone(page);
2857 mt = get_pageblock_migratetype(page);
2859 if (!is_migrate_isolate(mt)) {
2861 * Obey watermarks as if the page was being allocated. We can
2862 * emulate a high-order watermark check with a raised order-0
2863 * watermark, because we already know our high-order page
2866 watermark = min_wmark_pages(zone) + (1UL << order);
2867 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2870 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2873 /* Remove page from free list */
2874 list_del(&page->lru);
2875 zone->free_area[order].nr_free--;
2876 rmv_page_order(page);
2879 * Set the pageblock if the isolated page is at least half of a
2882 if (order >= pageblock_order - 1) {
2883 struct page *endpage = page + (1 << order) - 1;
2884 for (; page < endpage; page += pageblock_nr_pages) {
2885 int mt = get_pageblock_migratetype(page);
2886 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2887 && !is_migrate_highatomic(mt))
2888 set_pageblock_migratetype(page,
2894 return 1UL << order;
2898 * Update NUMA hit/miss statistics
2900 * Must be called with interrupts disabled.
2902 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2905 enum numa_stat_item local_stat = NUMA_LOCAL;
2907 /* skip numa counters update if numa stats is disabled */
2908 if (!static_branch_likely(&vm_numa_stat_key))
2911 if (z->node != numa_node_id())
2912 local_stat = NUMA_OTHER;
2914 if (z->node == preferred_zone->node)
2915 __inc_numa_state(z, NUMA_HIT);
2917 __inc_numa_state(z, NUMA_MISS);
2918 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2920 __inc_numa_state(z, local_stat);
2924 /* Remove page from the per-cpu list, caller must protect the list */
2925 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2926 struct per_cpu_pages *pcp,
2927 struct list_head *list)
2932 if (list_empty(list)) {
2933 pcp->count += rmqueue_bulk(zone, 0,
2936 if (unlikely(list_empty(list)))
2940 page = list_first_entry(list, struct page, lru);
2941 list_del(&page->lru);
2943 } while (check_new_pcp(page));
2948 /* Lock and remove page from the per-cpu list */
2949 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2950 struct zone *zone, unsigned int order,
2951 gfp_t gfp_flags, int migratetype)
2953 struct per_cpu_pages *pcp;
2954 struct list_head *list;
2956 unsigned long flags;
2958 local_irq_save(flags);
2959 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2960 list = &pcp->lists[migratetype];
2961 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2963 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2964 zone_statistics(preferred_zone, zone);
2966 local_irq_restore(flags);
2971 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2974 struct page *rmqueue(struct zone *preferred_zone,
2975 struct zone *zone, unsigned int order,
2976 gfp_t gfp_flags, unsigned int alloc_flags,
2979 unsigned long flags;
2982 if (likely(order == 0)) {
2983 page = rmqueue_pcplist(preferred_zone, zone, order,
2984 gfp_flags, migratetype);
2989 * We most definitely don't want callers attempting to
2990 * allocate greater than order-1 page units with __GFP_NOFAIL.
2992 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2993 spin_lock_irqsave(&zone->lock, flags);
2997 if (alloc_flags & ALLOC_HARDER) {
2998 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3000 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3003 page = __rmqueue(zone, order, migratetype);
3004 } while (page && check_new_pages(page, order));
3005 spin_unlock(&zone->lock);
3008 __mod_zone_freepage_state(zone, -(1 << order),
3009 get_pcppage_migratetype(page));
3011 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3012 zone_statistics(preferred_zone, zone);
3013 local_irq_restore(flags);
3016 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3020 local_irq_restore(flags);
3024 #ifdef CONFIG_FAIL_PAGE_ALLOC
3027 struct fault_attr attr;
3029 bool ignore_gfp_highmem;
3030 bool ignore_gfp_reclaim;
3032 } fail_page_alloc = {
3033 .attr = FAULT_ATTR_INITIALIZER,
3034 .ignore_gfp_reclaim = true,
3035 .ignore_gfp_highmem = true,
3039 static int __init setup_fail_page_alloc(char *str)
3041 return setup_fault_attr(&fail_page_alloc.attr, str);
3043 __setup("fail_page_alloc=", setup_fail_page_alloc);
3045 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3047 if (order < fail_page_alloc.min_order)
3049 if (gfp_mask & __GFP_NOFAIL)
3051 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3053 if (fail_page_alloc.ignore_gfp_reclaim &&
3054 (gfp_mask & __GFP_DIRECT_RECLAIM))
3057 return should_fail(&fail_page_alloc.attr, 1 << order);
3060 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3062 static int __init fail_page_alloc_debugfs(void)
3064 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3067 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3068 &fail_page_alloc.attr);
3070 return PTR_ERR(dir);
3072 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3073 &fail_page_alloc.ignore_gfp_reclaim))
3075 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3076 &fail_page_alloc.ignore_gfp_highmem))
3078 if (!debugfs_create_u32("min-order", mode, dir,
3079 &fail_page_alloc.min_order))
3084 debugfs_remove_recursive(dir);
3089 late_initcall(fail_page_alloc_debugfs);
3091 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3093 #else /* CONFIG_FAIL_PAGE_ALLOC */
3095 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3100 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3103 * Return true if free base pages are above 'mark'. For high-order checks it
3104 * will return true of the order-0 watermark is reached and there is at least
3105 * one free page of a suitable size. Checking now avoids taking the zone lock
3106 * to check in the allocation paths if no pages are free.
3108 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3109 int classzone_idx, unsigned int alloc_flags,
3114 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3116 /* free_pages may go negative - that's OK */
3117 free_pages -= (1 << order) - 1;
3119 if (alloc_flags & ALLOC_HIGH)
3123 * If the caller does not have rights to ALLOC_HARDER then subtract
3124 * the high-atomic reserves. This will over-estimate the size of the
3125 * atomic reserve but it avoids a search.
3127 if (likely(!alloc_harder)) {
3128 free_pages -= z->nr_reserved_highatomic;
3131 * OOM victims can try even harder than normal ALLOC_HARDER
3132 * users on the grounds that it's definitely going to be in
3133 * the exit path shortly and free memory. Any allocation it
3134 * makes during the free path will be small and short-lived.
3136 if (alloc_flags & ALLOC_OOM)
3144 /* If allocation can't use CMA areas don't use free CMA pages */
3145 if (!(alloc_flags & ALLOC_CMA))
3146 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3150 * Check watermarks for an order-0 allocation request. If these
3151 * are not met, then a high-order request also cannot go ahead
3152 * even if a suitable page happened to be free.
3154 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3157 /* If this is an order-0 request then the watermark is fine */
3161 /* For a high-order request, check at least one suitable page is free */
3162 for (o = order; o < MAX_ORDER; o++) {
3163 struct free_area *area = &z->free_area[o];
3169 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3170 if (!list_empty(&area->free_list[mt]))
3175 if ((alloc_flags & ALLOC_CMA) &&
3176 !list_empty(&area->free_list[MIGRATE_CMA])) {
3181 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3187 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3188 int classzone_idx, unsigned int alloc_flags)
3190 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3191 zone_page_state(z, NR_FREE_PAGES));
3194 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3195 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3197 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3201 /* If allocation can't use CMA areas don't use free CMA pages */
3202 if (!(alloc_flags & ALLOC_CMA))
3203 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3207 * Fast check for order-0 only. If this fails then the reserves
3208 * need to be calculated. There is a corner case where the check
3209 * passes but only the high-order atomic reserve are free. If
3210 * the caller is !atomic then it'll uselessly search the free
3211 * list. That corner case is then slower but it is harmless.
3213 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3216 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3220 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3221 unsigned long mark, int classzone_idx)
3223 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3225 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3226 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3228 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3233 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3235 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3238 #else /* CONFIG_NUMA */
3239 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3243 #endif /* CONFIG_NUMA */
3246 * get_page_from_freelist goes through the zonelist trying to allocate
3249 static struct page *
3250 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3251 const struct alloc_context *ac)
3253 struct zoneref *z = ac->preferred_zoneref;
3255 struct pglist_data *last_pgdat_dirty_limit = NULL;
3258 * Scan zonelist, looking for a zone with enough free.
3259 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3261 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3266 if (cpusets_enabled() &&
3267 (alloc_flags & ALLOC_CPUSET) &&
3268 !__cpuset_zone_allowed(zone, gfp_mask))
3271 * When allocating a page cache page for writing, we
3272 * want to get it from a node that is within its dirty
3273 * limit, such that no single node holds more than its
3274 * proportional share of globally allowed dirty pages.
3275 * The dirty limits take into account the node's
3276 * lowmem reserves and high watermark so that kswapd
3277 * should be able to balance it without having to
3278 * write pages from its LRU list.
3280 * XXX: For now, allow allocations to potentially
3281 * exceed the per-node dirty limit in the slowpath
3282 * (spread_dirty_pages unset) before going into reclaim,
3283 * which is important when on a NUMA setup the allowed
3284 * nodes are together not big enough to reach the
3285 * global limit. The proper fix for these situations
3286 * will require awareness of nodes in the
3287 * dirty-throttling and the flusher threads.
3289 if (ac->spread_dirty_pages) {
3290 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3293 if (!node_dirty_ok(zone->zone_pgdat)) {
3294 last_pgdat_dirty_limit = zone->zone_pgdat;
3299 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3300 if (!zone_watermark_fast(zone, order, mark,
3301 ac_classzone_idx(ac), alloc_flags)) {
3304 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3306 * Watermark failed for this zone, but see if we can
3307 * grow this zone if it contains deferred pages.
3309 if (static_branch_unlikely(&deferred_pages)) {
3310 if (_deferred_grow_zone(zone, order))
3314 /* Checked here to keep the fast path fast */
3315 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3316 if (alloc_flags & ALLOC_NO_WATERMARKS)
3319 if (node_reclaim_mode == 0 ||
3320 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3323 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3325 case NODE_RECLAIM_NOSCAN:
3328 case NODE_RECLAIM_FULL:
3329 /* scanned but unreclaimable */
3332 /* did we reclaim enough */
3333 if (zone_watermark_ok(zone, order, mark,
3334 ac_classzone_idx(ac), alloc_flags))
3342 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3343 gfp_mask, alloc_flags, ac->migratetype);
3345 prep_new_page(page, order, gfp_mask, alloc_flags);
3348 * If this is a high-order atomic allocation then check
3349 * if the pageblock should be reserved for the future
3351 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3352 reserve_highatomic_pageblock(page, zone, order);
3356 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3357 /* Try again if zone has deferred pages */
3358 if (static_branch_unlikely(&deferred_pages)) {
3359 if (_deferred_grow_zone(zone, order))
3370 * Large machines with many possible nodes should not always dump per-node
3371 * meminfo in irq context.
3373 static inline bool should_suppress_show_mem(void)
3378 ret = in_interrupt();
3383 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3385 unsigned int filter = SHOW_MEM_FILTER_NODES;
3386 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3388 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3392 * This documents exceptions given to allocations in certain
3393 * contexts that are allowed to allocate outside current's set
3396 if (!(gfp_mask & __GFP_NOMEMALLOC))
3397 if (tsk_is_oom_victim(current) ||
3398 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3399 filter &= ~SHOW_MEM_FILTER_NODES;
3400 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3401 filter &= ~SHOW_MEM_FILTER_NODES;
3403 show_mem(filter, nodemask);
3406 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3408 struct va_format vaf;
3410 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3411 DEFAULT_RATELIMIT_BURST);
3413 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3416 va_start(args, fmt);
3419 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3420 current->comm, &vaf, gfp_mask, &gfp_mask,
3421 nodemask_pr_args(nodemask));
3424 cpuset_print_current_mems_allowed();
3427 warn_alloc_show_mem(gfp_mask, nodemask);
3430 static inline struct page *
3431 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3432 unsigned int alloc_flags,
3433 const struct alloc_context *ac)
3437 page = get_page_from_freelist(gfp_mask, order,
3438 alloc_flags|ALLOC_CPUSET, ac);
3440 * fallback to ignore cpuset restriction if our nodes
3444 page = get_page_from_freelist(gfp_mask, order,
3450 static inline struct page *
3451 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3452 const struct alloc_context *ac, unsigned long *did_some_progress)
3454 struct oom_control oc = {
3455 .zonelist = ac->zonelist,
3456 .nodemask = ac->nodemask,
3458 .gfp_mask = gfp_mask,
3463 *did_some_progress = 0;
3466 * Acquire the oom lock. If that fails, somebody else is
3467 * making progress for us.
3469 if (!mutex_trylock(&oom_lock)) {
3470 *did_some_progress = 1;
3471 schedule_timeout_uninterruptible(1);
3476 * Go through the zonelist yet one more time, keep very high watermark
3477 * here, this is only to catch a parallel oom killing, we must fail if
3478 * we're still under heavy pressure. But make sure that this reclaim
3479 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3480 * allocation which will never fail due to oom_lock already held.
3482 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3483 ~__GFP_DIRECT_RECLAIM, order,
3484 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3488 /* Coredumps can quickly deplete all memory reserves */
3489 if (current->flags & PF_DUMPCORE)
3491 /* The OOM killer will not help higher order allocs */
3492 if (order > PAGE_ALLOC_COSTLY_ORDER)
3495 * We have already exhausted all our reclaim opportunities without any
3496 * success so it is time to admit defeat. We will skip the OOM killer
3497 * because it is very likely that the caller has a more reasonable
3498 * fallback than shooting a random task.
3500 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3502 /* The OOM killer does not needlessly kill tasks for lowmem */
3503 if (ac->high_zoneidx < ZONE_NORMAL)
3505 if (pm_suspended_storage())
3508 * XXX: GFP_NOFS allocations should rather fail than rely on
3509 * other request to make a forward progress.
3510 * We are in an unfortunate situation where out_of_memory cannot
3511 * do much for this context but let's try it to at least get
3512 * access to memory reserved if the current task is killed (see
3513 * out_of_memory). Once filesystems are ready to handle allocation
3514 * failures more gracefully we should just bail out here.
3517 /* The OOM killer may not free memory on a specific node */
3518 if (gfp_mask & __GFP_THISNODE)
3521 /* Exhausted what can be done so it's blame time */
3522 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3523 *did_some_progress = 1;
3526 * Help non-failing allocations by giving them access to memory
3529 if (gfp_mask & __GFP_NOFAIL)
3530 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3531 ALLOC_NO_WATERMARKS, ac);
3534 mutex_unlock(&oom_lock);
3539 * Maximum number of compaction retries wit a progress before OOM
3540 * killer is consider as the only way to move forward.
3542 #define MAX_COMPACT_RETRIES 16
3544 #ifdef CONFIG_COMPACTION
3545 /* Try memory compaction for high-order allocations before reclaim */
3546 static struct page *
3547 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3548 unsigned int alloc_flags, const struct alloc_context *ac,
3549 enum compact_priority prio, enum compact_result *compact_result)
3552 unsigned int noreclaim_flag;
3557 noreclaim_flag = memalloc_noreclaim_save();
3558 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3560 memalloc_noreclaim_restore(noreclaim_flag);
3562 if (*compact_result <= COMPACT_INACTIVE)
3566 * At least in one zone compaction wasn't deferred or skipped, so let's
3567 * count a compaction stall
3569 count_vm_event(COMPACTSTALL);
3571 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3574 struct zone *zone = page_zone(page);
3576 zone->compact_blockskip_flush = false;
3577 compaction_defer_reset(zone, order, true);
3578 count_vm_event(COMPACTSUCCESS);
3583 * It's bad if compaction run occurs and fails. The most likely reason
3584 * is that pages exist, but not enough to satisfy watermarks.
3586 count_vm_event(COMPACTFAIL);
3594 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3595 enum compact_result compact_result,
3596 enum compact_priority *compact_priority,
3597 int *compaction_retries)
3599 int max_retries = MAX_COMPACT_RETRIES;
3602 int retries = *compaction_retries;
3603 enum compact_priority priority = *compact_priority;
3608 if (compaction_made_progress(compact_result))
3609 (*compaction_retries)++;
3612 * compaction considers all the zone as desperately out of memory
3613 * so it doesn't really make much sense to retry except when the
3614 * failure could be caused by insufficient priority
3616 if (compaction_failed(compact_result))
3617 goto check_priority;
3620 * make sure the compaction wasn't deferred or didn't bail out early
3621 * due to locks contention before we declare that we should give up.
3622 * But do not retry if the given zonelist is not suitable for
3625 if (compaction_withdrawn(compact_result)) {
3626 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3631 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3632 * costly ones because they are de facto nofail and invoke OOM
3633 * killer to move on while costly can fail and users are ready
3634 * to cope with that. 1/4 retries is rather arbitrary but we
3635 * would need much more detailed feedback from compaction to
3636 * make a better decision.
3638 if (order > PAGE_ALLOC_COSTLY_ORDER)
3640 if (*compaction_retries <= max_retries) {
3646 * Make sure there are attempts at the highest priority if we exhausted
3647 * all retries or failed at the lower priorities.
3650 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3651 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3653 if (*compact_priority > min_priority) {
3654 (*compact_priority)--;
3655 *compaction_retries = 0;
3659 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3663 static inline struct page *
3664 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3665 unsigned int alloc_flags, const struct alloc_context *ac,
3666 enum compact_priority prio, enum compact_result *compact_result)
3668 *compact_result = COMPACT_SKIPPED;
3673 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3674 enum compact_result compact_result,
3675 enum compact_priority *compact_priority,
3676 int *compaction_retries)
3681 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3685 * There are setups with compaction disabled which would prefer to loop
3686 * inside the allocator rather than hit the oom killer prematurely.
3687 * Let's give them a good hope and keep retrying while the order-0
3688 * watermarks are OK.
3690 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3692 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3693 ac_classzone_idx(ac), alloc_flags))
3698 #endif /* CONFIG_COMPACTION */
3700 #ifdef CONFIG_LOCKDEP
3701 static struct lockdep_map __fs_reclaim_map =
3702 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3704 static bool __need_fs_reclaim(gfp_t gfp_mask)
3706 gfp_mask = current_gfp_context(gfp_mask);
3708 /* no reclaim without waiting on it */
3709 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3712 /* this guy won't enter reclaim */
3713 if (current->flags & PF_MEMALLOC)
3716 /* We're only interested __GFP_FS allocations for now */
3717 if (!(gfp_mask & __GFP_FS))
3720 if (gfp_mask & __GFP_NOLOCKDEP)
3726 void __fs_reclaim_acquire(void)
3728 lock_map_acquire(&__fs_reclaim_map);
3731 void __fs_reclaim_release(void)
3733 lock_map_release(&__fs_reclaim_map);
3736 void fs_reclaim_acquire(gfp_t gfp_mask)
3738 if (__need_fs_reclaim(gfp_mask))
3739 __fs_reclaim_acquire();
3741 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3743 void fs_reclaim_release(gfp_t gfp_mask)
3745 if (__need_fs_reclaim(gfp_mask))
3746 __fs_reclaim_release();
3748 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3751 /* Perform direct synchronous page reclaim */
3753 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3754 const struct alloc_context *ac)
3756 struct reclaim_state reclaim_state;
3758 unsigned int noreclaim_flag;
3762 /* We now go into synchronous reclaim */
3763 cpuset_memory_pressure_bump();
3764 fs_reclaim_acquire(gfp_mask);
3765 noreclaim_flag = memalloc_noreclaim_save();
3766 reclaim_state.reclaimed_slab = 0;
3767 current->reclaim_state = &reclaim_state;
3769 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3772 current->reclaim_state = NULL;
3773 memalloc_noreclaim_restore(noreclaim_flag);
3774 fs_reclaim_release(gfp_mask);
3781 /* The really slow allocator path where we enter direct reclaim */
3782 static inline struct page *
3783 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3784 unsigned int alloc_flags, const struct alloc_context *ac,
3785 unsigned long *did_some_progress)
3787 struct page *page = NULL;
3788 bool drained = false;
3790 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3791 if (unlikely(!(*did_some_progress)))
3795 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3798 * If an allocation failed after direct reclaim, it could be because
3799 * pages are pinned on the per-cpu lists or in high alloc reserves.
3800 * Shrink them them and try again
3802 if (!page && !drained) {
3803 unreserve_highatomic_pageblock(ac, false);
3804 drain_all_pages(NULL);
3812 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3813 const struct alloc_context *ac)
3817 pg_data_t *last_pgdat = NULL;
3818 enum zone_type high_zoneidx = ac->high_zoneidx;
3820 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3822 if (last_pgdat != zone->zone_pgdat)
3823 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3824 last_pgdat = zone->zone_pgdat;
3828 static inline unsigned int
3829 gfp_to_alloc_flags(gfp_t gfp_mask)
3831 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3833 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3834 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3837 * The caller may dip into page reserves a bit more if the caller
3838 * cannot run direct reclaim, or if the caller has realtime scheduling
3839 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3840 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3842 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3844 if (gfp_mask & __GFP_ATOMIC) {
3846 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3847 * if it can't schedule.
3849 if (!(gfp_mask & __GFP_NOMEMALLOC))
3850 alloc_flags |= ALLOC_HARDER;
3852 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3853 * comment for __cpuset_node_allowed().
3855 alloc_flags &= ~ALLOC_CPUSET;
3856 } else if (unlikely(rt_task(current)) && !in_interrupt())
3857 alloc_flags |= ALLOC_HARDER;
3860 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3861 alloc_flags |= ALLOC_CMA;
3866 static bool oom_reserves_allowed(struct task_struct *tsk)
3868 if (!tsk_is_oom_victim(tsk))
3872 * !MMU doesn't have oom reaper so give access to memory reserves
3873 * only to the thread with TIF_MEMDIE set
3875 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3882 * Distinguish requests which really need access to full memory
3883 * reserves from oom victims which can live with a portion of it
3885 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3887 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3889 if (gfp_mask & __GFP_MEMALLOC)
3890 return ALLOC_NO_WATERMARKS;
3891 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3892 return ALLOC_NO_WATERMARKS;
3893 if (!in_interrupt()) {
3894 if (current->flags & PF_MEMALLOC)
3895 return ALLOC_NO_WATERMARKS;
3896 else if (oom_reserves_allowed(current))
3903 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3905 return !!__gfp_pfmemalloc_flags(gfp_mask);
3909 * Checks whether it makes sense to retry the reclaim to make a forward progress
3910 * for the given allocation request.
3912 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3913 * without success, or when we couldn't even meet the watermark if we
3914 * reclaimed all remaining pages on the LRU lists.
3916 * Returns true if a retry is viable or false to enter the oom path.
3919 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3920 struct alloc_context *ac, int alloc_flags,
3921 bool did_some_progress, int *no_progress_loops)
3927 * Costly allocations might have made a progress but this doesn't mean
3928 * their order will become available due to high fragmentation so
3929 * always increment the no progress counter for them
3931 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3932 *no_progress_loops = 0;
3934 (*no_progress_loops)++;
3937 * Make sure we converge to OOM if we cannot make any progress
3938 * several times in the row.
3940 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3941 /* Before OOM, exhaust highatomic_reserve */
3942 return unreserve_highatomic_pageblock(ac, true);
3946 * Keep reclaiming pages while there is a chance this will lead
3947 * somewhere. If none of the target zones can satisfy our allocation
3948 * request even if all reclaimable pages are considered then we are
3949 * screwed and have to go OOM.
3951 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3953 unsigned long available;
3954 unsigned long reclaimable;
3955 unsigned long min_wmark = min_wmark_pages(zone);
3958 available = reclaimable = zone_reclaimable_pages(zone);
3959 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3962 * Would the allocation succeed if we reclaimed all
3963 * reclaimable pages?
3965 wmark = __zone_watermark_ok(zone, order, min_wmark,
3966 ac_classzone_idx(ac), alloc_flags, available);
3967 trace_reclaim_retry_zone(z, order, reclaimable,
3968 available, min_wmark, *no_progress_loops, wmark);
3971 * If we didn't make any progress and have a lot of
3972 * dirty + writeback pages then we should wait for
3973 * an IO to complete to slow down the reclaim and
3974 * prevent from pre mature OOM
3976 if (!did_some_progress) {
3977 unsigned long write_pending;
3979 write_pending = zone_page_state_snapshot(zone,
3980 NR_ZONE_WRITE_PENDING);
3982 if (2 * write_pending > reclaimable) {
3983 congestion_wait(BLK_RW_ASYNC, HZ/10);
3989 * Memory allocation/reclaim might be called from a WQ
3990 * context and the current implementation of the WQ
3991 * concurrency control doesn't recognize that
3992 * a particular WQ is congested if the worker thread is
3993 * looping without ever sleeping. Therefore we have to
3994 * do a short sleep here rather than calling
3997 if (current->flags & PF_WQ_WORKER)
3998 schedule_timeout_uninterruptible(1);
4010 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4013 * It's possible that cpuset's mems_allowed and the nodemask from
4014 * mempolicy don't intersect. This should be normally dealt with by
4015 * policy_nodemask(), but it's possible to race with cpuset update in
4016 * such a way the check therein was true, and then it became false
4017 * before we got our cpuset_mems_cookie here.
4018 * This assumes that for all allocations, ac->nodemask can come only
4019 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4020 * when it does not intersect with the cpuset restrictions) or the
4021 * caller can deal with a violated nodemask.
4023 if (cpusets_enabled() && ac->nodemask &&
4024 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4025 ac->nodemask = NULL;
4030 * When updating a task's mems_allowed or mempolicy nodemask, it is
4031 * possible to race with parallel threads in such a way that our
4032 * allocation can fail while the mask is being updated. If we are about
4033 * to fail, check if the cpuset changed during allocation and if so,
4036 if (read_mems_allowed_retry(cpuset_mems_cookie))
4042 static inline struct page *
4043 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4044 struct alloc_context *ac)
4046 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4047 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4048 struct page *page = NULL;
4049 unsigned int alloc_flags;
4050 unsigned long did_some_progress;
4051 enum compact_priority compact_priority;
4052 enum compact_result compact_result;
4053 int compaction_retries;
4054 int no_progress_loops;
4055 unsigned int cpuset_mems_cookie;
4059 * In the slowpath, we sanity check order to avoid ever trying to
4060 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4061 * be using allocators in order of preference for an area that is
4064 if (order >= MAX_ORDER) {
4065 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4070 * We also sanity check to catch abuse of atomic reserves being used by
4071 * callers that are not in atomic context.
4073 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4074 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4075 gfp_mask &= ~__GFP_ATOMIC;
4078 compaction_retries = 0;
4079 no_progress_loops = 0;
4080 compact_priority = DEF_COMPACT_PRIORITY;
4081 cpuset_mems_cookie = read_mems_allowed_begin();
4084 * The fast path uses conservative alloc_flags to succeed only until
4085 * kswapd needs to be woken up, and to avoid the cost of setting up
4086 * alloc_flags precisely. So we do that now.
4088 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4091 * We need to recalculate the starting point for the zonelist iterator
4092 * because we might have used different nodemask in the fast path, or
4093 * there was a cpuset modification and we are retrying - otherwise we
4094 * could end up iterating over non-eligible zones endlessly.
4096 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4097 ac->high_zoneidx, ac->nodemask);
4098 if (!ac->preferred_zoneref->zone)
4101 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4102 wake_all_kswapds(order, gfp_mask, ac);
4105 * The adjusted alloc_flags might result in immediate success, so try
4108 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4113 * For costly allocations, try direct compaction first, as it's likely
4114 * that we have enough base pages and don't need to reclaim. For non-
4115 * movable high-order allocations, do that as well, as compaction will
4116 * try prevent permanent fragmentation by migrating from blocks of the
4118 * Don't try this for allocations that are allowed to ignore
4119 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4121 if (can_direct_reclaim &&
4123 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4124 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4125 page = __alloc_pages_direct_compact(gfp_mask, order,
4127 INIT_COMPACT_PRIORITY,
4133 * Checks for costly allocations with __GFP_NORETRY, which
4134 * includes THP page fault allocations
4136 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4138 * If compaction is deferred for high-order allocations,
4139 * it is because sync compaction recently failed. If
4140 * this is the case and the caller requested a THP
4141 * allocation, we do not want to heavily disrupt the
4142 * system, so we fail the allocation instead of entering