2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78 static DEFINE_MUTEX(pcp_batch_high_lock);
79 #define MIN_PERCPU_PAGELIST_FRACTION (8)
81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82 DEFINE_PER_CPU(int, numa_node);
83 EXPORT_PER_CPU_SYMBOL(numa_node);
86 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
91 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
92 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
93 * defined in <linux/topology.h>.
95 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
96 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97 int _node_numa_mem_[MAX_NUMNODES];
100 /* work_structs for global per-cpu drains */
101 DEFINE_MUTEX(pcpu_drain_mutex);
102 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
104 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105 volatile unsigned long latent_entropy __latent_entropy;
106 EXPORT_SYMBOL(latent_entropy);
110 * Array of node states.
112 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
113 [N_POSSIBLE] = NODE_MASK_ALL,
114 [N_ONLINE] = { { [0] = 1UL } },
116 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
117 #ifdef CONFIG_HIGHMEM
118 [N_HIGH_MEMORY] = { { [0] = 1UL } },
120 [N_MEMORY] = { { [0] = 1UL } },
121 [N_CPU] = { { [0] = 1UL } },
124 EXPORT_SYMBOL(node_states);
126 /* Protect totalram_pages and zone->managed_pages */
127 static DEFINE_SPINLOCK(managed_page_count_lock);
129 unsigned long totalram_pages __read_mostly;
130 unsigned long totalreserve_pages __read_mostly;
131 unsigned long totalcma_pages __read_mostly;
133 int percpu_pagelist_fraction;
134 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
137 * A cached value of the page's pageblock's migratetype, used when the page is
138 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
139 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
140 * Also the migratetype set in the page does not necessarily match the pcplist
141 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
142 * other index - this ensures that it will be put on the correct CMA freelist.
144 static inline int get_pcppage_migratetype(struct page *page)
149 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
151 page->index = migratetype;
154 #ifdef CONFIG_PM_SLEEP
156 * The following functions are used by the suspend/hibernate code to temporarily
157 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
158 * while devices are suspended. To avoid races with the suspend/hibernate code,
159 * they should always be called with pm_mutex held (gfp_allowed_mask also should
160 * only be modified with pm_mutex held, unless the suspend/hibernate code is
161 * guaranteed not to run in parallel with that modification).
164 static gfp_t saved_gfp_mask;
166 void pm_restore_gfp_mask(void)
168 WARN_ON(!mutex_is_locked(&pm_mutex));
169 if (saved_gfp_mask) {
170 gfp_allowed_mask = saved_gfp_mask;
175 void pm_restrict_gfp_mask(void)
177 WARN_ON(!mutex_is_locked(&pm_mutex));
178 WARN_ON(saved_gfp_mask);
179 saved_gfp_mask = gfp_allowed_mask;
180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
183 bool pm_suspended_storage(void)
185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
189 #endif /* CONFIG_PM_SLEEP */
191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192 unsigned int pageblock_order __read_mostly;
195 static void __free_pages_ok(struct page *page, unsigned int order);
198 * results with 256, 32 in the lowmem_reserve sysctl:
199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200 * 1G machine -> (16M dma, 784M normal, 224M high)
201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
205 * TBD: should special case ZONE_DMA32 machines here - in those we normally
206 * don't need any ZONE_NORMAL reservation
208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
209 #ifdef CONFIG_ZONE_DMA
212 #ifdef CONFIG_ZONE_DMA32
215 #ifdef CONFIG_HIGHMEM
221 EXPORT_SYMBOL(totalram_pages);
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
227 #ifdef CONFIG_ZONE_DMA32
231 #ifdef CONFIG_HIGHMEM
235 #ifdef CONFIG_ZONE_DEVICE
240 char * const migratetype_names[MIGRATE_TYPES] = {
248 #ifdef CONFIG_MEMORY_ISOLATION
253 compound_page_dtor * const compound_page_dtors[] = {
256 #ifdef CONFIG_HUGETLB_PAGE
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
268 static unsigned long __meminitdata nr_kernel_pages;
269 static unsigned long __meminitdata nr_all_pages;
270 static unsigned long __meminitdata dma_reserve;
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
274 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
275 static unsigned long __initdata required_kernelcore;
276 static unsigned long __initdata required_movablecore;
277 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
278 static bool mirrored_kernelcore;
280 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
282 EXPORT_SYMBOL(movable_zone);
283 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286 int nr_node_ids __read_mostly = MAX_NUMNODES;
287 int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
292 int page_group_by_mobility_disabled __read_mostly;
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 /* Returns true if the struct page for the pfn is uninitialised */
296 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
298 int nid = early_pfn_to_nid(pfn);
300 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
307 * Returns false when the remaining initialisation should be deferred until
308 * later in the boot cycle when it can be parallelised.
310 static inline bool update_defer_init(pg_data_t *pgdat,
311 unsigned long pfn, unsigned long zone_end,
312 unsigned long *nr_initialised)
314 /* Always populate low zones for address-constrained allocations */
315 if (zone_end < pgdat_end_pfn(pgdat))
317 /* Xen PV domains need page structures early */
321 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
322 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
323 pgdat->first_deferred_pfn = pfn;
330 static inline bool early_page_uninitialised(unsigned long pfn)
335 static inline bool update_defer_init(pg_data_t *pgdat,
336 unsigned long pfn, unsigned long zone_end,
337 unsigned long *nr_initialised)
343 /* Return a pointer to the bitmap storing bits affecting a block of pages */
344 static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 #ifdef CONFIG_SPARSEMEM
348 return __pfn_to_section(pfn)->pageblock_flags;
350 return page_zone(page)->pageblock_flags;
351 #endif /* CONFIG_SPARSEMEM */
354 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
356 #ifdef CONFIG_SPARSEMEM
357 pfn &= (PAGES_PER_SECTION-1);
358 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
360 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
361 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
362 #endif /* CONFIG_SPARSEMEM */
366 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
367 * @page: The page within the block of interest
368 * @pfn: The target page frame number
369 * @end_bitidx: The last bit of interest to retrieve
370 * @mask: mask of bits that the caller is interested in
372 * Return: pageblock_bits flags
374 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
376 unsigned long end_bitidx,
379 unsigned long *bitmap;
380 unsigned long bitidx, word_bitidx;
383 bitmap = get_pageblock_bitmap(page, pfn);
384 bitidx = pfn_to_bitidx(page, pfn);
385 word_bitidx = bitidx / BITS_PER_LONG;
386 bitidx &= (BITS_PER_LONG-1);
388 word = bitmap[word_bitidx];
389 bitidx += end_bitidx;
390 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
394 unsigned long end_bitidx,
397 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
402 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
406 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
407 * @page: The page within the block of interest
408 * @flags: The flags to set
409 * @pfn: The target page frame number
410 * @end_bitidx: The last bit of interest
411 * @mask: mask of bits that the caller is interested in
413 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
415 unsigned long end_bitidx,
418 unsigned long *bitmap;
419 unsigned long bitidx, word_bitidx;
420 unsigned long old_word, word;
422 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
424 bitmap = get_pageblock_bitmap(page, pfn);
425 bitidx = pfn_to_bitidx(page, pfn);
426 word_bitidx = bitidx / BITS_PER_LONG;
427 bitidx &= (BITS_PER_LONG-1);
429 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
431 bitidx += end_bitidx;
432 mask <<= (BITS_PER_LONG - bitidx - 1);
433 flags <<= (BITS_PER_LONG - bitidx - 1);
435 word = READ_ONCE(bitmap[word_bitidx]);
437 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
438 if (word == old_word)
444 void set_pageblock_migratetype(struct page *page, int migratetype)
446 if (unlikely(page_group_by_mobility_disabled &&
447 migratetype < MIGRATE_PCPTYPES))
448 migratetype = MIGRATE_UNMOVABLE;
450 set_pageblock_flags_group(page, (unsigned long)migratetype,
451 PB_migrate, PB_migrate_end);
454 #ifdef CONFIG_DEBUG_VM
455 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
459 unsigned long pfn = page_to_pfn(page);
460 unsigned long sp, start_pfn;
463 seq = zone_span_seqbegin(zone);
464 start_pfn = zone->zone_start_pfn;
465 sp = zone->spanned_pages;
466 if (!zone_spans_pfn(zone, pfn))
468 } while (zone_span_seqretry(zone, seq));
471 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
472 pfn, zone_to_nid(zone), zone->name,
473 start_pfn, start_pfn + sp);
478 static int page_is_consistent(struct zone *zone, struct page *page)
480 if (!pfn_valid_within(page_to_pfn(page)))
482 if (zone != page_zone(page))
488 * Temporary debugging check for pages not lying within a given zone.
490 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
492 if (page_outside_zone_boundaries(zone, page))
494 if (!page_is_consistent(zone, page))
500 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
506 static void bad_page(struct page *page, const char *reason,
507 unsigned long bad_flags)
509 static unsigned long resume;
510 static unsigned long nr_shown;
511 static unsigned long nr_unshown;
514 * Allow a burst of 60 reports, then keep quiet for that minute;
515 * or allow a steady drip of one report per second.
517 if (nr_shown == 60) {
518 if (time_before(jiffies, resume)) {
524 "BUG: Bad page state: %lu messages suppressed\n",
531 resume = jiffies + 60 * HZ;
533 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
534 current->comm, page_to_pfn(page));
535 __dump_page(page, reason);
536 bad_flags &= page->flags;
538 pr_alert("bad because of flags: %#lx(%pGp)\n",
539 bad_flags, &bad_flags);
540 dump_page_owner(page);
545 /* Leave bad fields for debug, except PageBuddy could make trouble */
546 page_mapcount_reset(page); /* remove PageBuddy */
547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
551 * Higher-order pages are called "compound pages". They are structured thusly:
553 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
555 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
556 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
558 * The first tail page's ->compound_dtor holds the offset in array of compound
559 * page destructors. See compound_page_dtors.
561 * The first tail page's ->compound_order holds the order of allocation.
562 * This usage means that zero-order pages may not be compound.
565 void free_compound_page(struct page *page)
567 __free_pages_ok(page, compound_order(page));
570 void prep_compound_page(struct page *page, unsigned int order)
573 int nr_pages = 1 << order;
575 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
576 set_compound_order(page, order);
578 for (i = 1; i < nr_pages; i++) {
579 struct page *p = page + i;
580 set_page_count(p, 0);
581 p->mapping = TAIL_MAPPING;
582 set_compound_head(p, page);
584 atomic_set(compound_mapcount_ptr(page), -1);
587 #ifdef CONFIG_DEBUG_PAGEALLOC
588 unsigned int _debug_guardpage_minorder;
589 bool _debug_pagealloc_enabled __read_mostly
590 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
591 EXPORT_SYMBOL(_debug_pagealloc_enabled);
592 bool _debug_guardpage_enabled __read_mostly;
594 static int __init early_debug_pagealloc(char *buf)
598 return kstrtobool(buf, &_debug_pagealloc_enabled);
600 early_param("debug_pagealloc", early_debug_pagealloc);
602 static bool need_debug_guardpage(void)
604 /* If we don't use debug_pagealloc, we don't need guard page */
605 if (!debug_pagealloc_enabled())
608 if (!debug_guardpage_minorder())
614 static void init_debug_guardpage(void)
616 if (!debug_pagealloc_enabled())
619 if (!debug_guardpage_minorder())
622 _debug_guardpage_enabled = true;
625 struct page_ext_operations debug_guardpage_ops = {
626 .need = need_debug_guardpage,
627 .init = init_debug_guardpage,
630 static int __init debug_guardpage_minorder_setup(char *buf)
634 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
635 pr_err("Bad debug_guardpage_minorder value\n");
638 _debug_guardpage_minorder = res;
639 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
642 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
644 static inline bool set_page_guard(struct zone *zone, struct page *page,
645 unsigned int order, int migratetype)
647 struct page_ext *page_ext;
649 if (!debug_guardpage_enabled())
652 if (order >= debug_guardpage_minorder())
655 page_ext = lookup_page_ext(page);
656 if (unlikely(!page_ext))
659 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
661 INIT_LIST_HEAD(&page->lru);
662 set_page_private(page, order);
663 /* Guard pages are not available for any usage */
664 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
669 static inline void clear_page_guard(struct zone *zone, struct page *page,
670 unsigned int order, int migratetype)
672 struct page_ext *page_ext;
674 if (!debug_guardpage_enabled())
677 page_ext = lookup_page_ext(page);
678 if (unlikely(!page_ext))
681 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
683 set_page_private(page, 0);
684 if (!is_migrate_isolate(migratetype))
685 __mod_zone_freepage_state(zone, (1 << order), migratetype);
688 struct page_ext_operations debug_guardpage_ops;
689 static inline bool set_page_guard(struct zone *zone, struct page *page,
690 unsigned int order, int migratetype) { return false; }
691 static inline void clear_page_guard(struct zone *zone, struct page *page,
692 unsigned int order, int migratetype) {}
695 static inline void set_page_order(struct page *page, unsigned int order)
697 set_page_private(page, order);
698 __SetPageBuddy(page);
701 static inline void rmv_page_order(struct page *page)
703 __ClearPageBuddy(page);
704 set_page_private(page, 0);
708 * This function checks whether a page is free && is the buddy
709 * we can do coalesce a page and its buddy if
710 * (a) the buddy is not in a hole (check before calling!) &&
711 * (b) the buddy is in the buddy system &&
712 * (c) a page and its buddy have the same order &&
713 * (d) a page and its buddy are in the same zone.
715 * For recording whether a page is in the buddy system, we set ->_mapcount
716 * PAGE_BUDDY_MAPCOUNT_VALUE.
717 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
718 * serialized by zone->lock.
720 * For recording page's order, we use page_private(page).
722 static inline int page_is_buddy(struct page *page, struct page *buddy,
725 if (page_is_guard(buddy) && page_order(buddy) == order) {
726 if (page_zone_id(page) != page_zone_id(buddy))
729 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
734 if (PageBuddy(buddy) && page_order(buddy) == order) {
736 * zone check is done late to avoid uselessly
737 * calculating zone/node ids for pages that could
740 if (page_zone_id(page) != page_zone_id(buddy))
743 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
751 * Freeing function for a buddy system allocator.
753 * The concept of a buddy system is to maintain direct-mapped table
754 * (containing bit values) for memory blocks of various "orders".
755 * The bottom level table contains the map for the smallest allocatable
756 * units of memory (here, pages), and each level above it describes
757 * pairs of units from the levels below, hence, "buddies".
758 * At a high level, all that happens here is marking the table entry
759 * at the bottom level available, and propagating the changes upward
760 * as necessary, plus some accounting needed to play nicely with other
761 * parts of the VM system.
762 * At each level, we keep a list of pages, which are heads of continuous
763 * free pages of length of (1 << order) and marked with _mapcount
764 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
766 * So when we are allocating or freeing one, we can derive the state of the
767 * other. That is, if we allocate a small block, and both were
768 * free, the remainder of the region must be split into blocks.
769 * If a block is freed, and its buddy is also free, then this
770 * triggers coalescing into a block of larger size.
775 static inline void __free_one_page(struct page *page,
777 struct zone *zone, unsigned int order,
780 unsigned long combined_pfn;
781 unsigned long uninitialized_var(buddy_pfn);
783 unsigned int max_order;
785 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
787 VM_BUG_ON(!zone_is_initialized(zone));
788 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
790 VM_BUG_ON(migratetype == -1);
791 if (likely(!is_migrate_isolate(migratetype)))
792 __mod_zone_freepage_state(zone, 1 << order, migratetype);
794 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
795 VM_BUG_ON_PAGE(bad_range(zone, page), page);
798 while (order < max_order - 1) {
799 buddy_pfn = __find_buddy_pfn(pfn, order);
800 buddy = page + (buddy_pfn - pfn);
802 if (!pfn_valid_within(buddy_pfn))
804 if (!page_is_buddy(page, buddy, order))
807 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
808 * merge with it and move up one order.
810 if (page_is_guard(buddy)) {
811 clear_page_guard(zone, buddy, order, migratetype);
813 list_del(&buddy->lru);
814 zone->free_area[order].nr_free--;
815 rmv_page_order(buddy);
817 combined_pfn = buddy_pfn & pfn;
818 page = page + (combined_pfn - pfn);
822 if (max_order < MAX_ORDER) {
823 /* If we are here, it means order is >= pageblock_order.
824 * We want to prevent merge between freepages on isolate
825 * pageblock and normal pageblock. Without this, pageblock
826 * isolation could cause incorrect freepage or CMA accounting.
828 * We don't want to hit this code for the more frequent
831 if (unlikely(has_isolate_pageblock(zone))) {
834 buddy_pfn = __find_buddy_pfn(pfn, order);
835 buddy = page + (buddy_pfn - pfn);
836 buddy_mt = get_pageblock_migratetype(buddy);
838 if (migratetype != buddy_mt
839 && (is_migrate_isolate(migratetype) ||
840 is_migrate_isolate(buddy_mt)))
844 goto continue_merging;
848 set_page_order(page, order);
851 * If this is not the largest possible page, check if the buddy
852 * of the next-highest order is free. If it is, it's possible
853 * that pages are being freed that will coalesce soon. In case,
854 * that is happening, add the free page to the tail of the list
855 * so it's less likely to be used soon and more likely to be merged
856 * as a higher order page
858 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
859 struct page *higher_page, *higher_buddy;
860 combined_pfn = buddy_pfn & pfn;
861 higher_page = page + (combined_pfn - pfn);
862 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
863 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
864 if (pfn_valid_within(buddy_pfn) &&
865 page_is_buddy(higher_page, higher_buddy, order + 1)) {
866 list_add_tail(&page->lru,
867 &zone->free_area[order].free_list[migratetype]);
872 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
874 zone->free_area[order].nr_free++;
878 * A bad page could be due to a number of fields. Instead of multiple branches,
879 * try and check multiple fields with one check. The caller must do a detailed
880 * check if necessary.
882 static inline bool page_expected_state(struct page *page,
883 unsigned long check_flags)
885 if (unlikely(atomic_read(&page->_mapcount) != -1))
888 if (unlikely((unsigned long)page->mapping |
889 page_ref_count(page) |
891 (unsigned long)page->mem_cgroup |
893 (page->flags & check_flags)))
899 static void free_pages_check_bad(struct page *page)
901 const char *bad_reason;
902 unsigned long bad_flags;
907 if (unlikely(atomic_read(&page->_mapcount) != -1))
908 bad_reason = "nonzero mapcount";
909 if (unlikely(page->mapping != NULL))
910 bad_reason = "non-NULL mapping";
911 if (unlikely(page_ref_count(page) != 0))
912 bad_reason = "nonzero _refcount";
913 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
914 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
915 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
918 if (unlikely(page->mem_cgroup))
919 bad_reason = "page still charged to cgroup";
921 bad_page(page, bad_reason, bad_flags);
924 static inline int free_pages_check(struct page *page)
926 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
929 /* Something has gone sideways, find it */
930 free_pages_check_bad(page);
934 static int free_tail_pages_check(struct page *head_page, struct page *page)
939 * We rely page->lru.next never has bit 0 set, unless the page
940 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
942 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
944 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
948 switch (page - head_page) {
950 /* the first tail page: ->mapping is compound_mapcount() */
951 if (unlikely(compound_mapcount(page))) {
952 bad_page(page, "nonzero compound_mapcount", 0);
958 * the second tail page: ->mapping is
959 * page_deferred_list().next -- ignore value.
963 if (page->mapping != TAIL_MAPPING) {
964 bad_page(page, "corrupted mapping in tail page", 0);
969 if (unlikely(!PageTail(page))) {
970 bad_page(page, "PageTail not set", 0);
973 if (unlikely(compound_head(page) != head_page)) {
974 bad_page(page, "compound_head not consistent", 0);
979 page->mapping = NULL;
980 clear_compound_head(page);
984 static __always_inline bool free_pages_prepare(struct page *page,
985 unsigned int order, bool check_free)
989 VM_BUG_ON_PAGE(PageTail(page), page);
991 trace_mm_page_free(page, order);
994 * Check tail pages before head page information is cleared to
995 * avoid checking PageCompound for order-0 pages.
997 if (unlikely(order)) {
998 bool compound = PageCompound(page);
1001 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1004 ClearPageDoubleMap(page);
1005 for (i = 1; i < (1 << order); i++) {
1007 bad += free_tail_pages_check(page, page + i);
1008 if (unlikely(free_pages_check(page + i))) {
1012 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1015 if (PageMappingFlags(page))
1016 page->mapping = NULL;
1017 if (memcg_kmem_enabled() && PageKmemcg(page))
1018 memcg_kmem_uncharge(page, order);
1020 bad += free_pages_check(page);
1024 page_cpupid_reset_last(page);
1025 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1026 reset_page_owner(page, order);
1028 if (!PageHighMem(page)) {
1029 debug_check_no_locks_freed(page_address(page),
1030 PAGE_SIZE << order);
1031 debug_check_no_obj_freed(page_address(page),
1032 PAGE_SIZE << order);
1034 arch_free_page(page, order);
1035 kernel_poison_pages(page, 1 << order, 0);
1036 kernel_map_pages(page, 1 << order, 0);
1037 kasan_free_pages(page, order);
1042 #ifdef CONFIG_DEBUG_VM
1043 static inline bool free_pcp_prepare(struct page *page)
1045 return free_pages_prepare(page, 0, true);
1048 static inline bool bulkfree_pcp_prepare(struct page *page)
1053 static bool free_pcp_prepare(struct page *page)
1055 return free_pages_prepare(page, 0, false);
1058 static bool bulkfree_pcp_prepare(struct page *page)
1060 return free_pages_check(page);
1062 #endif /* CONFIG_DEBUG_VM */
1065 * Frees a number of pages from the PCP lists
1066 * Assumes all pages on list are in same zone, and of same order.
1067 * count is the number of pages to free.
1069 * If the zone was previously in an "all pages pinned" state then look to
1070 * see if this freeing clears that state.
1072 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1073 * pinned" detection logic.
1075 static void free_pcppages_bulk(struct zone *zone, int count,
1076 struct per_cpu_pages *pcp)
1078 int migratetype = 0;
1080 bool isolated_pageblocks;
1082 spin_lock(&zone->lock);
1083 isolated_pageblocks = has_isolate_pageblock(zone);
1087 struct list_head *list;
1090 * Remove pages from lists in a round-robin fashion. A
1091 * batch_free count is maintained that is incremented when an
1092 * empty list is encountered. This is so more pages are freed
1093 * off fuller lists instead of spinning excessively around empty
1098 if (++migratetype == MIGRATE_PCPTYPES)
1100 list = &pcp->lists[migratetype];
1101 } while (list_empty(list));
1103 /* This is the only non-empty list. Free them all. */
1104 if (batch_free == MIGRATE_PCPTYPES)
1108 int mt; /* migratetype of the to-be-freed page */
1110 page = list_last_entry(list, struct page, lru);
1111 /* must delete as __free_one_page list manipulates */
1112 list_del(&page->lru);
1114 mt = get_pcppage_migratetype(page);
1115 /* MIGRATE_ISOLATE page should not go to pcplists */
1116 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1117 /* Pageblock could have been isolated meanwhile */
1118 if (unlikely(isolated_pageblocks))
1119 mt = get_pageblock_migratetype(page);
1121 if (bulkfree_pcp_prepare(page))
1124 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1125 trace_mm_page_pcpu_drain(page, 0, mt);
1126 } while (--count && --batch_free && !list_empty(list));
1128 spin_unlock(&zone->lock);
1131 static void free_one_page(struct zone *zone,
1132 struct page *page, unsigned long pfn,
1136 spin_lock(&zone->lock);
1137 if (unlikely(has_isolate_pageblock(zone) ||
1138 is_migrate_isolate(migratetype))) {
1139 migratetype = get_pfnblock_migratetype(page, pfn);
1141 __free_one_page(page, pfn, zone, order, migratetype);
1142 spin_unlock(&zone->lock);
1145 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1146 unsigned long zone, int nid, bool zero)
1149 mm_zero_struct_page(page);
1150 set_page_links(page, zone, nid, pfn);
1151 init_page_count(page);
1152 page_mapcount_reset(page);
1153 page_cpupid_reset_last(page);
1155 INIT_LIST_HEAD(&page->lru);
1156 #ifdef WANT_PAGE_VIRTUAL
1157 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1158 if (!is_highmem_idx(zone))
1159 set_page_address(page, __va(pfn << PAGE_SHIFT));
1163 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1166 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1169 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1170 static void __meminit init_reserved_page(unsigned long pfn)
1175 if (!early_page_uninitialised(pfn))
1178 nid = early_pfn_to_nid(pfn);
1179 pgdat = NODE_DATA(nid);
1181 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1182 struct zone *zone = &pgdat->node_zones[zid];
1184 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1187 __init_single_pfn(pfn, zid, nid, true);
1190 static inline void init_reserved_page(unsigned long pfn)
1193 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1196 * Initialised pages do not have PageReserved set. This function is
1197 * called for each range allocated by the bootmem allocator and
1198 * marks the pages PageReserved. The remaining valid pages are later
1199 * sent to the buddy page allocator.
1201 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1203 unsigned long start_pfn = PFN_DOWN(start);
1204 unsigned long end_pfn = PFN_UP(end);
1206 for (; start_pfn < end_pfn; start_pfn++) {
1207 if (pfn_valid(start_pfn)) {
1208 struct page *page = pfn_to_page(start_pfn);
1210 init_reserved_page(start_pfn);
1212 /* Avoid false-positive PageTail() */
1213 INIT_LIST_HEAD(&page->lru);
1215 SetPageReserved(page);
1220 static void __free_pages_ok(struct page *page, unsigned int order)
1222 unsigned long flags;
1224 unsigned long pfn = page_to_pfn(page);
1226 if (!free_pages_prepare(page, order, true))
1229 migratetype = get_pfnblock_migratetype(page, pfn);
1230 local_irq_save(flags);
1231 __count_vm_events(PGFREE, 1 << order);
1232 free_one_page(page_zone(page), page, pfn, order, migratetype);
1233 local_irq_restore(flags);
1236 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1238 unsigned int nr_pages = 1 << order;
1239 struct page *p = page;
1243 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1245 __ClearPageReserved(p);
1246 set_page_count(p, 0);
1248 __ClearPageReserved(p);
1249 set_page_count(p, 0);
1251 page_zone(page)->managed_pages += nr_pages;
1252 set_page_refcounted(page);
1253 __free_pages(page, order);
1256 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1257 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1259 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1261 int __meminit early_pfn_to_nid(unsigned long pfn)
1263 static DEFINE_SPINLOCK(early_pfn_lock);
1266 spin_lock(&early_pfn_lock);
1267 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1269 nid = first_online_node;
1270 spin_unlock(&early_pfn_lock);
1276 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1277 static inline bool __meminit __maybe_unused
1278 meminit_pfn_in_nid(unsigned long pfn, int node,
1279 struct mminit_pfnnid_cache *state)
1283 nid = __early_pfn_to_nid(pfn, state);
1284 if (nid >= 0 && nid != node)
1289 /* Only safe to use early in boot when initialisation is single-threaded */
1290 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1292 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1297 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1301 static inline bool __meminit __maybe_unused
1302 meminit_pfn_in_nid(unsigned long pfn, int node,
1303 struct mminit_pfnnid_cache *state)
1310 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1313 if (early_page_uninitialised(pfn))
1315 return __free_pages_boot_core(page, order);
1319 * Check that the whole (or subset of) a pageblock given by the interval of
1320 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1321 * with the migration of free compaction scanner. The scanners then need to
1322 * use only pfn_valid_within() check for arches that allow holes within
1325 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1327 * It's possible on some configurations to have a setup like node0 node1 node0
1328 * i.e. it's possible that all pages within a zones range of pages do not
1329 * belong to a single zone. We assume that a border between node0 and node1
1330 * can occur within a single pageblock, but not a node0 node1 node0
1331 * interleaving within a single pageblock. It is therefore sufficient to check
1332 * the first and last page of a pageblock and avoid checking each individual
1333 * page in a pageblock.
1335 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1336 unsigned long end_pfn, struct zone *zone)
1338 struct page *start_page;
1339 struct page *end_page;
1341 /* end_pfn is one past the range we are checking */
1344 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1347 start_page = pfn_to_online_page(start_pfn);
1351 if (page_zone(start_page) != zone)
1354 end_page = pfn_to_page(end_pfn);
1356 /* This gives a shorter code than deriving page_zone(end_page) */
1357 if (page_zone_id(start_page) != page_zone_id(end_page))
1363 void set_zone_contiguous(struct zone *zone)
1365 unsigned long block_start_pfn = zone->zone_start_pfn;
1366 unsigned long block_end_pfn;
1368 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1369 for (; block_start_pfn < zone_end_pfn(zone);
1370 block_start_pfn = block_end_pfn,
1371 block_end_pfn += pageblock_nr_pages) {
1373 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1375 if (!__pageblock_pfn_to_page(block_start_pfn,
1376 block_end_pfn, zone))
1380 /* We confirm that there is no hole */
1381 zone->contiguous = true;
1384 void clear_zone_contiguous(struct zone *zone)
1386 zone->contiguous = false;
1389 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1390 static void __init deferred_free_range(unsigned long pfn,
1391 unsigned long nr_pages)
1399 page = pfn_to_page(pfn);
1401 /* Free a large naturally-aligned chunk if possible */
1402 if (nr_pages == pageblock_nr_pages &&
1403 (pfn & (pageblock_nr_pages - 1)) == 0) {
1404 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1405 __free_pages_boot_core(page, pageblock_order);
1409 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1410 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1411 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1412 __free_pages_boot_core(page, 0);
1416 /* Completion tracking for deferred_init_memmap() threads */
1417 static atomic_t pgdat_init_n_undone __initdata;
1418 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1420 static inline void __init pgdat_init_report_one_done(void)
1422 if (atomic_dec_and_test(&pgdat_init_n_undone))
1423 complete(&pgdat_init_all_done_comp);
1427 * Returns true if page needs to be initialized or freed to buddy allocator.
1429 * First we check if pfn is valid on architectures where it is possible to have
1430 * holes within pageblock_nr_pages. On systems where it is not possible, this
1431 * function is optimized out.
1433 * Then, we check if a current large page is valid by only checking the validity
1436 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1437 * within a node: a pfn is between start and end of a node, but does not belong
1438 * to this memory node.
1440 static inline bool __init
1441 deferred_pfn_valid(int nid, unsigned long pfn,
1442 struct mminit_pfnnid_cache *nid_init_state)
1444 if (!pfn_valid_within(pfn))
1446 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1448 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1454 * Free pages to buddy allocator. Try to free aligned pages in
1455 * pageblock_nr_pages sizes.
1457 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1458 unsigned long end_pfn)
1460 struct mminit_pfnnid_cache nid_init_state = { };
1461 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1462 unsigned long nr_free = 0;
1464 for (; pfn < end_pfn; pfn++) {
1465 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1466 deferred_free_range(pfn - nr_free, nr_free);
1468 } else if (!(pfn & nr_pgmask)) {
1469 deferred_free_range(pfn - nr_free, nr_free);
1471 touch_nmi_watchdog();
1476 /* Free the last block of pages to allocator */
1477 deferred_free_range(pfn - nr_free, nr_free);
1481 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1482 * by performing it only once every pageblock_nr_pages.
1483 * Return number of pages initialized.
1485 static unsigned long __init deferred_init_pages(int nid, int zid,
1487 unsigned long end_pfn)
1489 struct mminit_pfnnid_cache nid_init_state = { };
1490 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1491 unsigned long nr_pages = 0;
1492 struct page *page = NULL;
1494 for (; pfn < end_pfn; pfn++) {
1495 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1498 } else if (!page || !(pfn & nr_pgmask)) {
1499 page = pfn_to_page(pfn);
1500 touch_nmi_watchdog();
1504 __init_single_page(page, pfn, zid, nid, true);
1510 /* Initialise remaining memory on a node */
1511 static int __init deferred_init_memmap(void *data)
1513 pg_data_t *pgdat = data;
1514 int nid = pgdat->node_id;
1515 unsigned long start = jiffies;
1516 unsigned long nr_pages = 0;
1517 unsigned long spfn, epfn, first_init_pfn, flags;
1518 phys_addr_t spa, epa;
1521 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1524 /* Bind memory initialisation thread to a local node if possible */
1525 if (!cpumask_empty(cpumask))
1526 set_cpus_allowed_ptr(current, cpumask);
1528 pgdat_resize_lock(pgdat, &flags);
1529 first_init_pfn = pgdat->first_deferred_pfn;
1530 if (first_init_pfn == ULONG_MAX) {
1531 pgdat_resize_unlock(pgdat, &flags);
1532 pgdat_init_report_one_done();
1536 /* Sanity check boundaries */
1537 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1538 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1539 pgdat->first_deferred_pfn = ULONG_MAX;
1541 /* Only the highest zone is deferred so find it */
1542 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1543 zone = pgdat->node_zones + zid;
1544 if (first_init_pfn < zone_end_pfn(zone))
1547 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1550 * Initialize and free pages. We do it in two loops: first we initialize
1551 * struct page, than free to buddy allocator, because while we are
1552 * freeing pages we can access pages that are ahead (computing buddy
1553 * page in __free_one_page()).
1555 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1556 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1557 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1558 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1560 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1561 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1562 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1563 deferred_free_pages(nid, zid, spfn, epfn);
1565 pgdat_resize_unlock(pgdat, &flags);
1567 /* Sanity check that the next zone really is unpopulated */
1568 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1570 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1571 jiffies_to_msecs(jiffies - start));
1573 pgdat_init_report_one_done();
1578 * During boot we initialize deferred pages on-demand, as needed, but once
1579 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1580 * and we can permanently disable that path.
1582 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1585 * If this zone has deferred pages, try to grow it by initializing enough
1586 * deferred pages to satisfy the allocation specified by order, rounded up to
1587 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1588 * of SECTION_SIZE bytes by initializing struct pages in increments of
1589 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1591 * Return true when zone was grown, otherwise return false. We return true even
1592 * when we grow less than requested, to let the caller decide if there are
1593 * enough pages to satisfy the allocation.
1595 * Note: We use noinline because this function is needed only during boot, and
1596 * it is called from a __ref function _deferred_grow_zone. This way we are
1597 * making sure that it is not inlined into permanent text section.
1599 static noinline bool __init
1600 deferred_grow_zone(struct zone *zone, unsigned int order)
1602 int zid = zone_idx(zone);
1603 int nid = zone_to_nid(zone);
1604 pg_data_t *pgdat = NODE_DATA(nid);
1605 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1606 unsigned long nr_pages = 0;
1607 unsigned long first_init_pfn, spfn, epfn, t, flags;
1608 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1609 phys_addr_t spa, epa;
1612 /* Only the last zone may have deferred pages */
1613 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1616 pgdat_resize_lock(pgdat, &flags);
1619 * If deferred pages have been initialized while we were waiting for
1620 * the lock, return true, as the zone was grown. The caller will retry
1621 * this zone. We won't return to this function since the caller also
1622 * has this static branch.
1624 if (!static_branch_unlikely(&deferred_pages)) {
1625 pgdat_resize_unlock(pgdat, &flags);
1630 * If someone grew this zone while we were waiting for spinlock, return
1631 * true, as there might be enough pages already.
1633 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1634 pgdat_resize_unlock(pgdat, &flags);
1638 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1640 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1641 pgdat_resize_unlock(pgdat, &flags);
1645 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1646 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1647 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1649 while (spfn < epfn && nr_pages < nr_pages_needed) {
1650 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1651 first_deferred_pfn = min(t, epfn);
1652 nr_pages += deferred_init_pages(nid, zid, spfn,
1653 first_deferred_pfn);
1654 spfn = first_deferred_pfn;
1657 if (nr_pages >= nr_pages_needed)
1661 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1662 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1663 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1664 deferred_free_pages(nid, zid, spfn, epfn);
1666 if (first_deferred_pfn == epfn)
1669 pgdat->first_deferred_pfn = first_deferred_pfn;
1670 pgdat_resize_unlock(pgdat, &flags);
1672 return nr_pages > 0;
1676 * deferred_grow_zone() is __init, but it is called from
1677 * get_page_from_freelist() during early boot until deferred_pages permanently
1678 * disables this call. This is why we have refdata wrapper to avoid warning,
1679 * and to ensure that the function body gets unloaded.
1682 _deferred_grow_zone(struct zone *zone, unsigned int order)
1684 return deferred_grow_zone(zone, order);
1687 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1689 void __init page_alloc_init_late(void)
1693 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1696 /* There will be num_node_state(N_MEMORY) threads */
1697 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1698 for_each_node_state(nid, N_MEMORY) {
1699 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1702 /* Block until all are initialised */
1703 wait_for_completion(&pgdat_init_all_done_comp);
1706 * We initialized the rest of the deferred pages. Permanently disable
1707 * on-demand struct page initialization.
1709 static_branch_disable(&deferred_pages);
1711 /* Reinit limits that are based on free pages after the kernel is up */
1712 files_maxfiles_init();
1714 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1715 /* Discard memblock private memory */
1719 for_each_populated_zone(zone)
1720 set_zone_contiguous(zone);
1724 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1725 void __init init_cma_reserved_pageblock(struct page *page)
1727 unsigned i = pageblock_nr_pages;
1728 struct page *p = page;
1731 __ClearPageReserved(p);
1732 set_page_count(p, 0);
1735 set_pageblock_migratetype(page, MIGRATE_CMA);
1737 if (pageblock_order >= MAX_ORDER) {
1738 i = pageblock_nr_pages;
1741 set_page_refcounted(p);
1742 __free_pages(p, MAX_ORDER - 1);
1743 p += MAX_ORDER_NR_PAGES;
1744 } while (i -= MAX_ORDER_NR_PAGES);
1746 set_page_refcounted(page);
1747 __free_pages(page, pageblock_order);
1750 adjust_managed_page_count(page, pageblock_nr_pages);
1755 * The order of subdivision here is critical for the IO subsystem.
1756 * Please do not alter this order without good reasons and regression
1757 * testing. Specifically, as large blocks of memory are subdivided,
1758 * the order in which smaller blocks are delivered depends on the order
1759 * they're subdivided in this function. This is the primary factor
1760 * influencing the order in which pages are delivered to the IO
1761 * subsystem according to empirical testing, and this is also justified
1762 * by considering the behavior of a buddy system containing a single
1763 * large block of memory acted on by a series of small allocations.
1764 * This behavior is a critical factor in sglist merging's success.
1768 static inline void expand(struct zone *zone, struct page *page,
1769 int low, int high, struct free_area *area,
1772 unsigned long size = 1 << high;
1774 while (high > low) {
1778 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1781 * Mark as guard pages (or page), that will allow to
1782 * merge back to allocator when buddy will be freed.
1783 * Corresponding page table entries will not be touched,
1784 * pages will stay not present in virtual address space
1786 if (set_page_guard(zone, &page[size], high, migratetype))
1789 list_add(&page[size].lru, &area->free_list[migratetype]);
1791 set_page_order(&page[size], high);
1795 static void check_new_page_bad(struct page *page)
1797 const char *bad_reason = NULL;
1798 unsigned long bad_flags = 0;
1800 if (unlikely(atomic_read(&page->_mapcount) != -1))
1801 bad_reason = "nonzero mapcount";
1802 if (unlikely(page->mapping != NULL))
1803 bad_reason = "non-NULL mapping";
1804 if (unlikely(page_ref_count(page) != 0))
1805 bad_reason = "nonzero _count";
1806 if (unlikely(page->flags & __PG_HWPOISON)) {
1807 bad_reason = "HWPoisoned (hardware-corrupted)";
1808 bad_flags = __PG_HWPOISON;
1809 /* Don't complain about hwpoisoned pages */
1810 page_mapcount_reset(page); /* remove PageBuddy */
1813 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1814 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1815 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1818 if (unlikely(page->mem_cgroup))
1819 bad_reason = "page still charged to cgroup";
1821 bad_page(page, bad_reason, bad_flags);
1825 * This page is about to be returned from the page allocator
1827 static inline int check_new_page(struct page *page)
1829 if (likely(page_expected_state(page,
1830 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1833 check_new_page_bad(page);
1837 static inline bool free_pages_prezeroed(void)
1839 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1840 page_poisoning_enabled();
1843 #ifdef CONFIG_DEBUG_VM
1844 static bool check_pcp_refill(struct page *page)
1849 static bool check_new_pcp(struct page *page)
1851 return check_new_page(page);
1854 static bool check_pcp_refill(struct page *page)
1856 return check_new_page(page);
1858 static bool check_new_pcp(struct page *page)
1862 #endif /* CONFIG_DEBUG_VM */
1864 static bool check_new_pages(struct page *page, unsigned int order)
1867 for (i = 0; i < (1 << order); i++) {
1868 struct page *p = page + i;
1870 if (unlikely(check_new_page(p)))
1877 inline void post_alloc_hook(struct page *page, unsigned int order,
1880 set_page_private(page, 0);
1881 set_page_refcounted(page);
1883 arch_alloc_page(page, order);
1884 kernel_map_pages(page, 1 << order, 1);
1885 kernel_poison_pages(page, 1 << order, 1);
1886 kasan_alloc_pages(page, order);
1887 set_page_owner(page, order, gfp_flags);
1890 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1891 unsigned int alloc_flags)
1895 post_alloc_hook(page, order, gfp_flags);
1897 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1898 for (i = 0; i < (1 << order); i++)
1899 clear_highpage(page + i);
1901 if (order && (gfp_flags & __GFP_COMP))
1902 prep_compound_page(page, order);
1905 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1906 * allocate the page. The expectation is that the caller is taking
1907 * steps that will free more memory. The caller should avoid the page
1908 * being used for !PFMEMALLOC purposes.
1910 if (alloc_flags & ALLOC_NO_WATERMARKS)
1911 set_page_pfmemalloc(page);
1913 clear_page_pfmemalloc(page);
1917 * Go through the free lists for the given migratetype and remove
1918 * the smallest available page from the freelists
1920 static __always_inline
1921 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1924 unsigned int current_order;
1925 struct free_area *area;
1928 /* Find a page of the appropriate size in the preferred list */
1929 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1930 area = &(zone->free_area[current_order]);
1931 page = list_first_entry_or_null(&area->free_list[migratetype],
1935 list_del(&page->lru);
1936 rmv_page_order(page);
1938 expand(zone, page, order, current_order, area, migratetype);
1939 set_pcppage_migratetype(page, migratetype);
1948 * This array describes the order lists are fallen back to when
1949 * the free lists for the desirable migrate type are depleted
1951 static int fallbacks[MIGRATE_TYPES][4] = {
1952 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1953 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1954 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1956 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1958 #ifdef CONFIG_MEMORY_ISOLATION
1959 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1964 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1967 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1970 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1971 unsigned int order) { return NULL; }
1975 * Move the free pages in a range to the free lists of the requested type.
1976 * Note that start_page and end_pages are not aligned on a pageblock
1977 * boundary. If alignment is required, use move_freepages_block()
1979 static int move_freepages(struct zone *zone,
1980 struct page *start_page, struct page *end_page,
1981 int migratetype, int *num_movable)
1985 int pages_moved = 0;
1987 #ifndef CONFIG_HOLES_IN_ZONE
1989 * page_zone is not safe to call in this context when
1990 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1991 * anyway as we check zone boundaries in move_freepages_block().
1992 * Remove at a later date when no bug reports exist related to
1993 * grouping pages by mobility
1995 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
1996 pfn_valid(page_to_pfn(end_page)) &&
1997 page_zone(start_page) != page_zone(end_page));
2003 for (page = start_page; page <= end_page;) {
2004 if (!pfn_valid_within(page_to_pfn(page))) {
2009 /* Make sure we are not inadvertently changing nodes */
2010 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2012 if (!PageBuddy(page)) {
2014 * We assume that pages that could be isolated for
2015 * migration are movable. But we don't actually try
2016 * isolating, as that would be expensive.
2019 (PageLRU(page) || __PageMovable(page)))
2026 order = page_order(page);
2027 list_move(&page->lru,
2028 &zone->free_area[order].free_list[migratetype]);
2030 pages_moved += 1 << order;
2036 int move_freepages_block(struct zone *zone, struct page *page,
2037 int migratetype, int *num_movable)
2039 unsigned long start_pfn, end_pfn;
2040 struct page *start_page, *end_page;
2042 start_pfn = page_to_pfn(page);
2043 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2044 start_page = pfn_to_page(start_pfn);
2045 end_page = start_page + pageblock_nr_pages - 1;
2046 end_pfn = start_pfn + pageblock_nr_pages - 1;
2048 /* Do not cross zone boundaries */
2049 if (!zone_spans_pfn(zone, start_pfn))
2051 if (!zone_spans_pfn(zone, end_pfn))
2054 return move_freepages(zone, start_page, end_page, migratetype,
2058 static void change_pageblock_range(struct page *pageblock_page,
2059 int start_order, int migratetype)
2061 int nr_pageblocks = 1 << (start_order - pageblock_order);
2063 while (nr_pageblocks--) {
2064 set_pageblock_migratetype(pageblock_page, migratetype);
2065 pageblock_page += pageblock_nr_pages;
2070 * When we are falling back to another migratetype during allocation, try to
2071 * steal extra free pages from the same pageblocks to satisfy further
2072 * allocations, instead of polluting multiple pageblocks.
2074 * If we are stealing a relatively large buddy page, it is likely there will
2075 * be more free pages in the pageblock, so try to steal them all. For
2076 * reclaimable and unmovable allocations, we steal regardless of page size,
2077 * as fragmentation caused by those allocations polluting movable pageblocks
2078 * is worse than movable allocations stealing from unmovable and reclaimable
2081 static bool can_steal_fallback(unsigned int order, int start_mt)
2084 * Leaving this order check is intended, although there is
2085 * relaxed order check in next check. The reason is that
2086 * we can actually steal whole pageblock if this condition met,
2087 * but, below check doesn't guarantee it and that is just heuristic
2088 * so could be changed anytime.
2090 if (order >= pageblock_order)
2093 if (order >= pageblock_order / 2 ||
2094 start_mt == MIGRATE_RECLAIMABLE ||
2095 start_mt == MIGRATE_UNMOVABLE ||
2096 page_group_by_mobility_disabled)
2103 * This function implements actual steal behaviour. If order is large enough,
2104 * we can steal whole pageblock. If not, we first move freepages in this
2105 * pageblock to our migratetype and determine how many already-allocated pages
2106 * are there in the pageblock with a compatible migratetype. If at least half
2107 * of pages are free or compatible, we can change migratetype of the pageblock
2108 * itself, so pages freed in the future will be put on the correct free list.
2110 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2111 int start_type, bool whole_block)
2113 unsigned int current_order = page_order(page);
2114 struct free_area *area;
2115 int free_pages, movable_pages, alike_pages;
2118 old_block_type = get_pageblock_migratetype(page);
2121 * This can happen due to races and we want to prevent broken
2122 * highatomic accounting.
2124 if (is_migrate_highatomic(old_block_type))
2127 /* Take ownership for orders >= pageblock_order */
2128 if (current_order >= pageblock_order) {
2129 change_pageblock_range(page, current_order, start_type);
2133 /* We are not allowed to try stealing from the whole block */
2137 free_pages = move_freepages_block(zone, page, start_type,
2140 * Determine how many pages are compatible with our allocation.
2141 * For movable allocation, it's the number of movable pages which
2142 * we just obtained. For other types it's a bit more tricky.
2144 if (start_type == MIGRATE_MOVABLE) {
2145 alike_pages = movable_pages;
2148 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2149 * to MOVABLE pageblock, consider all non-movable pages as
2150 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2151 * vice versa, be conservative since we can't distinguish the
2152 * exact migratetype of non-movable pages.
2154 if (old_block_type == MIGRATE_MOVABLE)
2155 alike_pages = pageblock_nr_pages
2156 - (free_pages + movable_pages);
2161 /* moving whole block can fail due to zone boundary conditions */
2166 * If a sufficient number of pages in the block are either free or of
2167 * comparable migratability as our allocation, claim the whole block.
2169 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2170 page_group_by_mobility_disabled)
2171 set_pageblock_migratetype(page, start_type);
2176 area = &zone->free_area[current_order];
2177 list_move(&page->lru, &area->free_list[start_type]);
2181 * Check whether there is a suitable fallback freepage with requested order.
2182 * If only_stealable is true, this function returns fallback_mt only if
2183 * we can steal other freepages all together. This would help to reduce
2184 * fragmentation due to mixed migratetype pages in one pageblock.
2186 int find_suitable_fallback(struct free_area *area, unsigned int order,
2187 int migratetype, bool only_stealable, bool *can_steal)
2192 if (area->nr_free == 0)
2197 fallback_mt = fallbacks[migratetype][i];
2198 if (fallback_mt == MIGRATE_TYPES)
2201 if (list_empty(&area->free_list[fallback_mt]))
2204 if (can_steal_fallback(order, migratetype))
2207 if (!only_stealable)
2218 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2219 * there are no empty page blocks that contain a page with a suitable order
2221 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2222 unsigned int alloc_order)
2225 unsigned long max_managed, flags;
2228 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2229 * Check is race-prone but harmless.
2231 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2232 if (zone->nr_reserved_highatomic >= max_managed)
2235 spin_lock_irqsave(&zone->lock, flags);
2237 /* Recheck the nr_reserved_highatomic limit under the lock */
2238 if (zone->nr_reserved_highatomic >= max_managed)
2242 mt = get_pageblock_migratetype(page);
2243 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2244 && !is_migrate_cma(mt)) {
2245 zone->nr_reserved_highatomic += pageblock_nr_pages;
2246 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2247 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2251 spin_unlock_irqrestore(&zone->lock, flags);
2255 * Used when an allocation is about to fail under memory pressure. This
2256 * potentially hurts the reliability of high-order allocations when under
2257 * intense memory pressure but failed atomic allocations should be easier
2258 * to recover from than an OOM.
2260 * If @force is true, try to unreserve a pageblock even though highatomic
2261 * pageblock is exhausted.
2263 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2266 struct zonelist *zonelist = ac->zonelist;
2267 unsigned long flags;
2274 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2277 * Preserve at least one pageblock unless memory pressure
2280 if (!force && zone->nr_reserved_highatomic <=
2284 spin_lock_irqsave(&zone->lock, flags);
2285 for (order = 0; order < MAX_ORDER; order++) {
2286 struct free_area *area = &(zone->free_area[order]);
2288 page = list_first_entry_or_null(
2289 &area->free_list[MIGRATE_HIGHATOMIC],
2295 * In page freeing path, migratetype change is racy so
2296 * we can counter several free pages in a pageblock
2297 * in this loop althoug we changed the pageblock type
2298 * from highatomic to ac->migratetype. So we should
2299 * adjust the count once.
2301 if (is_migrate_highatomic_page(page)) {
2303 * It should never happen but changes to
2304 * locking could inadvertently allow a per-cpu
2305 * drain to add pages to MIGRATE_HIGHATOMIC
2306 * while unreserving so be safe and watch for
2309 zone->nr_reserved_highatomic -= min(
2311 zone->nr_reserved_highatomic);
2315 * Convert to ac->migratetype and avoid the normal
2316 * pageblock stealing heuristics. Minimally, the caller
2317 * is doing the work and needs the pages. More
2318 * importantly, if the block was always converted to
2319 * MIGRATE_UNMOVABLE or another type then the number
2320 * of pageblocks that cannot be completely freed
2323 set_pageblock_migratetype(page, ac->migratetype);
2324 ret = move_freepages_block(zone, page, ac->migratetype,
2327 spin_unlock_irqrestore(&zone->lock, flags);
2331 spin_unlock_irqrestore(&zone->lock, flags);
2338 * Try finding a free buddy page on the fallback list and put it on the free
2339 * list of requested migratetype, possibly along with other pages from the same
2340 * block, depending on fragmentation avoidance heuristics. Returns true if
2341 * fallback was found so that __rmqueue_smallest() can grab it.
2343 * The use of signed ints for order and current_order is a deliberate
2344 * deviation from the rest of this file, to make the for loop
2345 * condition simpler.
2347 static __always_inline bool
2348 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2350 struct free_area *area;
2357 * Find the largest available free page in the other list. This roughly
2358 * approximates finding the pageblock with the most free pages, which
2359 * would be too costly to do exactly.
2361 for (current_order = MAX_ORDER - 1; current_order >= order;
2363 area = &(zone->free_area[current_order]);
2364 fallback_mt = find_suitable_fallback(area, current_order,
2365 start_migratetype, false, &can_steal);
2366 if (fallback_mt == -1)
2370 * We cannot steal all free pages from the pageblock and the
2371 * requested migratetype is movable. In that case it's better to
2372 * steal and split the smallest available page instead of the
2373 * largest available page, because even if the next movable
2374 * allocation falls back into a different pageblock than this
2375 * one, it won't cause permanent fragmentation.
2377 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2378 && current_order > order)
2387 for (current_order = order; current_order < MAX_ORDER;
2389 area = &(zone->free_area[current_order]);
2390 fallback_mt = find_suitable_fallback(area, current_order,
2391 start_migratetype, false, &can_steal);
2392 if (fallback_mt != -1)
2397 * This should not happen - we already found a suitable fallback
2398 * when looking for the largest page.
2400 VM_BUG_ON(current_order == MAX_ORDER);
2403 page = list_first_entry(&area->free_list[fallback_mt],
2406 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2408 trace_mm_page_alloc_extfrag(page, order, current_order,
2409 start_migratetype, fallback_mt);
2416 * Do the hard work of removing an element from the buddy allocator.
2417 * Call me with the zone->lock already held.
2419 static __always_inline struct page *
2420 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2425 page = __rmqueue_smallest(zone, order, migratetype);
2426 if (unlikely(!page)) {
2427 if (migratetype == MIGRATE_MOVABLE)
2428 page = __rmqueue_cma_fallback(zone, order);
2430 if (!page && __rmqueue_fallback(zone, order, migratetype))
2434 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2439 * Obtain a specified number of elements from the buddy allocator, all under
2440 * a single hold of the lock, for efficiency. Add them to the supplied list.
2441 * Returns the number of new pages which were placed at *list.
2443 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2444 unsigned long count, struct list_head *list,
2449 spin_lock(&zone->lock);
2450 for (i = 0; i < count; ++i) {
2451 struct page *page = __rmqueue(zone, order, migratetype);
2452 if (unlikely(page == NULL))
2455 if (unlikely(check_pcp_refill(page)))
2459 * Split buddy pages returned by expand() are received here in
2460 * physical page order. The page is added to the tail of
2461 * caller's list. From the callers perspective, the linked list
2462 * is ordered by page number under some conditions. This is
2463 * useful for IO devices that can forward direction from the
2464 * head, thus also in the physical page order. This is useful
2465 * for IO devices that can merge IO requests if the physical
2466 * pages are ordered properly.
2468 list_add_tail(&page->lru, list);
2470 if (is_migrate_cma(get_pcppage_migratetype(page)))
2471 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2476 * i pages were removed from the buddy list even if some leak due
2477 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2478 * on i. Do not confuse with 'alloced' which is the number of
2479 * pages added to the pcp list.
2481 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2482 spin_unlock(&zone->lock);
2488 * Called from the vmstat counter updater to drain pagesets of this
2489 * currently executing processor on remote nodes after they have
2492 * Note that this function must be called with the thread pinned to
2493 * a single processor.
2495 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2497 unsigned long flags;
2498 int to_drain, batch;
2500 local_irq_save(flags);
2501 batch = READ_ONCE(pcp->batch);
2502 to_drain = min(pcp->count, batch);
2504 free_pcppages_bulk(zone, to_drain, pcp);
2505 pcp->count -= to_drain;
2507 local_irq_restore(flags);
2512 * Drain pcplists of the indicated processor and zone.
2514 * The processor must either be the current processor and the
2515 * thread pinned to the current processor or a processor that
2518 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2520 unsigned long flags;
2521 struct per_cpu_pageset *pset;
2522 struct per_cpu_pages *pcp;
2524 local_irq_save(flags);
2525 pset = per_cpu_ptr(zone->pageset, cpu);
2529 free_pcppages_bulk(zone, pcp->count, pcp);
2532 local_irq_restore(flags);
2536 * Drain pcplists of all zones on the indicated processor.
2538 * The processor must either be the current processor and the
2539 * thread pinned to the current processor or a processor that
2542 static void drain_pages(unsigned int cpu)
2546 for_each_populated_zone(zone) {
2547 drain_pages_zone(cpu, zone);
2552 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2554 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2555 * the single zone's pages.
2557 void drain_local_pages(struct zone *zone)
2559 int cpu = smp_processor_id();
2562 drain_pages_zone(cpu, zone);
2567 static void drain_local_pages_wq(struct work_struct *work)
2570 * drain_all_pages doesn't use proper cpu hotplug protection so
2571 * we can race with cpu offline when the WQ can move this from
2572 * a cpu pinned worker to an unbound one. We can operate on a different
2573 * cpu which is allright but we also have to make sure to not move to
2577 drain_local_pages(NULL);
2582 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2584 * When zone parameter is non-NULL, spill just the single zone's pages.
2586 * Note that this can be extremely slow as the draining happens in a workqueue.
2588 void drain_all_pages(struct zone *zone)
2593 * Allocate in the BSS so we wont require allocation in
2594 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2596 static cpumask_t cpus_with_pcps;
2599 * Make sure nobody triggers this path before mm_percpu_wq is fully
2602 if (WARN_ON_ONCE(!mm_percpu_wq))
2606 * Do not drain if one is already in progress unless it's specific to
2607 * a zone. Such callers are primarily CMA and memory hotplug and need
2608 * the drain to be complete when the call returns.
2610 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2613 mutex_lock(&pcpu_drain_mutex);
2617 * We don't care about racing with CPU hotplug event
2618 * as offline notification will cause the notified
2619 * cpu to drain that CPU pcps and on_each_cpu_mask
2620 * disables preemption as part of its processing
2622 for_each_online_cpu(cpu) {
2623 struct per_cpu_pageset *pcp;
2625 bool has_pcps = false;
2628 pcp = per_cpu_ptr(zone->pageset, cpu);
2632 for_each_populated_zone(z) {
2633 pcp = per_cpu_ptr(z->pageset, cpu);
2634 if (pcp->pcp.count) {
2642 cpumask_set_cpu(cpu, &cpus_with_pcps);
2644 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2647 for_each_cpu(cpu, &cpus_with_pcps) {
2648 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2649 INIT_WORK(work, drain_local_pages_wq);
2650 queue_work_on(cpu, mm_percpu_wq, work);
2652 for_each_cpu(cpu, &cpus_with_pcps)
2653 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2655 mutex_unlock(&pcpu_drain_mutex);
2658 #ifdef CONFIG_HIBERNATION
2661 * Touch the watchdog for every WD_PAGE_COUNT pages.
2663 #define WD_PAGE_COUNT (128*1024)
2665 void mark_free_pages(struct zone *zone)
2667 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2668 unsigned long flags;
2669 unsigned int order, t;
2672 if (zone_is_empty(zone))
2675 spin_lock_irqsave(&zone->lock, flags);
2677 max_zone_pfn = zone_end_pfn(zone);
2678 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2679 if (pfn_valid(pfn)) {
2680 page = pfn_to_page(pfn);
2682 if (!--page_count) {
2683 touch_nmi_watchdog();
2684 page_count = WD_PAGE_COUNT;
2687 if (page_zone(page) != zone)
2690 if (!swsusp_page_is_forbidden(page))
2691 swsusp_unset_page_free(page);
2694 for_each_migratetype_order(order, t) {
2695 list_for_each_entry(page,
2696 &zone->free_area[order].free_list[t], lru) {
2699 pfn = page_to_pfn(page);
2700 for (i = 0; i < (1UL << order); i++) {
2701 if (!--page_count) {
2702 touch_nmi_watchdog();
2703 page_count = WD_PAGE_COUNT;
2705 swsusp_set_page_free(pfn_to_page(pfn + i));
2709 spin_unlock_irqrestore(&zone->lock, flags);
2711 #endif /* CONFIG_PM */
2713 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2717 if (!free_pcp_prepare(page))
2720 migratetype = get_pfnblock_migratetype(page, pfn);
2721 set_pcppage_migratetype(page, migratetype);
2725 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2727 struct zone *zone = page_zone(page);
2728 struct per_cpu_pages *pcp;
2731 migratetype = get_pcppage_migratetype(page);
2732 __count_vm_event(PGFREE);
2735 * We only track unmovable, reclaimable and movable on pcp lists.
2736 * Free ISOLATE pages back to the allocator because they are being
2737 * offlined but treat HIGHATOMIC as movable pages so we can get those
2738 * areas back if necessary. Otherwise, we may have to free
2739 * excessively into the page allocator
2741 if (migratetype >= MIGRATE_PCPTYPES) {
2742 if (unlikely(is_migrate_isolate(migratetype))) {
2743 free_one_page(zone, page, pfn, 0, migratetype);
2746 migratetype = MIGRATE_MOVABLE;
2749 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2750 list_add(&page->lru, &pcp->lists[migratetype]);
2752 if (pcp->count >= pcp->high) {
2753 unsigned long batch = READ_ONCE(pcp->batch);
2754 free_pcppages_bulk(zone, batch, pcp);
2755 pcp->count -= batch;
2760 * Free a 0-order page
2762 void free_unref_page(struct page *page)
2764 unsigned long flags;
2765 unsigned long pfn = page_to_pfn(page);
2767 if (!free_unref_page_prepare(page, pfn))
2770 local_irq_save(flags);
2771 free_unref_page_commit(page, pfn);
2772 local_irq_restore(flags);
2776 * Free a list of 0-order pages
2778 void free_unref_page_list(struct list_head *list)
2780 struct page *page, *next;
2781 unsigned long flags, pfn;
2782 int batch_count = 0;
2784 /* Prepare pages for freeing */
2785 list_for_each_entry_safe(page, next, list, lru) {
2786 pfn = page_to_pfn(page);
2787 if (!free_unref_page_prepare(page, pfn))
2788 list_del(&page->lru);
2789 set_page_private(page, pfn);
2792 local_irq_save(flags);
2793 list_for_each_entry_safe(page, next, list, lru) {
2794 unsigned long pfn = page_private(page);
2796 set_page_private(page, 0);
2797 trace_mm_page_free_batched(page);
2798 free_unref_page_commit(page, pfn);
2801 * Guard against excessive IRQ disabled times when we get
2802 * a large list of pages to free.
2804 if (++batch_count == SWAP_CLUSTER_MAX) {
2805 local_irq_restore(flags);
2807 local_irq_save(flags);
2810 local_irq_restore(flags);
2814 * split_page takes a non-compound higher-order page, and splits it into
2815 * n (1<<order) sub-pages: page[0..n]
2816 * Each sub-page must be freed individually.
2818 * Note: this is probably too low level an operation for use in drivers.
2819 * Please consult with lkml before using this in your driver.
2821 void split_page(struct page *page, unsigned int order)
2825 VM_BUG_ON_PAGE(PageCompound(page), page);
2826 VM_BUG_ON_PAGE(!page_count(page), page);
2828 for (i = 1; i < (1 << order); i++)
2829 set_page_refcounted(page + i);
2830 split_page_owner(page, order);
2832 EXPORT_SYMBOL_GPL(split_page);
2834 int __isolate_free_page(struct page *page, unsigned int order)
2836 unsigned long watermark;
2840 BUG_ON(!PageBuddy(page));
2842 zone = page_zone(page);
2843 mt = get_pageblock_migratetype(page);
2845 if (!is_migrate_isolate(mt)) {
2847 * Obey watermarks as if the page was being allocated. We can
2848 * emulate a high-order watermark check with a raised order-0
2849 * watermark, because we already know our high-order page
2852 watermark = min_wmark_pages(zone) + (1UL << order);
2853 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2856 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2859 /* Remove page from free list */
2860 list_del(&page->lru);
2861 zone->free_area[order].nr_free--;
2862 rmv_page_order(page);
2865 * Set the pageblock if the isolated page is at least half of a
2868 if (order >= pageblock_order - 1) {
2869 struct page *endpage = page + (1 << order) - 1;
2870 for (; page < endpage; page += pageblock_nr_pages) {
2871 int mt = get_pageblock_migratetype(page);
2872 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2873 && !is_migrate_highatomic(mt))
2874 set_pageblock_migratetype(page,
2880 return 1UL << order;
2884 * Update NUMA hit/miss statistics
2886 * Must be called with interrupts disabled.
2888 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2891 enum numa_stat_item local_stat = NUMA_LOCAL;
2893 /* skip numa counters update if numa stats is disabled */
2894 if (!static_branch_likely(&vm_numa_stat_key))
2897 if (z->node != numa_node_id())
2898 local_stat = NUMA_OTHER;
2900 if (z->node == preferred_zone->node)
2901 __inc_numa_state(z, NUMA_HIT);
2903 __inc_numa_state(z, NUMA_MISS);
2904 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2906 __inc_numa_state(z, local_stat);
2910 /* Remove page from the per-cpu list, caller must protect the list */
2911 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2912 struct per_cpu_pages *pcp,
2913 struct list_head *list)
2918 if (list_empty(list)) {
2919 pcp->count += rmqueue_bulk(zone, 0,
2922 if (unlikely(list_empty(list)))
2926 page = list_first_entry(list, struct page, lru);
2927 list_del(&page->lru);
2929 } while (check_new_pcp(page));
2934 /* Lock and remove page from the per-cpu list */
2935 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2936 struct zone *zone, unsigned int order,
2937 gfp_t gfp_flags, int migratetype)
2939 struct per_cpu_pages *pcp;
2940 struct list_head *list;
2942 unsigned long flags;
2944 local_irq_save(flags);
2945 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2946 list = &pcp->lists[migratetype];
2947 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2949 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2950 zone_statistics(preferred_zone, zone);
2952 local_irq_restore(flags);
2957 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2960 struct page *rmqueue(struct zone *preferred_zone,
2961 struct zone *zone, unsigned int order,
2962 gfp_t gfp_flags, unsigned int alloc_flags,
2965 unsigned long flags;
2968 if (likely(order == 0)) {
2969 page = rmqueue_pcplist(preferred_zone, zone, order,
2970 gfp_flags, migratetype);
2975 * We most definitely don't want callers attempting to
2976 * allocate greater than order-1 page units with __GFP_NOFAIL.
2978 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2979 spin_lock_irqsave(&zone->lock, flags);
2983 if (alloc_flags & ALLOC_HARDER) {
2984 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2986 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2989 page = __rmqueue(zone, order, migratetype);
2990 } while (page && check_new_pages(page, order));
2991 spin_unlock(&zone->lock);
2994 __mod_zone_freepage_state(zone, -(1 << order),
2995 get_pcppage_migratetype(page));
2997 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2998 zone_statistics(preferred_zone, zone);
2999 local_irq_restore(flags);
3002 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3006 local_irq_restore(flags);
3010 #ifdef CONFIG_FAIL_PAGE_ALLOC
3013 struct fault_attr attr;
3015 bool ignore_gfp_highmem;
3016 bool ignore_gfp_reclaim;
3018 } fail_page_alloc = {
3019 .attr = FAULT_ATTR_INITIALIZER,
3020 .ignore_gfp_reclaim = true,
3021 .ignore_gfp_highmem = true,
3025 static int __init setup_fail_page_alloc(char *str)
3027 return setup_fault_attr(&fail_page_alloc.attr, str);
3029 __setup("fail_page_alloc=", setup_fail_page_alloc);
3031 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3033 if (order < fail_page_alloc.min_order)
3035 if (gfp_mask & __GFP_NOFAIL)
3037 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3039 if (fail_page_alloc.ignore_gfp_reclaim &&
3040 (gfp_mask & __GFP_DIRECT_RECLAIM))
3043 return should_fail(&fail_page_alloc.attr, 1 << order);
3046 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3048 static int __init fail_page_alloc_debugfs(void)
3050 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3053 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3054 &fail_page_alloc.attr);
3056 return PTR_ERR(dir);
3058 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3059 &fail_page_alloc.ignore_gfp_reclaim))
3061 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3062 &fail_page_alloc.ignore_gfp_highmem))
3064 if (!debugfs_create_u32("min-order", mode, dir,
3065 &fail_page_alloc.min_order))
3070 debugfs_remove_recursive(dir);
3075 late_initcall(fail_page_alloc_debugfs);
3077 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3079 #else /* CONFIG_FAIL_PAGE_ALLOC */
3081 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3086 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3089 * Return true if free base pages are above 'mark'. For high-order checks it
3090 * will return true of the order-0 watermark is reached and there is at least
3091 * one free page of a suitable size. Checking now avoids taking the zone lock
3092 * to check in the allocation paths if no pages are free.
3094 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3095 int classzone_idx, unsigned int alloc_flags,
3100 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3102 /* free_pages may go negative - that's OK */
3103 free_pages -= (1 << order) - 1;
3105 if (alloc_flags & ALLOC_HIGH)
3109 * If the caller does not have rights to ALLOC_HARDER then subtract
3110 * the high-atomic reserves. This will over-estimate the size of the
3111 * atomic reserve but it avoids a search.
3113 if (likely(!alloc_harder)) {
3114 free_pages -= z->nr_reserved_highatomic;
3117 * OOM victims can try even harder than normal ALLOC_HARDER
3118 * users on the grounds that it's definitely going to be in
3119 * the exit path shortly and free memory. Any allocation it
3120 * makes during the free path will be small and short-lived.
3122 if (alloc_flags & ALLOC_OOM)
3130 /* If allocation can't use CMA areas don't use free CMA pages */
3131 if (!(alloc_flags & ALLOC_CMA))
3132 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3136 * Check watermarks for an order-0 allocation request. If these
3137 * are not met, then a high-order request also cannot go ahead
3138 * even if a suitable page happened to be free.
3140 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3143 /* If this is an order-0 request then the watermark is fine */
3147 /* For a high-order request, check at least one suitable page is free */
3148 for (o = order; o < MAX_ORDER; o++) {
3149 struct free_area *area = &z->free_area[o];
3155 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3156 if (!list_empty(&area->free_list[mt]))
3161 if ((alloc_flags & ALLOC_CMA) &&
3162 !list_empty(&area->free_list[MIGRATE_CMA])) {
3167 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3173 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3174 int classzone_idx, unsigned int alloc_flags)
3176 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3177 zone_page_state(z, NR_FREE_PAGES));
3180 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3181 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3183 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3187 /* If allocation can't use CMA areas don't use free CMA pages */
3188 if (!(alloc_flags & ALLOC_CMA))
3189 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3193 * Fast check for order-0 only. If this fails then the reserves
3194 * need to be calculated. There is a corner case where the check
3195 * passes but only the high-order atomic reserve are free. If
3196 * the caller is !atomic then it'll uselessly search the free
3197 * list. That corner case is then slower but it is harmless.
3199 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3202 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3206 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3207 unsigned long mark, int classzone_idx)
3209 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3211 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3212 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3214 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3219 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3221 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3224 #else /* CONFIG_NUMA */
3225 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3229 #endif /* CONFIG_NUMA */
3232 * get_page_from_freelist goes through the zonelist trying to allocate
3235 static struct page *
3236 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3237 const struct alloc_context *ac)
3239 struct zoneref *z = ac->preferred_zoneref;
3241 struct pglist_data *last_pgdat_dirty_limit = NULL;
3244 * Scan zonelist, looking for a zone with enough free.
3245 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3247 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3252 if (cpusets_enabled() &&
3253 (alloc_flags & ALLOC_CPUSET) &&
3254 !__cpuset_zone_allowed(zone, gfp_mask))
3257 * When allocating a page cache page for writing, we
3258 * want to get it from a node that is within its dirty
3259 * limit, such that no single node holds more than its
3260 * proportional share of globally allowed dirty pages.
3261 * The dirty limits take into account the node's
3262 * lowmem reserves and high watermark so that kswapd
3263 * should be able to balance it without having to
3264 * write pages from its LRU list.
3266 * XXX: For now, allow allocations to potentially
3267 * exceed the per-node dirty limit in the slowpath
3268 * (spread_dirty_pages unset) before going into reclaim,
3269 * which is important when on a NUMA setup the allowed
3270 * nodes are together not big enough to reach the
3271 * global limit. The proper fix for these situations
3272 * will require awareness of nodes in the
3273 * dirty-throttling and the flusher threads.
3275 if (ac->spread_dirty_pages) {
3276 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3279 if (!node_dirty_ok(zone->zone_pgdat)) {
3280 last_pgdat_dirty_limit = zone->zone_pgdat;
3285 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3286 if (!zone_watermark_fast(zone, order, mark,
3287 ac_classzone_idx(ac), alloc_flags)) {
3290 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3292 * Watermark failed for this zone, but see if we can
3293 * grow this zone if it contains deferred pages.
3295 if (static_branch_unlikely(&deferred_pages)) {
3296 if (_deferred_grow_zone(zone, order))
3300 /* Checked here to keep the fast path fast */
3301 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3302 if (alloc_flags & ALLOC_NO_WATERMARKS)
3305 if (node_reclaim_mode == 0 ||
3306 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3309 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3311 case NODE_RECLAIM_NOSCAN:
3314 case NODE_RECLAIM_FULL:
3315 /* scanned but unreclaimable */
3318 /* did we reclaim enough */
3319 if (zone_watermark_ok(zone, order, mark,
3320 ac_classzone_idx(ac), alloc_flags))
3328 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3329 gfp_mask, alloc_flags, ac->migratetype);
3331 prep_new_page(page, order, gfp_mask, alloc_flags);
3334 * If this is a high-order atomic allocation then check
3335 * if the pageblock should be reserved for the future
3337 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3338 reserve_highatomic_pageblock(page, zone, order);
3342 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3343 /* Try again if zone has deferred pages */
3344 if (static_branch_unlikely(&deferred_pages)) {
3345 if (_deferred_grow_zone(zone, order))
3356 * Large machines with many possible nodes should not always dump per-node
3357 * meminfo in irq context.
3359 static inline bool should_suppress_show_mem(void)
3364 ret = in_interrupt();
3369 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3371 unsigned int filter = SHOW_MEM_FILTER_NODES;
3372 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3374 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3378 * This documents exceptions given to allocations in certain
3379 * contexts that are allowed to allocate outside current's set
3382 if (!(gfp_mask & __GFP_NOMEMALLOC))
3383 if (tsk_is_oom_victim(current) ||
3384 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3385 filter &= ~SHOW_MEM_FILTER_NODES;
3386 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3387 filter &= ~SHOW_MEM_FILTER_NODES;
3389 show_mem(filter, nodemask);
3392 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3394 struct va_format vaf;
3396 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3397 DEFAULT_RATELIMIT_BURST);
3399 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3402 va_start(args, fmt);
3405 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3406 current->comm, &vaf, gfp_mask, &gfp_mask,
3407 nodemask_pr_args(nodemask));
3410 cpuset_print_current_mems_allowed();
3413 warn_alloc_show_mem(gfp_mask, nodemask);
3416 static inline struct page *
3417 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3418 unsigned int alloc_flags,
3419 const struct alloc_context *ac)
3423 page = get_page_from_freelist(gfp_mask, order,
3424 alloc_flags|ALLOC_CPUSET, ac);
3426 * fallback to ignore cpuset restriction if our nodes
3430 page = get_page_from_freelist(gfp_mask, order,
3436 static inline struct page *
3437 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3438 const struct alloc_context *ac, unsigned long *did_some_progress)
3440 struct oom_control oc = {
3441 .zonelist = ac->zonelist,
3442 .nodemask = ac->nodemask,
3444 .gfp_mask = gfp_mask,
3449 *did_some_progress = 0;
3452 * Acquire the oom lock. If that fails, somebody else is
3453 * making progress for us.
3455 if (!mutex_trylock(&oom_lock)) {
3456 *did_some_progress = 1;
3457 schedule_timeout_uninterruptible(1);
3462 * Go through the zonelist yet one more time, keep very high watermark
3463 * here, this is only to catch a parallel oom killing, we must fail if
3464 * we're still under heavy pressure. But make sure that this reclaim
3465 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3466 * allocation which will never fail due to oom_lock already held.
3468 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3469 ~__GFP_DIRECT_RECLAIM, order,
3470 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3474 /* Coredumps can quickly deplete all memory reserves */
3475 if (current->flags & PF_DUMPCORE)
3477 /* The OOM killer will not help higher order allocs */
3478 if (order > PAGE_ALLOC_COSTLY_ORDER)
3481 * We have already exhausted all our reclaim opportunities without any
3482 * success so it is time to admit defeat. We will skip the OOM killer
3483 * because it is very likely that the caller has a more reasonable
3484 * fallback than shooting a random task.
3486 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3488 /* The OOM killer does not needlessly kill tasks for lowmem */
3489 if (ac->high_zoneidx < ZONE_NORMAL)
3491 if (pm_suspended_storage())
3494 * XXX: GFP_NOFS allocations should rather fail than rely on
3495 * other request to make a forward progress.
3496 * We are in an unfortunate situation where out_of_memory cannot
3497 * do much for this context but let's try it to at least get
3498 * access to memory reserved if the current task is killed (see
3499 * out_of_memory). Once filesystems are ready to handle allocation
3500 * failures more gracefully we should just bail out here.
3503 /* The OOM killer may not free memory on a specific node */
3504 if (gfp_mask & __GFP_THISNODE)
3507 /* Exhausted what can be done so it's blame time */
3508 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3509 *did_some_progress = 1;
3512 * Help non-failing allocations by giving them access to memory
3515 if (gfp_mask & __GFP_NOFAIL)
3516 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3517 ALLOC_NO_WATERMARKS, ac);
3520 mutex_unlock(&oom_lock);
3525 * Maximum number of compaction retries wit a progress before OOM
3526 * killer is consider as the only way to move forward.
3528 #define MAX_COMPACT_RETRIES 16
3530 #ifdef CONFIG_COMPACTION
3531 /* Try memory compaction for high-order allocations before reclaim */
3532 static struct page *
3533 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3534 unsigned int alloc_flags, const struct alloc_context *ac,
3535 enum compact_priority prio, enum compact_result *compact_result)
3538 unsigned int noreclaim_flag;
3543 noreclaim_flag = memalloc_noreclaim_save();
3544 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3546 memalloc_noreclaim_restore(noreclaim_flag);
3548 if (*compact_result <= COMPACT_INACTIVE)
3552 * At least in one zone compaction wasn't deferred or skipped, so let's
3553 * count a compaction stall
3555 count_vm_event(COMPACTSTALL);
3557 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3560 struct zone *zone = page_zone(page);
3562 zone->compact_blockskip_flush = false;
3563 compaction_defer_reset(zone, order, true);
3564 count_vm_event(COMPACTSUCCESS);
3569 * It's bad if compaction run occurs and fails. The most likely reason
3570 * is that pages exist, but not enough to satisfy watermarks.
3572 count_vm_event(COMPACTFAIL);
3580 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3581 enum compact_result compact_result,
3582 enum compact_priority *compact_priority,
3583 int *compaction_retries)
3585 int max_retries = MAX_COMPACT_RETRIES;
3588 int retries = *compaction_retries;
3589 enum compact_priority priority = *compact_priority;
3594 if (compaction_made_progress(compact_result))
3595 (*compaction_retries)++;
3598 * compaction considers all the zone as desperately out of memory
3599 * so it doesn't really make much sense to retry except when the
3600 * failure could be caused by insufficient priority
3602 if (compaction_failed(compact_result))
3603 goto check_priority;
3606 * make sure the compaction wasn't deferred or didn't bail out early
3607 * due to locks contention before we declare that we should give up.
3608 * But do not retry if the given zonelist is not suitable for
3611 if (compaction_withdrawn(compact_result)) {
3612 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3617 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3618 * costly ones because they are de facto nofail and invoke OOM
3619 * killer to move on while costly can fail and users are ready
3620 * to cope with that. 1/4 retries is rather arbitrary but we
3621 * would need much more detailed feedback from compaction to
3622 * make a better decision.
3624 if (order > PAGE_ALLOC_COSTLY_ORDER)
3626 if (*compaction_retries <= max_retries) {
3632 * Make sure there are attempts at the highest priority if we exhausted
3633 * all retries or failed at the lower priorities.
3636 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3637 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3639 if (*compact_priority > min_priority) {
3640 (*compact_priority)--;
3641 *compaction_retries = 0;
3645 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3649 static inline struct page *
3650 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3651 unsigned int alloc_flags, const struct alloc_context *ac,
3652 enum compact_priority prio, enum compact_result *compact_result)
3654 *compact_result = COMPACT_SKIPPED;
3659 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3660 enum compact_result compact_result,
3661 enum compact_priority *compact_priority,
3662 int *compaction_retries)
3667 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3671 * There are setups with compaction disabled which would prefer to loop
3672 * inside the allocator rather than hit the oom killer prematurely.
3673 * Let's give them a good hope and keep retrying while the order-0
3674 * watermarks are OK.
3676 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3678 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3679 ac_classzone_idx(ac), alloc_flags))
3684 #endif /* CONFIG_COMPACTION */
3686 #ifdef CONFIG_LOCKDEP
3687 struct lockdep_map __fs_reclaim_map =
3688 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3690 static bool __need_fs_reclaim(gfp_t gfp_mask)
3692 gfp_mask = current_gfp_context(gfp_mask);
3694 /* no reclaim without waiting on it */
3695 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3698 /* this guy won't enter reclaim */
3699 if (current->flags & PF_MEMALLOC)
3702 /* We're only interested __GFP_FS allocations for now */
3703 if (!(gfp_mask & __GFP_FS))
3706 if (gfp_mask & __GFP_NOLOCKDEP)
3712 void fs_reclaim_acquire(gfp_t gfp_mask)
3714 if (__need_fs_reclaim(gfp_mask))
3715 lock_map_acquire(&__fs_reclaim_map);
3717 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3719 void fs_reclaim_release(gfp_t gfp_mask)
3721 if (__need_fs_reclaim(gfp_mask))
3722 lock_map_release(&__fs_reclaim_map);
3724 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3727 /* Perform direct synchronous page reclaim */
3729 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3730 const struct alloc_context *ac)
3732 struct reclaim_state reclaim_state;
3734 unsigned int noreclaim_flag;
3738 /* We now go into synchronous reclaim */
3739 cpuset_memory_pressure_bump();
3740 noreclaim_flag = memalloc_noreclaim_save();
3741 fs_reclaim_acquire(gfp_mask);
3742 reclaim_state.reclaimed_slab = 0;
3743 current->reclaim_state = &reclaim_state;
3745 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3748 current->reclaim_state = NULL;
3749 fs_reclaim_release(gfp_mask);
3750 memalloc_noreclaim_restore(noreclaim_flag);
3757 /* The really slow allocator path where we enter direct reclaim */
3758 static inline struct page *
3759 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3760 unsigned int alloc_flags, const struct alloc_context *ac,
3761 unsigned long *did_some_progress)
3763 struct page *page = NULL;
3764 bool drained = false;
3766 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3767 if (unlikely(!(*did_some_progress)))
3771 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3774 * If an allocation failed after direct reclaim, it could be because
3775 * pages are pinned on the per-cpu lists or in high alloc reserves.
3776 * Shrink them them and try again
3778 if (!page && !drained) {
3779 unreserve_highatomic_pageblock(ac, false);
3780 drain_all_pages(NULL);
3788 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3792 pg_data_t *last_pgdat = NULL;
3794 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3795 ac->high_zoneidx, ac->nodemask) {
3796 if (last_pgdat != zone->zone_pgdat)
3797 wakeup_kswapd(zone, order, ac->high_zoneidx);
3798 last_pgdat = zone->zone_pgdat;
3802 static inline unsigned int
3803 gfp_to_alloc_flags(gfp_t gfp_mask)
3805 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3807 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3808 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3811 * The caller may dip into page reserves a bit more if the caller
3812 * cannot run direct reclaim, or if the caller has realtime scheduling
3813 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3814 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3816 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3818 if (gfp_mask & __GFP_ATOMIC) {
3820 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3821 * if it can't schedule.
3823 if (!(gfp_mask & __GFP_NOMEMALLOC))
3824 alloc_flags |= ALLOC_HARDER;
3826 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3827 * comment for __cpuset_node_allowed().
3829 alloc_flags &= ~ALLOC_CPUSET;
3830 } else if (unlikely(rt_task(current)) && !in_interrupt())
3831 alloc_flags |= ALLOC_HARDER;
3834 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3835 alloc_flags |= ALLOC_CMA;
3840 static bool oom_reserves_allowed(struct task_struct *tsk)
3842 if (!tsk_is_oom_victim(tsk))
3846 * !MMU doesn't have oom reaper so give access to memory reserves
3847 * only to the thread with TIF_MEMDIE set
3849 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3856 * Distinguish requests which really need access to full memory
3857 * reserves from oom victims which can live with a portion of it
3859 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3861 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3863 if (gfp_mask & __GFP_MEMALLOC)
3864 return ALLOC_NO_WATERMARKS;
3865 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3866 return ALLOC_NO_WATERMARKS;
3867 if (!in_interrupt()) {
3868 if (current->flags & PF_MEMALLOC)
3869 return ALLOC_NO_WATERMARKS;
3870 else if (oom_reserves_allowed(current))
3877 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3879 return !!__gfp_pfmemalloc_flags(gfp_mask);
3883 * Checks whether it makes sense to retry the reclaim to make a forward progress
3884 * for the given allocation request.
3886 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3887 * without success, or when we couldn't even meet the watermark if we
3888 * reclaimed all remaining pages on the LRU lists.
3890 * Returns true if a retry is viable or false to enter the oom path.
3893 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3894 struct alloc_context *ac, int alloc_flags,
3895 bool did_some_progress, int *no_progress_loops)
3901 * Costly allocations might have made a progress but this doesn't mean
3902 * their order will become available due to high fragmentation so
3903 * always increment the no progress counter for them
3905 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3906 *no_progress_loops = 0;
3908 (*no_progress_loops)++;
3911 * Make sure we converge to OOM if we cannot make any progress
3912 * several times in the row.
3914 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3915 /* Before OOM, exhaust highatomic_reserve */
3916 return unreserve_highatomic_pageblock(ac, true);
3920 * Keep reclaiming pages while there is a chance this will lead
3921 * somewhere. If none of the target zones can satisfy our allocation
3922 * request even if all reclaimable pages are considered then we are
3923 * screwed and have to go OOM.
3925 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3927 unsigned long available;
3928 unsigned long reclaimable;
3929 unsigned long min_wmark = min_wmark_pages(zone);
3932 available = reclaimable = zone_reclaimable_pages(zone);
3933 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3936 * Would the allocation succeed if we reclaimed all
3937 * reclaimable pages?
3939 wmark = __zone_watermark_ok(zone, order, min_wmark,
3940 ac_classzone_idx(ac), alloc_flags, available);
3941 trace_reclaim_retry_zone(z, order, reclaimable,
3942 available, min_wmark, *no_progress_loops, wmark);
3945 * If we didn't make any progress and have a lot of
3946 * dirty + writeback pages then we should wait for
3947 * an IO to complete to slow down the reclaim and
3948 * prevent from pre mature OOM
3950 if (!did_some_progress) {
3951 unsigned long write_pending;
3953 write_pending = zone_page_state_snapshot(zone,
3954 NR_ZONE_WRITE_PENDING);
3956 if (2 * write_pending > reclaimable) {
3957 congestion_wait(BLK_RW_ASYNC, HZ/10);
3963 * Memory allocation/reclaim might be called from a WQ
3964 * context and the current implementation of the WQ
3965 * concurrency control doesn't recognize that
3966 * a particular WQ is congested if the worker thread is
3967 * looping without ever sleeping. Therefore we have to
3968 * do a short sleep here rather than calling
3971 if (current->flags & PF_WQ_WORKER)
3972 schedule_timeout_uninterruptible(1);
3984 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3987 * It's possible that cpuset's mems_allowed and the nodemask from
3988 * mempolicy don't intersect. This should be normally dealt with by
3989 * policy_nodemask(), but it's possible to race with cpuset update in
3990 * such a way the check therein was true, and then it became false
3991 * before we got our cpuset_mems_cookie here.
3992 * This assumes that for all allocations, ac->nodemask can come only
3993 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3994 * when it does not intersect with the cpuset restrictions) or the
3995 * caller can deal with a violated nodemask.
3997 if (cpusets_enabled() && ac->nodemask &&
3998 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3999 ac->nodemask = NULL;
4004 * When updating a task's mems_allowed or mempolicy nodemask, it is
4005 * possible to race with parallel threads in such a way that our
4006 * allocation can fail while the mask is being updated. If we are about
4007 * to fail, check if the cpuset changed during allocation and if so,
4010 if (read_mems_allowed_retry(cpuset_mems_cookie))
4016 static inline struct page *
4017 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4018 struct alloc_context *ac)
4020 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4021 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4022 struct page *page = NULL;
4023 unsigned int alloc_flags;
4024 unsigned long did_some_progress;
4025 enum compact_priority compact_priority;
4026 enum compact_result compact_result;
4027 int compaction_retries;
4028 int no_progress_loops;
4029 unsigned int cpuset_mems_cookie;
4033 * In the slowpath, we sanity check order to avoid ever trying to
4034 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4035 * be using allocators in order of preference for an area that is
4038 if (order >= MAX_ORDER) {
4039 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4044 * We also sanity check to catch abuse of atomic reserves being used by
4045 * callers that are not in atomic context.
4047 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4048 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4049 gfp_mask &= ~__GFP_ATOMIC;
4052 compaction_retries = 0;
4053 no_progress_loops = 0;
4054 compact_priority = DEF_COMPACT_PRIORITY;
4055 cpuset_mems_cookie = read_mems_allowed_begin();
4058 * The fast path uses conservative alloc_flags to succeed only until
4059 * kswapd needs to be woken up, and to avoid the cost of setting up
4060 * alloc_flags precisely. So we do that now.
4062 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4065 * We need to recalculate the starting point for the zonelist iterator
4066 * because we might have used different nodemask in the fast path, or
4067 * there was a cpuset modification and we are retrying - otherwise we
4068 * could end up iterating over non-eligible zones endlessly.
4070 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4071 ac->high_zoneidx, ac->nodemask);
4072 if (!ac->preferred_zoneref->zone)
4075 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4076 wake_all_kswapds(order, ac);
4079 * The adjusted alloc_flags might result in immediate success, so try
4082 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4087 * For costly allocations, try direct compaction first, as it's likely
4088 * that we have enough base pages and don't need to reclaim. For non-
4089 * movable high-order allocations, do that as well, as compaction will
4090 * try prevent permanent fragmentation by migrating from blocks of the
4092 * Don't try this for allocations that are allowed to ignore
4093 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4095 if (can_direct_reclaim &&
4097 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4098 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4099 page = __alloc_pages_direct_compact(gfp_mask, order,
4101 INIT_COMPACT_PRIORITY,
4107 * Checks for costly allocations with __GFP_NORETRY, which
4108 * includes THP page fault allocations
4110 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4112 * If compaction is deferred for high-order allocations,
4113 * it is because sync compaction recently failed. If
4114 * this is the case and the caller requested a THP
4115 * allocation, we do not want to heavily disrupt the
4116 * system, so we fail the allocation instead of entering
4119 if (compact_result == COMPACT_DEFERRED)
4123 * Looks like reclaim/compaction is worth trying, but
4124 * sync compaction could be very expensive, so keep
4125 * using async compaction.
4127 compact_priority = INIT_COMPACT_PRIORITY;
4132 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4133 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4134 wake_all_kswapds(order, ac);
4136 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4138 alloc_flags = reserve_flags;
4141 * Reset the zonelist iterators if memory policies can be ignored.
4142 * These allocations are high priority and system rather than user