2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
91 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93 int _node_numa_mem_[MAX_NUMNODES];
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex);
98 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy;
102 EXPORT_SYMBOL(latent_entropy);
106 * Array of node states.
108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 [N_POSSIBLE] = NODE_MASK_ALL,
110 [N_ONLINE] = { { [0] = 1UL } },
112 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_MOVABLE_NODE
117 [N_MEMORY] = { { [0] = 1UL } },
119 [N_CPU] = { { [0] = 1UL } },
122 EXPORT_SYMBOL(node_states);
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
142 static inline int get_pcppage_migratetype(struct page *page)
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149 page->index = migratetype;
152 #ifdef CONFIG_PM_SLEEP
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with pm_mutex held (gfp_allowed_mask also should
158 * only be modified with pm_mutex held, unless the suspend/hibernate code is
159 * guaranteed not to run in parallel with that modification).
162 static gfp_t saved_gfp_mask;
164 void pm_restore_gfp_mask(void)
166 WARN_ON(!mutex_is_locked(&pm_mutex));
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
173 void pm_restrict_gfp_mask(void)
175 WARN_ON(!mutex_is_locked(&pm_mutex));
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181 bool pm_suspended_storage(void)
183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
187 #endif /* CONFIG_PM_SLEEP */
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly;
193 static void __free_pages_ok(struct page *page, unsigned int order);
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
207 #ifdef CONFIG_ZONE_DMA
210 #ifdef CONFIG_ZONE_DMA32
213 #ifdef CONFIG_HIGHMEM
219 EXPORT_SYMBOL(totalram_pages);
221 static char * const zone_names[MAX_NR_ZONES] = {
222 #ifdef CONFIG_ZONE_DMA
225 #ifdef CONFIG_ZONE_DMA32
229 #ifdef CONFIG_HIGHMEM
233 #ifdef CONFIG_ZONE_DEVICE
238 char * const migratetype_names[MIGRATE_TYPES] = {
246 #ifdef CONFIG_MEMORY_ISOLATION
251 compound_page_dtor * const compound_page_dtors[] = {
254 #ifdef CONFIG_HUGETLB_PAGE
257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
262 int min_free_kbytes = 1024;
263 int user_min_free_kbytes = -1;
264 int watermark_scale_factor = 10;
266 static unsigned long __meminitdata nr_kernel_pages;
267 static unsigned long __meminitdata nr_all_pages;
268 static unsigned long __meminitdata dma_reserve;
270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __initdata required_kernelcore;
274 static unsigned long __initdata required_movablecore;
275 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
276 static bool mirrored_kernelcore;
278 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
280 EXPORT_SYMBOL(movable_zone);
281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
284 int nr_node_ids __read_mostly = MAX_NUMNODES;
285 int nr_online_nodes __read_mostly = 1;
286 EXPORT_SYMBOL(nr_node_ids);
287 EXPORT_SYMBOL(nr_online_nodes);
290 int page_group_by_mobility_disabled __read_mostly;
292 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293 static inline void reset_deferred_meminit(pg_data_t *pgdat)
295 unsigned long max_initialise;
296 unsigned long reserved_lowmem;
299 * Initialise at least 2G of a node but also take into account that
300 * two large system hashes that can take up 1GB for 0.25TB/node.
302 max_initialise = max(2UL << (30 - PAGE_SHIFT),
303 (pgdat->node_spanned_pages >> 8));
306 * Compensate the all the memblock reservations (e.g. crash kernel)
307 * from the initial estimation to make sure we will initialize enough
310 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
311 pgdat->node_start_pfn + max_initialise);
312 max_initialise += reserved_lowmem;
314 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
315 pgdat->first_deferred_pfn = ULONG_MAX;
318 /* Returns true if the struct page for the pfn is uninitialised */
319 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
321 int nid = early_pfn_to_nid(pfn);
323 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
330 * Returns false when the remaining initialisation should be deferred until
331 * later in the boot cycle when it can be parallelised.
333 static inline bool update_defer_init(pg_data_t *pgdat,
334 unsigned long pfn, unsigned long zone_end,
335 unsigned long *nr_initialised)
337 /* Always populate low zones for address-contrained allocations */
338 if (zone_end < pgdat_end_pfn(pgdat))
341 if ((*nr_initialised > pgdat->static_init_size) &&
342 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
343 pgdat->first_deferred_pfn = pfn;
350 static inline void reset_deferred_meminit(pg_data_t *pgdat)
354 static inline bool early_page_uninitialised(unsigned long pfn)
359 static inline bool update_defer_init(pg_data_t *pgdat,
360 unsigned long pfn, unsigned long zone_end,
361 unsigned long *nr_initialised)
367 /* Return a pointer to the bitmap storing bits affecting a block of pages */
368 static inline unsigned long *get_pageblock_bitmap(struct page *page,
371 #ifdef CONFIG_SPARSEMEM
372 return __pfn_to_section(pfn)->pageblock_flags;
374 return page_zone(page)->pageblock_flags;
375 #endif /* CONFIG_SPARSEMEM */
378 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
380 #ifdef CONFIG_SPARSEMEM
381 pfn &= (PAGES_PER_SECTION-1);
382 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
384 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
385 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
386 #endif /* CONFIG_SPARSEMEM */
390 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
391 * @page: The page within the block of interest
392 * @pfn: The target page frame number
393 * @end_bitidx: The last bit of interest to retrieve
394 * @mask: mask of bits that the caller is interested in
396 * Return: pageblock_bits flags
398 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
400 unsigned long end_bitidx,
403 unsigned long *bitmap;
404 unsigned long bitidx, word_bitidx;
407 bitmap = get_pageblock_bitmap(page, pfn);
408 bitidx = pfn_to_bitidx(page, pfn);
409 word_bitidx = bitidx / BITS_PER_LONG;
410 bitidx &= (BITS_PER_LONG-1);
412 word = bitmap[word_bitidx];
413 bitidx += end_bitidx;
414 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
417 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
418 unsigned long end_bitidx,
421 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
424 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
426 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
430 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
431 * @page: The page within the block of interest
432 * @flags: The flags to set
433 * @pfn: The target page frame number
434 * @end_bitidx: The last bit of interest
435 * @mask: mask of bits that the caller is interested in
437 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
439 unsigned long end_bitidx,
442 unsigned long *bitmap;
443 unsigned long bitidx, word_bitidx;
444 unsigned long old_word, word;
446 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
448 bitmap = get_pageblock_bitmap(page, pfn);
449 bitidx = pfn_to_bitidx(page, pfn);
450 word_bitidx = bitidx / BITS_PER_LONG;
451 bitidx &= (BITS_PER_LONG-1);
453 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
455 bitidx += end_bitidx;
456 mask <<= (BITS_PER_LONG - bitidx - 1);
457 flags <<= (BITS_PER_LONG - bitidx - 1);
459 word = READ_ONCE(bitmap[word_bitidx]);
461 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
462 if (word == old_word)
468 void set_pageblock_migratetype(struct page *page, int migratetype)
470 if (unlikely(page_group_by_mobility_disabled &&
471 migratetype < MIGRATE_PCPTYPES))
472 migratetype = MIGRATE_UNMOVABLE;
474 set_pageblock_flags_group(page, (unsigned long)migratetype,
475 PB_migrate, PB_migrate_end);
478 #ifdef CONFIG_DEBUG_VM
479 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
483 unsigned long pfn = page_to_pfn(page);
484 unsigned long sp, start_pfn;
487 seq = zone_span_seqbegin(zone);
488 start_pfn = zone->zone_start_pfn;
489 sp = zone->spanned_pages;
490 if (!zone_spans_pfn(zone, pfn))
492 } while (zone_span_seqretry(zone, seq));
495 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
496 pfn, zone_to_nid(zone), zone->name,
497 start_pfn, start_pfn + sp);
502 static int page_is_consistent(struct zone *zone, struct page *page)
504 if (!pfn_valid_within(page_to_pfn(page)))
506 if (zone != page_zone(page))
512 * Temporary debugging check for pages not lying within a given zone.
514 static int bad_range(struct zone *zone, struct page *page)
516 if (page_outside_zone_boundaries(zone, page))
518 if (!page_is_consistent(zone, page))
524 static inline int bad_range(struct zone *zone, struct page *page)
530 static void bad_page(struct page *page, const char *reason,
531 unsigned long bad_flags)
533 static unsigned long resume;
534 static unsigned long nr_shown;
535 static unsigned long nr_unshown;
538 * Allow a burst of 60 reports, then keep quiet for that minute;
539 * or allow a steady drip of one report per second.
541 if (nr_shown == 60) {
542 if (time_before(jiffies, resume)) {
548 "BUG: Bad page state: %lu messages suppressed\n",
555 resume = jiffies + 60 * HZ;
557 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
558 current->comm, page_to_pfn(page));
559 __dump_page(page, reason);
560 bad_flags &= page->flags;
562 pr_alert("bad because of flags: %#lx(%pGp)\n",
563 bad_flags, &bad_flags);
564 dump_page_owner(page);
569 /* Leave bad fields for debug, except PageBuddy could make trouble */
570 page_mapcount_reset(page); /* remove PageBuddy */
571 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
575 * Higher-order pages are called "compound pages". They are structured thusly:
577 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
579 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
580 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
582 * The first tail page's ->compound_dtor holds the offset in array of compound
583 * page destructors. See compound_page_dtors.
585 * The first tail page's ->compound_order holds the order of allocation.
586 * This usage means that zero-order pages may not be compound.
589 void free_compound_page(struct page *page)
591 __free_pages_ok(page, compound_order(page));
594 void prep_compound_page(struct page *page, unsigned int order)
597 int nr_pages = 1 << order;
599 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
600 set_compound_order(page, order);
602 for (i = 1; i < nr_pages; i++) {
603 struct page *p = page + i;
604 set_page_count(p, 0);
605 p->mapping = TAIL_MAPPING;
606 set_compound_head(p, page);
608 atomic_set(compound_mapcount_ptr(page), -1);
611 #ifdef CONFIG_DEBUG_PAGEALLOC
612 unsigned int _debug_guardpage_minorder;
613 bool _debug_pagealloc_enabled __read_mostly
614 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
615 EXPORT_SYMBOL(_debug_pagealloc_enabled);
616 bool _debug_guardpage_enabled __read_mostly;
618 static int __init early_debug_pagealloc(char *buf)
622 return kstrtobool(buf, &_debug_pagealloc_enabled);
624 early_param("debug_pagealloc", early_debug_pagealloc);
626 static bool need_debug_guardpage(void)
628 /* If we don't use debug_pagealloc, we don't need guard page */
629 if (!debug_pagealloc_enabled())
632 if (!debug_guardpage_minorder())
638 static void init_debug_guardpage(void)
640 if (!debug_pagealloc_enabled())
643 if (!debug_guardpage_minorder())
646 _debug_guardpage_enabled = true;
649 struct page_ext_operations debug_guardpage_ops = {
650 .need = need_debug_guardpage,
651 .init = init_debug_guardpage,
654 static int __init debug_guardpage_minorder_setup(char *buf)
658 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
659 pr_err("Bad debug_guardpage_minorder value\n");
662 _debug_guardpage_minorder = res;
663 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
666 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
668 static inline bool set_page_guard(struct zone *zone, struct page *page,
669 unsigned int order, int migratetype)
671 struct page_ext *page_ext;
673 if (!debug_guardpage_enabled())
676 if (order >= debug_guardpage_minorder())
679 page_ext = lookup_page_ext(page);
680 if (unlikely(!page_ext))
683 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
685 INIT_LIST_HEAD(&page->lru);
686 set_page_private(page, order);
687 /* Guard pages are not available for any usage */
688 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
693 static inline void clear_page_guard(struct zone *zone, struct page *page,
694 unsigned int order, int migratetype)
696 struct page_ext *page_ext;
698 if (!debug_guardpage_enabled())
701 page_ext = lookup_page_ext(page);
702 if (unlikely(!page_ext))
705 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
707 set_page_private(page, 0);
708 if (!is_migrate_isolate(migratetype))
709 __mod_zone_freepage_state(zone, (1 << order), migratetype);
712 struct page_ext_operations debug_guardpage_ops;
713 static inline bool set_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype) { return false; }
715 static inline void clear_page_guard(struct zone *zone, struct page *page,
716 unsigned int order, int migratetype) {}
719 static inline void set_page_order(struct page *page, unsigned int order)
721 set_page_private(page, order);
722 __SetPageBuddy(page);
725 static inline void rmv_page_order(struct page *page)
727 __ClearPageBuddy(page);
728 set_page_private(page, 0);
732 * This function checks whether a page is free && is the buddy
733 * we can do coalesce a page and its buddy if
734 * (a) the buddy is not in a hole (check before calling!) &&
735 * (b) the buddy is in the buddy system &&
736 * (c) a page and its buddy have the same order &&
737 * (d) a page and its buddy are in the same zone.
739 * For recording whether a page is in the buddy system, we set ->_mapcount
740 * PAGE_BUDDY_MAPCOUNT_VALUE.
741 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
742 * serialized by zone->lock.
744 * For recording page's order, we use page_private(page).
746 static inline int page_is_buddy(struct page *page, struct page *buddy,
749 if (page_is_guard(buddy) && page_order(buddy) == order) {
750 if (page_zone_id(page) != page_zone_id(buddy))
753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
758 if (PageBuddy(buddy) && page_order(buddy) == order) {
760 * zone check is done late to avoid uselessly
761 * calculating zone/node ids for pages that could
764 if (page_zone_id(page) != page_zone_id(buddy))
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
775 * Freeing function for a buddy system allocator.
777 * The concept of a buddy system is to maintain direct-mapped table
778 * (containing bit values) for memory blocks of various "orders".
779 * The bottom level table contains the map for the smallest allocatable
780 * units of memory (here, pages), and each level above it describes
781 * pairs of units from the levels below, hence, "buddies".
782 * At a high level, all that happens here is marking the table entry
783 * at the bottom level available, and propagating the changes upward
784 * as necessary, plus some accounting needed to play nicely with other
785 * parts of the VM system.
786 * At each level, we keep a list of pages, which are heads of continuous
787 * free pages of length of (1 << order) and marked with _mapcount
788 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
790 * So when we are allocating or freeing one, we can derive the state of the
791 * other. That is, if we allocate a small block, and both were
792 * free, the remainder of the region must be split into blocks.
793 * If a block is freed, and its buddy is also free, then this
794 * triggers coalescing into a block of larger size.
799 static inline void __free_one_page(struct page *page,
801 struct zone *zone, unsigned int order,
804 unsigned long combined_pfn;
805 unsigned long uninitialized_var(buddy_pfn);
807 unsigned int max_order;
809 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
811 VM_BUG_ON(!zone_is_initialized(zone));
812 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
814 VM_BUG_ON(migratetype == -1);
815 if (likely(!is_migrate_isolate(migratetype)))
816 __mod_zone_freepage_state(zone, 1 << order, migratetype);
818 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
819 VM_BUG_ON_PAGE(bad_range(zone, page), page);
822 while (order < max_order - 1) {
823 buddy_pfn = __find_buddy_pfn(pfn, order);
824 buddy = page + (buddy_pfn - pfn);
826 if (!pfn_valid_within(buddy_pfn))
828 if (!page_is_buddy(page, buddy, order))
831 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
832 * merge with it and move up one order.
834 if (page_is_guard(buddy)) {
835 clear_page_guard(zone, buddy, order, migratetype);
837 list_del(&buddy->lru);
838 zone->free_area[order].nr_free--;
839 rmv_page_order(buddy);
841 combined_pfn = buddy_pfn & pfn;
842 page = page + (combined_pfn - pfn);
846 if (max_order < MAX_ORDER) {
847 /* If we are here, it means order is >= pageblock_order.
848 * We want to prevent merge between freepages on isolate
849 * pageblock and normal pageblock. Without this, pageblock
850 * isolation could cause incorrect freepage or CMA accounting.
852 * We don't want to hit this code for the more frequent
855 if (unlikely(has_isolate_pageblock(zone))) {
858 buddy_pfn = __find_buddy_pfn(pfn, order);
859 buddy = page + (buddy_pfn - pfn);
860 buddy_mt = get_pageblock_migratetype(buddy);
862 if (migratetype != buddy_mt
863 && (is_migrate_isolate(migratetype) ||
864 is_migrate_isolate(buddy_mt)))
868 goto continue_merging;
872 set_page_order(page, order);
875 * If this is not the largest possible page, check if the buddy
876 * of the next-highest order is free. If it is, it's possible
877 * that pages are being freed that will coalesce soon. In case,
878 * that is happening, add the free page to the tail of the list
879 * so it's less likely to be used soon and more likely to be merged
880 * as a higher order page
882 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
883 struct page *higher_page, *higher_buddy;
884 combined_pfn = buddy_pfn & pfn;
885 higher_page = page + (combined_pfn - pfn);
886 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
887 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
888 if (pfn_valid_within(buddy_pfn) &&
889 page_is_buddy(higher_page, higher_buddy, order + 1)) {
890 list_add_tail(&page->lru,
891 &zone->free_area[order].free_list[migratetype]);
896 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
898 zone->free_area[order].nr_free++;
902 * A bad page could be due to a number of fields. Instead of multiple branches,
903 * try and check multiple fields with one check. The caller must do a detailed
904 * check if necessary.
906 static inline bool page_expected_state(struct page *page,
907 unsigned long check_flags)
909 if (unlikely(atomic_read(&page->_mapcount) != -1))
912 if (unlikely((unsigned long)page->mapping |
913 page_ref_count(page) |
915 (unsigned long)page->mem_cgroup |
917 (page->flags & check_flags)))
923 static void free_pages_check_bad(struct page *page)
925 const char *bad_reason;
926 unsigned long bad_flags;
931 if (unlikely(atomic_read(&page->_mapcount) != -1))
932 bad_reason = "nonzero mapcount";
933 if (unlikely(page->mapping != NULL))
934 bad_reason = "non-NULL mapping";
935 if (unlikely(page_ref_count(page) != 0))
936 bad_reason = "nonzero _refcount";
937 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
938 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
939 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
942 if (unlikely(page->mem_cgroup))
943 bad_reason = "page still charged to cgroup";
945 bad_page(page, bad_reason, bad_flags);
948 static inline int free_pages_check(struct page *page)
950 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
953 /* Something has gone sideways, find it */
954 free_pages_check_bad(page);
958 static int free_tail_pages_check(struct page *head_page, struct page *page)
963 * We rely page->lru.next never has bit 0 set, unless the page
964 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
966 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
968 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
972 switch (page - head_page) {
974 /* the first tail page: ->mapping is compound_mapcount() */
975 if (unlikely(compound_mapcount(page))) {
976 bad_page(page, "nonzero compound_mapcount", 0);
982 * the second tail page: ->mapping is
983 * page_deferred_list().next -- ignore value.
987 if (page->mapping != TAIL_MAPPING) {
988 bad_page(page, "corrupted mapping in tail page", 0);
993 if (unlikely(!PageTail(page))) {
994 bad_page(page, "PageTail not set", 0);
997 if (unlikely(compound_head(page) != head_page)) {
998 bad_page(page, "compound_head not consistent", 0);
1003 page->mapping = NULL;
1004 clear_compound_head(page);
1008 static __always_inline bool free_pages_prepare(struct page *page,
1009 unsigned int order, bool check_free)
1013 VM_BUG_ON_PAGE(PageTail(page), page);
1015 trace_mm_page_free(page, order);
1016 kmemcheck_free_shadow(page, order);
1019 * Check tail pages before head page information is cleared to
1020 * avoid checking PageCompound for order-0 pages.
1022 if (unlikely(order)) {
1023 bool compound = PageCompound(page);
1026 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1029 ClearPageDoubleMap(page);
1030 for (i = 1; i < (1 << order); i++) {
1032 bad += free_tail_pages_check(page, page + i);
1033 if (unlikely(free_pages_check(page + i))) {
1037 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1040 if (PageMappingFlags(page))
1041 page->mapping = NULL;
1042 if (memcg_kmem_enabled() && PageKmemcg(page))
1043 memcg_kmem_uncharge(page, order);
1045 bad += free_pages_check(page);
1049 page_cpupid_reset_last(page);
1050 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 reset_page_owner(page, order);
1053 if (!PageHighMem(page)) {
1054 debug_check_no_locks_freed(page_address(page),
1055 PAGE_SIZE << order);
1056 debug_check_no_obj_freed(page_address(page),
1057 PAGE_SIZE << order);
1059 arch_free_page(page, order);
1060 kernel_poison_pages(page, 1 << order, 0);
1061 kernel_map_pages(page, 1 << order, 0);
1062 kasan_free_pages(page, order);
1067 #ifdef CONFIG_DEBUG_VM
1068 static inline bool free_pcp_prepare(struct page *page)
1070 return free_pages_prepare(page, 0, true);
1073 static inline bool bulkfree_pcp_prepare(struct page *page)
1078 static bool free_pcp_prepare(struct page *page)
1080 return free_pages_prepare(page, 0, false);
1083 static bool bulkfree_pcp_prepare(struct page *page)
1085 return free_pages_check(page);
1087 #endif /* CONFIG_DEBUG_VM */
1090 * Frees a number of pages from the PCP lists
1091 * Assumes all pages on list are in same zone, and of same order.
1092 * count is the number of pages to free.
1094 * If the zone was previously in an "all pages pinned" state then look to
1095 * see if this freeing clears that state.
1097 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1098 * pinned" detection logic.
1100 static void free_pcppages_bulk(struct zone *zone, int count,
1101 struct per_cpu_pages *pcp)
1103 int migratetype = 0;
1105 bool isolated_pageblocks;
1107 spin_lock(&zone->lock);
1108 isolated_pageblocks = has_isolate_pageblock(zone);
1112 struct list_head *list;
1115 * Remove pages from lists in a round-robin fashion. A
1116 * batch_free count is maintained that is incremented when an
1117 * empty list is encountered. This is so more pages are freed
1118 * off fuller lists instead of spinning excessively around empty
1123 if (++migratetype == MIGRATE_PCPTYPES)
1125 list = &pcp->lists[migratetype];
1126 } while (list_empty(list));
1128 /* This is the only non-empty list. Free them all. */
1129 if (batch_free == MIGRATE_PCPTYPES)
1133 int mt; /* migratetype of the to-be-freed page */
1135 page = list_last_entry(list, struct page, lru);
1136 /* must delete as __free_one_page list manipulates */
1137 list_del(&page->lru);
1139 mt = get_pcppage_migratetype(page);
1140 /* MIGRATE_ISOLATE page should not go to pcplists */
1141 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1142 /* Pageblock could have been isolated meanwhile */
1143 if (unlikely(isolated_pageblocks))
1144 mt = get_pageblock_migratetype(page);
1146 if (bulkfree_pcp_prepare(page))
1149 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1150 trace_mm_page_pcpu_drain(page, 0, mt);
1151 } while (--count && --batch_free && !list_empty(list));
1153 spin_unlock(&zone->lock);
1156 static void free_one_page(struct zone *zone,
1157 struct page *page, unsigned long pfn,
1161 spin_lock(&zone->lock);
1162 if (unlikely(has_isolate_pageblock(zone) ||
1163 is_migrate_isolate(migratetype))) {
1164 migratetype = get_pfnblock_migratetype(page, pfn);
1166 __free_one_page(page, pfn, zone, order, migratetype);
1167 spin_unlock(&zone->lock);
1170 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1171 unsigned long zone, int nid)
1173 set_page_links(page, zone, nid, pfn);
1174 init_page_count(page);
1175 page_mapcount_reset(page);
1176 page_cpupid_reset_last(page);
1178 INIT_LIST_HEAD(&page->lru);
1179 #ifdef WANT_PAGE_VIRTUAL
1180 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1181 if (!is_highmem_idx(zone))
1182 set_page_address(page, __va(pfn << PAGE_SHIFT));
1186 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1189 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1192 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1193 static void init_reserved_page(unsigned long pfn)
1198 if (!early_page_uninitialised(pfn))
1201 nid = early_pfn_to_nid(pfn);
1202 pgdat = NODE_DATA(nid);
1204 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1205 struct zone *zone = &pgdat->node_zones[zid];
1207 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1210 __init_single_pfn(pfn, zid, nid);
1213 static inline void init_reserved_page(unsigned long pfn)
1216 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1219 * Initialised pages do not have PageReserved set. This function is
1220 * called for each range allocated by the bootmem allocator and
1221 * marks the pages PageReserved. The remaining valid pages are later
1222 * sent to the buddy page allocator.
1224 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1226 unsigned long start_pfn = PFN_DOWN(start);
1227 unsigned long end_pfn = PFN_UP(end);
1229 for (; start_pfn < end_pfn; start_pfn++) {
1230 if (pfn_valid(start_pfn)) {
1231 struct page *page = pfn_to_page(start_pfn);
1233 init_reserved_page(start_pfn);
1235 /* Avoid false-positive PageTail() */
1236 INIT_LIST_HEAD(&page->lru);
1238 SetPageReserved(page);
1243 static void __free_pages_ok(struct page *page, unsigned int order)
1245 unsigned long flags;
1247 unsigned long pfn = page_to_pfn(page);
1249 if (!free_pages_prepare(page, order, true))
1252 migratetype = get_pfnblock_migratetype(page, pfn);
1253 local_irq_save(flags);
1254 __count_vm_events(PGFREE, 1 << order);
1255 free_one_page(page_zone(page), page, pfn, order, migratetype);
1256 local_irq_restore(flags);
1259 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1261 unsigned int nr_pages = 1 << order;
1262 struct page *p = page;
1266 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1268 __ClearPageReserved(p);
1269 set_page_count(p, 0);
1271 __ClearPageReserved(p);
1272 set_page_count(p, 0);
1274 page_zone(page)->managed_pages += nr_pages;
1275 set_page_refcounted(page);
1276 __free_pages(page, order);
1279 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1280 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1282 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1284 int __meminit early_pfn_to_nid(unsigned long pfn)
1286 static DEFINE_SPINLOCK(early_pfn_lock);
1289 spin_lock(&early_pfn_lock);
1290 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1292 nid = first_online_node;
1293 spin_unlock(&early_pfn_lock);
1299 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1300 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1301 struct mminit_pfnnid_cache *state)
1305 nid = __early_pfn_to_nid(pfn, state);
1306 if (nid >= 0 && nid != node)
1311 /* Only safe to use early in boot when initialisation is single-threaded */
1312 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1319 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1323 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1324 struct mminit_pfnnid_cache *state)
1331 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1334 if (early_page_uninitialised(pfn))
1336 return __free_pages_boot_core(page, order);
1340 * Check that the whole (or subset of) a pageblock given by the interval of
1341 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1342 * with the migration of free compaction scanner. The scanners then need to
1343 * use only pfn_valid_within() check for arches that allow holes within
1346 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1348 * It's possible on some configurations to have a setup like node0 node1 node0
1349 * i.e. it's possible that all pages within a zones range of pages do not
1350 * belong to a single zone. We assume that a border between node0 and node1
1351 * can occur within a single pageblock, but not a node0 node1 node0
1352 * interleaving within a single pageblock. It is therefore sufficient to check
1353 * the first and last page of a pageblock and avoid checking each individual
1354 * page in a pageblock.
1356 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1357 unsigned long end_pfn, struct zone *zone)
1359 struct page *start_page;
1360 struct page *end_page;
1362 /* end_pfn is one past the range we are checking */
1365 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1368 start_page = pfn_to_online_page(start_pfn);
1372 if (page_zone(start_page) != zone)
1375 end_page = pfn_to_page(end_pfn);
1377 /* This gives a shorter code than deriving page_zone(end_page) */
1378 if (page_zone_id(start_page) != page_zone_id(end_page))
1384 void set_zone_contiguous(struct zone *zone)
1386 unsigned long block_start_pfn = zone->zone_start_pfn;
1387 unsigned long block_end_pfn;
1389 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1390 for (; block_start_pfn < zone_end_pfn(zone);
1391 block_start_pfn = block_end_pfn,
1392 block_end_pfn += pageblock_nr_pages) {
1394 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1396 if (!__pageblock_pfn_to_page(block_start_pfn,
1397 block_end_pfn, zone))
1401 /* We confirm that there is no hole */
1402 zone->contiguous = true;
1405 void clear_zone_contiguous(struct zone *zone)
1407 zone->contiguous = false;
1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411 static void __init deferred_free_range(struct page *page,
1412 unsigned long pfn, int nr_pages)
1419 /* Free a large naturally-aligned chunk if possible */
1420 if (nr_pages == pageblock_nr_pages &&
1421 (pfn & (pageblock_nr_pages - 1)) == 0) {
1422 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1423 __free_pages_boot_core(page, pageblock_order);
1427 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1428 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1429 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1430 __free_pages_boot_core(page, 0);
1434 /* Completion tracking for deferred_init_memmap() threads */
1435 static atomic_t pgdat_init_n_undone __initdata;
1436 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1438 static inline void __init pgdat_init_report_one_done(void)
1440 if (atomic_dec_and_test(&pgdat_init_n_undone))
1441 complete(&pgdat_init_all_done_comp);
1444 /* Initialise remaining memory on a node */
1445 static int __init deferred_init_memmap(void *data)
1447 pg_data_t *pgdat = data;
1448 int nid = pgdat->node_id;
1449 struct mminit_pfnnid_cache nid_init_state = { };
1450 unsigned long start = jiffies;
1451 unsigned long nr_pages = 0;
1452 unsigned long walk_start, walk_end;
1455 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1456 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1458 if (first_init_pfn == ULONG_MAX) {
1459 pgdat_init_report_one_done();
1463 /* Bind memory initialisation thread to a local node if possible */
1464 if (!cpumask_empty(cpumask))
1465 set_cpus_allowed_ptr(current, cpumask);
1467 /* Sanity check boundaries */
1468 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1469 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1470 pgdat->first_deferred_pfn = ULONG_MAX;
1472 /* Only the highest zone is deferred so find it */
1473 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1474 zone = pgdat->node_zones + zid;
1475 if (first_init_pfn < zone_end_pfn(zone))
1479 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1480 unsigned long pfn, end_pfn;
1481 struct page *page = NULL;
1482 struct page *free_base_page = NULL;
1483 unsigned long free_base_pfn = 0;
1486 end_pfn = min(walk_end, zone_end_pfn(zone));
1487 pfn = first_init_pfn;
1488 if (pfn < walk_start)
1490 if (pfn < zone->zone_start_pfn)
1491 pfn = zone->zone_start_pfn;
1493 for (; pfn < end_pfn; pfn++) {
1494 if (!pfn_valid_within(pfn))
1498 * Ensure pfn_valid is checked every
1499 * pageblock_nr_pages for memory holes
1501 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1502 if (!pfn_valid(pfn)) {
1508 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1513 /* Minimise pfn page lookups and scheduler checks */
1514 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1517 nr_pages += nr_to_free;
1518 deferred_free_range(free_base_page,
1519 free_base_pfn, nr_to_free);
1520 free_base_page = NULL;
1521 free_base_pfn = nr_to_free = 0;
1523 page = pfn_to_page(pfn);
1528 VM_BUG_ON(page_zone(page) != zone);
1532 __init_single_page(page, pfn, zid, nid);
1533 if (!free_base_page) {
1534 free_base_page = page;
1535 free_base_pfn = pfn;
1540 /* Where possible, batch up pages for a single free */
1543 /* Free the current block of pages to allocator */
1544 nr_pages += nr_to_free;
1545 deferred_free_range(free_base_page, free_base_pfn,
1547 free_base_page = NULL;
1548 free_base_pfn = nr_to_free = 0;
1550 /* Free the last block of pages to allocator */
1551 nr_pages += nr_to_free;
1552 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1554 first_init_pfn = max(end_pfn, first_init_pfn);
1557 /* Sanity check that the next zone really is unpopulated */
1558 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1560 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1561 jiffies_to_msecs(jiffies - start));
1563 pgdat_init_report_one_done();
1566 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1568 void __init page_alloc_init_late(void)
1572 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1575 /* There will be num_node_state(N_MEMORY) threads */
1576 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1577 for_each_node_state(nid, N_MEMORY) {
1578 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1581 /* Block until all are initialised */
1582 wait_for_completion(&pgdat_init_all_done_comp);
1584 /* Reinit limits that are based on free pages after the kernel is up */
1585 files_maxfiles_init();
1588 for_each_populated_zone(zone)
1589 set_zone_contiguous(zone);
1593 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1594 void __init init_cma_reserved_pageblock(struct page *page)
1596 unsigned i = pageblock_nr_pages;
1597 struct page *p = page;
1600 __ClearPageReserved(p);
1601 set_page_count(p, 0);
1604 set_pageblock_migratetype(page, MIGRATE_CMA);
1606 if (pageblock_order >= MAX_ORDER) {
1607 i = pageblock_nr_pages;
1610 set_page_refcounted(p);
1611 __free_pages(p, MAX_ORDER - 1);
1612 p += MAX_ORDER_NR_PAGES;
1613 } while (i -= MAX_ORDER_NR_PAGES);
1615 set_page_refcounted(page);
1616 __free_pages(page, pageblock_order);
1619 adjust_managed_page_count(page, pageblock_nr_pages);
1624 * The order of subdivision here is critical for the IO subsystem.
1625 * Please do not alter this order without good reasons and regression
1626 * testing. Specifically, as large blocks of memory are subdivided,
1627 * the order in which smaller blocks are delivered depends on the order
1628 * they're subdivided in this function. This is the primary factor
1629 * influencing the order in which pages are delivered to the IO
1630 * subsystem according to empirical testing, and this is also justified
1631 * by considering the behavior of a buddy system containing a single
1632 * large block of memory acted on by a series of small allocations.
1633 * This behavior is a critical factor in sglist merging's success.
1637 static inline void expand(struct zone *zone, struct page *page,
1638 int low, int high, struct free_area *area,
1641 unsigned long size = 1 << high;
1643 while (high > low) {
1647 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1650 * Mark as guard pages (or page), that will allow to
1651 * merge back to allocator when buddy will be freed.
1652 * Corresponding page table entries will not be touched,
1653 * pages will stay not present in virtual address space
1655 if (set_page_guard(zone, &page[size], high, migratetype))
1658 list_add(&page[size].lru, &area->free_list[migratetype]);
1660 set_page_order(&page[size], high);
1664 static void check_new_page_bad(struct page *page)
1666 const char *bad_reason = NULL;
1667 unsigned long bad_flags = 0;
1669 if (unlikely(atomic_read(&page->_mapcount) != -1))
1670 bad_reason = "nonzero mapcount";
1671 if (unlikely(page->mapping != NULL))
1672 bad_reason = "non-NULL mapping";
1673 if (unlikely(page_ref_count(page) != 0))
1674 bad_reason = "nonzero _count";
1675 if (unlikely(page->flags & __PG_HWPOISON)) {
1676 bad_reason = "HWPoisoned (hardware-corrupted)";
1677 bad_flags = __PG_HWPOISON;
1678 /* Don't complain about hwpoisoned pages */
1679 page_mapcount_reset(page); /* remove PageBuddy */
1682 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1683 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1684 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1687 if (unlikely(page->mem_cgroup))
1688 bad_reason = "page still charged to cgroup";
1690 bad_page(page, bad_reason, bad_flags);
1694 * This page is about to be returned from the page allocator
1696 static inline int check_new_page(struct page *page)
1698 if (likely(page_expected_state(page,
1699 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1702 check_new_page_bad(page);
1706 static inline bool free_pages_prezeroed(void)
1708 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1709 page_poisoning_enabled();
1712 #ifdef CONFIG_DEBUG_VM
1713 static bool check_pcp_refill(struct page *page)
1718 static bool check_new_pcp(struct page *page)
1720 return check_new_page(page);
1723 static bool check_pcp_refill(struct page *page)
1725 return check_new_page(page);
1727 static bool check_new_pcp(struct page *page)
1731 #endif /* CONFIG_DEBUG_VM */
1733 static bool check_new_pages(struct page *page, unsigned int order)
1736 for (i = 0; i < (1 << order); i++) {
1737 struct page *p = page + i;
1739 if (unlikely(check_new_page(p)))
1746 inline void post_alloc_hook(struct page *page, unsigned int order,
1749 set_page_private(page, 0);
1750 set_page_refcounted(page);
1752 arch_alloc_page(page, order);
1753 kernel_map_pages(page, 1 << order, 1);
1754 kernel_poison_pages(page, 1 << order, 1);
1755 kasan_alloc_pages(page, order);
1756 set_page_owner(page, order, gfp_flags);
1759 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1760 unsigned int alloc_flags)
1764 post_alloc_hook(page, order, gfp_flags);
1766 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1767 for (i = 0; i < (1 << order); i++)
1768 clear_highpage(page + i);
1770 if (order && (gfp_flags & __GFP_COMP))
1771 prep_compound_page(page, order);
1774 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1775 * allocate the page. The expectation is that the caller is taking
1776 * steps that will free more memory. The caller should avoid the page
1777 * being used for !PFMEMALLOC purposes.
1779 if (alloc_flags & ALLOC_NO_WATERMARKS)
1780 set_page_pfmemalloc(page);
1782 clear_page_pfmemalloc(page);
1786 * Go through the free lists for the given migratetype and remove
1787 * the smallest available page from the freelists
1790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1793 unsigned int current_order;
1794 struct free_area *area;
1797 /* Find a page of the appropriate size in the preferred list */
1798 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1799 area = &(zone->free_area[current_order]);
1800 page = list_first_entry_or_null(&area->free_list[migratetype],
1804 list_del(&page->lru);
1805 rmv_page_order(page);
1807 expand(zone, page, order, current_order, area, migratetype);
1808 set_pcppage_migratetype(page, migratetype);
1817 * This array describes the order lists are fallen back to when
1818 * the free lists for the desirable migrate type are depleted
1820 static int fallbacks[MIGRATE_TYPES][4] = {
1821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1825 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1827 #ifdef CONFIG_MEMORY_ISOLATION
1828 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1833 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1836 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1839 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1840 unsigned int order) { return NULL; }
1844 * Move the free pages in a range to the free lists of the requested type.
1845 * Note that start_page and end_pages are not aligned on a pageblock
1846 * boundary. If alignment is required, use move_freepages_block()
1848 static int move_freepages(struct zone *zone,
1849 struct page *start_page, struct page *end_page,
1850 int migratetype, int *num_movable)
1854 int pages_moved = 0;
1856 #ifndef CONFIG_HOLES_IN_ZONE
1858 * page_zone is not safe to call in this context when
1859 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1860 * anyway as we check zone boundaries in move_freepages_block().
1861 * Remove at a later date when no bug reports exist related to
1862 * grouping pages by mobility
1864 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1870 for (page = start_page; page <= end_page;) {
1871 if (!pfn_valid_within(page_to_pfn(page))) {
1876 /* Make sure we are not inadvertently changing nodes */
1877 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1879 if (!PageBuddy(page)) {
1881 * We assume that pages that could be isolated for
1882 * migration are movable. But we don't actually try
1883 * isolating, as that would be expensive.
1886 (PageLRU(page) || __PageMovable(page)))
1893 order = page_order(page);
1894 list_move(&page->lru,
1895 &zone->free_area[order].free_list[migratetype]);
1897 pages_moved += 1 << order;
1903 int move_freepages_block(struct zone *zone, struct page *page,
1904 int migratetype, int *num_movable)
1906 unsigned long start_pfn, end_pfn;
1907 struct page *start_page, *end_page;
1909 start_pfn = page_to_pfn(page);
1910 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1911 start_page = pfn_to_page(start_pfn);
1912 end_page = start_page + pageblock_nr_pages - 1;
1913 end_pfn = start_pfn + pageblock_nr_pages - 1;
1915 /* Do not cross zone boundaries */
1916 if (!zone_spans_pfn(zone, start_pfn))
1918 if (!zone_spans_pfn(zone, end_pfn))
1921 return move_freepages(zone, start_page, end_page, migratetype,
1925 static void change_pageblock_range(struct page *pageblock_page,
1926 int start_order, int migratetype)
1928 int nr_pageblocks = 1 << (start_order - pageblock_order);
1930 while (nr_pageblocks--) {
1931 set_pageblock_migratetype(pageblock_page, migratetype);
1932 pageblock_page += pageblock_nr_pages;
1937 * When we are falling back to another migratetype during allocation, try to
1938 * steal extra free pages from the same pageblocks to satisfy further
1939 * allocations, instead of polluting multiple pageblocks.
1941 * If we are stealing a relatively large buddy page, it is likely there will
1942 * be more free pages in the pageblock, so try to steal them all. For
1943 * reclaimable and unmovable allocations, we steal regardless of page size,
1944 * as fragmentation caused by those allocations polluting movable pageblocks
1945 * is worse than movable allocations stealing from unmovable and reclaimable
1948 static bool can_steal_fallback(unsigned int order, int start_mt)
1951 * Leaving this order check is intended, although there is
1952 * relaxed order check in next check. The reason is that
1953 * we can actually steal whole pageblock if this condition met,
1954 * but, below check doesn't guarantee it and that is just heuristic
1955 * so could be changed anytime.
1957 if (order >= pageblock_order)
1960 if (order >= pageblock_order / 2 ||
1961 start_mt == MIGRATE_RECLAIMABLE ||
1962 start_mt == MIGRATE_UNMOVABLE ||
1963 page_group_by_mobility_disabled)
1970 * This function implements actual steal behaviour. If order is large enough,
1971 * we can steal whole pageblock. If not, we first move freepages in this
1972 * pageblock to our migratetype and determine how many already-allocated pages
1973 * are there in the pageblock with a compatible migratetype. If at least half
1974 * of pages are free or compatible, we can change migratetype of the pageblock
1975 * itself, so pages freed in the future will be put on the correct free list.
1977 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1978 int start_type, bool whole_block)
1980 unsigned int current_order = page_order(page);
1981 struct free_area *area;
1982 int free_pages, movable_pages, alike_pages;
1985 old_block_type = get_pageblock_migratetype(page);
1988 * This can happen due to races and we want to prevent broken
1989 * highatomic accounting.
1991 if (is_migrate_highatomic(old_block_type))
1994 /* Take ownership for orders >= pageblock_order */
1995 if (current_order >= pageblock_order) {
1996 change_pageblock_range(page, current_order, start_type);
2000 /* We are not allowed to try stealing from the whole block */
2004 free_pages = move_freepages_block(zone, page, start_type,
2007 * Determine how many pages are compatible with our allocation.
2008 * For movable allocation, it's the number of movable pages which
2009 * we just obtained. For other types it's a bit more tricky.
2011 if (start_type == MIGRATE_MOVABLE) {
2012 alike_pages = movable_pages;
2015 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2016 * to MOVABLE pageblock, consider all non-movable pages as
2017 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2018 * vice versa, be conservative since we can't distinguish the
2019 * exact migratetype of non-movable pages.
2021 if (old_block_type == MIGRATE_MOVABLE)
2022 alike_pages = pageblock_nr_pages
2023 - (free_pages + movable_pages);
2028 /* moving whole block can fail due to zone boundary conditions */
2033 * If a sufficient number of pages in the block are either free or of
2034 * comparable migratability as our allocation, claim the whole block.
2036 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2037 page_group_by_mobility_disabled)
2038 set_pageblock_migratetype(page, start_type);
2043 area = &zone->free_area[current_order];
2044 list_move(&page->lru, &area->free_list[start_type]);
2048 * Check whether there is a suitable fallback freepage with requested order.
2049 * If only_stealable is true, this function returns fallback_mt only if
2050 * we can steal other freepages all together. This would help to reduce
2051 * fragmentation due to mixed migratetype pages in one pageblock.
2053 int find_suitable_fallback(struct free_area *area, unsigned int order,
2054 int migratetype, bool only_stealable, bool *can_steal)
2059 if (area->nr_free == 0)
2064 fallback_mt = fallbacks[migratetype][i];
2065 if (fallback_mt == MIGRATE_TYPES)
2068 if (list_empty(&area->free_list[fallback_mt]))
2071 if (can_steal_fallback(order, migratetype))
2074 if (!only_stealable)
2085 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2086 * there are no empty page blocks that contain a page with a suitable order
2088 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2089 unsigned int alloc_order)
2092 unsigned long max_managed, flags;
2095 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2096 * Check is race-prone but harmless.
2098 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2099 if (zone->nr_reserved_highatomic >= max_managed)
2102 spin_lock_irqsave(&zone->lock, flags);
2104 /* Recheck the nr_reserved_highatomic limit under the lock */
2105 if (zone->nr_reserved_highatomic >= max_managed)
2109 mt = get_pageblock_migratetype(page);
2110 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2111 && !is_migrate_cma(mt)) {
2112 zone->nr_reserved_highatomic += pageblock_nr_pages;
2113 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2114 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2118 spin_unlock_irqrestore(&zone->lock, flags);
2122 * Used when an allocation is about to fail under memory pressure. This
2123 * potentially hurts the reliability of high-order allocations when under
2124 * intense memory pressure but failed atomic allocations should be easier
2125 * to recover from than an OOM.
2127 * If @force is true, try to unreserve a pageblock even though highatomic
2128 * pageblock is exhausted.
2130 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2133 struct zonelist *zonelist = ac->zonelist;
2134 unsigned long flags;
2141 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2144 * Preserve at least one pageblock unless memory pressure
2147 if (!force && zone->nr_reserved_highatomic <=
2151 spin_lock_irqsave(&zone->lock, flags);
2152 for (order = 0; order < MAX_ORDER; order++) {
2153 struct free_area *area = &(zone->free_area[order]);
2155 page = list_first_entry_or_null(
2156 &area->free_list[MIGRATE_HIGHATOMIC],
2162 * In page freeing path, migratetype change is racy so
2163 * we can counter several free pages in a pageblock
2164 * in this loop althoug we changed the pageblock type
2165 * from highatomic to ac->migratetype. So we should
2166 * adjust the count once.
2168 if (is_migrate_highatomic_page(page)) {
2170 * It should never happen but changes to
2171 * locking could inadvertently allow a per-cpu
2172 * drain to add pages to MIGRATE_HIGHATOMIC
2173 * while unreserving so be safe and watch for
2176 zone->nr_reserved_highatomic -= min(
2178 zone->nr_reserved_highatomic);
2182 * Convert to ac->migratetype and avoid the normal
2183 * pageblock stealing heuristics. Minimally, the caller
2184 * is doing the work and needs the pages. More
2185 * importantly, if the block was always converted to
2186 * MIGRATE_UNMOVABLE or another type then the number
2187 * of pageblocks that cannot be completely freed
2190 set_pageblock_migratetype(page, ac->migratetype);
2191 ret = move_freepages_block(zone, page, ac->migratetype,
2194 spin_unlock_irqrestore(&zone->lock, flags);
2198 spin_unlock_irqrestore(&zone->lock, flags);
2205 * Try finding a free buddy page on the fallback list and put it on the free
2206 * list of requested migratetype, possibly along with other pages from the same
2207 * block, depending on fragmentation avoidance heuristics. Returns true if
2208 * fallback was found so that __rmqueue_smallest() can grab it.
2211 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2213 struct free_area *area;
2214 unsigned int current_order;
2219 /* Find the largest possible block of pages in the other list */
2220 for (current_order = MAX_ORDER-1;
2221 current_order >= order && current_order <= MAX_ORDER-1;
2223 area = &(zone->free_area[current_order]);
2224 fallback_mt = find_suitable_fallback(area, current_order,
2225 start_migratetype, false, &can_steal);
2226 if (fallback_mt == -1)
2229 page = list_first_entry(&area->free_list[fallback_mt],
2232 steal_suitable_fallback(zone, page, start_migratetype,
2235 trace_mm_page_alloc_extfrag(page, order, current_order,
2236 start_migratetype, fallback_mt);
2245 * Do the hard work of removing an element from the buddy allocator.
2246 * Call me with the zone->lock already held.
2248 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2254 page = __rmqueue_smallest(zone, order, migratetype);
2255 if (unlikely(!page)) {
2256 if (migratetype == MIGRATE_MOVABLE)
2257 page = __rmqueue_cma_fallback(zone, order);
2259 if (!page && __rmqueue_fallback(zone, order, migratetype))
2263 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2268 * Obtain a specified number of elements from the buddy allocator, all under
2269 * a single hold of the lock, for efficiency. Add them to the supplied list.
2270 * Returns the number of new pages which were placed at *list.
2272 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2273 unsigned long count, struct list_head *list,
2274 int migratetype, bool cold)
2278 spin_lock(&zone->lock);
2279 for (i = 0; i < count; ++i) {
2280 struct page *page = __rmqueue(zone, order, migratetype);
2281 if (unlikely(page == NULL))
2284 if (unlikely(check_pcp_refill(page)))
2288 * Split buddy pages returned by expand() are received here
2289 * in physical page order. The page is added to the callers and
2290 * list and the list head then moves forward. From the callers
2291 * perspective, the linked list is ordered by page number in
2292 * some conditions. This is useful for IO devices that can
2293 * merge IO requests if the physical pages are ordered
2297 list_add(&page->lru, list);
2299 list_add_tail(&page->lru, list);
2302 if (is_migrate_cma(get_pcppage_migratetype(page)))
2303 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2308 * i pages were removed from the buddy list even if some leak due
2309 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2310 * on i. Do not confuse with 'alloced' which is the number of
2311 * pages added to the pcp list.
2313 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2314 spin_unlock(&zone->lock);
2320 * Called from the vmstat counter updater to drain pagesets of this
2321 * currently executing processor on remote nodes after they have
2324 * Note that this function must be called with the thread pinned to
2325 * a single processor.
2327 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2329 unsigned long flags;
2330 int to_drain, batch;
2332 local_irq_save(flags);
2333 batch = READ_ONCE(pcp->batch);
2334 to_drain = min(pcp->count, batch);
2336 free_pcppages_bulk(zone, to_drain, pcp);
2337 pcp->count -= to_drain;
2339 local_irq_restore(flags);
2344 * Drain pcplists of the indicated processor and zone.
2346 * The processor must either be the current processor and the
2347 * thread pinned to the current processor or a processor that
2350 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2352 unsigned long flags;
2353 struct per_cpu_pageset *pset;
2354 struct per_cpu_pages *pcp;
2356 local_irq_save(flags);
2357 pset = per_cpu_ptr(zone->pageset, cpu);
2361 free_pcppages_bulk(zone, pcp->count, pcp);
2364 local_irq_restore(flags);
2368 * Drain pcplists of all zones on the indicated processor.
2370 * The processor must either be the current processor and the
2371 * thread pinned to the current processor or a processor that
2374 static void drain_pages(unsigned int cpu)
2378 for_each_populated_zone(zone) {
2379 drain_pages_zone(cpu, zone);
2384 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2386 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2387 * the single zone's pages.
2389 void drain_local_pages(struct zone *zone)
2391 int cpu = smp_processor_id();
2394 drain_pages_zone(cpu, zone);
2399 static void drain_local_pages_wq(struct work_struct *work)
2402 * drain_all_pages doesn't use proper cpu hotplug protection so
2403 * we can race with cpu offline when the WQ can move this from
2404 * a cpu pinned worker to an unbound one. We can operate on a different
2405 * cpu which is allright but we also have to make sure to not move to
2409 drain_local_pages(NULL);
2414 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2416 * When zone parameter is non-NULL, spill just the single zone's pages.
2418 * Note that this can be extremely slow as the draining happens in a workqueue.
2420 void drain_all_pages(struct zone *zone)
2425 * Allocate in the BSS so we wont require allocation in
2426 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2428 static cpumask_t cpus_with_pcps;
2431 * Make sure nobody triggers this path before mm_percpu_wq is fully
2434 if (WARN_ON_ONCE(!mm_percpu_wq))
2437 /* Workqueues cannot recurse */
2438 if (current->flags & PF_WQ_WORKER)
2442 * Do not drain if one is already in progress unless it's specific to
2443 * a zone. Such callers are primarily CMA and memory hotplug and need
2444 * the drain to be complete when the call returns.
2446 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2449 mutex_lock(&pcpu_drain_mutex);
2453 * We don't care about racing with CPU hotplug event
2454 * as offline notification will cause the notified
2455 * cpu to drain that CPU pcps and on_each_cpu_mask
2456 * disables preemption as part of its processing
2458 for_each_online_cpu(cpu) {
2459 struct per_cpu_pageset *pcp;
2461 bool has_pcps = false;
2464 pcp = per_cpu_ptr(zone->pageset, cpu);
2468 for_each_populated_zone(z) {
2469 pcp = per_cpu_ptr(z->pageset, cpu);
2470 if (pcp->pcp.count) {
2478 cpumask_set_cpu(cpu, &cpus_with_pcps);
2480 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2483 for_each_cpu(cpu, &cpus_with_pcps) {
2484 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2485 INIT_WORK(work, drain_local_pages_wq);
2486 queue_work_on(cpu, mm_percpu_wq, work);
2488 for_each_cpu(cpu, &cpus_with_pcps)
2489 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2491 mutex_unlock(&pcpu_drain_mutex);
2494 #ifdef CONFIG_HIBERNATION
2496 void mark_free_pages(struct zone *zone)
2498 unsigned long pfn, max_zone_pfn;
2499 unsigned long flags;
2500 unsigned int order, t;
2503 if (zone_is_empty(zone))
2506 spin_lock_irqsave(&zone->lock, flags);
2508 max_zone_pfn = zone_end_pfn(zone);
2509 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2510 if (pfn_valid(pfn)) {
2511 page = pfn_to_page(pfn);
2513 if (page_zone(page) != zone)
2516 if (!swsusp_page_is_forbidden(page))
2517 swsusp_unset_page_free(page);
2520 for_each_migratetype_order(order, t) {
2521 list_for_each_entry(page,
2522 &zone->free_area[order].free_list[t], lru) {
2525 pfn = page_to_pfn(page);
2526 for (i = 0; i < (1UL << order); i++)
2527 swsusp_set_page_free(pfn_to_page(pfn + i));
2530 spin_unlock_irqrestore(&zone->lock, flags);
2532 #endif /* CONFIG_PM */
2535 * Free a 0-order page
2536 * cold == true ? free a cold page : free a hot page
2538 void free_hot_cold_page(struct page *page, bool cold)
2540 struct zone *zone = page_zone(page);
2541 struct per_cpu_pages *pcp;
2542 unsigned long flags;
2543 unsigned long pfn = page_to_pfn(page);
2546 if (!free_pcp_prepare(page))
2549 migratetype = get_pfnblock_migratetype(page, pfn);
2550 set_pcppage_migratetype(page, migratetype);
2551 local_irq_save(flags);
2552 __count_vm_event(PGFREE);
2555 * We only track unmovable, reclaimable and movable on pcp lists.
2556 * Free ISOLATE pages back to the allocator because they are being
2557 * offlined but treat HIGHATOMIC as movable pages so we can get those
2558 * areas back if necessary. Otherwise, we may have to free
2559 * excessively into the page allocator
2561 if (migratetype >= MIGRATE_PCPTYPES) {
2562 if (unlikely(is_migrate_isolate(migratetype))) {
2563 free_one_page(zone, page, pfn, 0, migratetype);
2566 migratetype = MIGRATE_MOVABLE;
2569 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2571 list_add(&page->lru, &pcp->lists[migratetype]);
2573 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2575 if (pcp->count >= pcp->high) {
2576 unsigned long batch = READ_ONCE(pcp->batch);
2577 free_pcppages_bulk(zone, batch, pcp);
2578 pcp->count -= batch;
2582 local_irq_restore(flags);
2586 * Free a list of 0-order pages
2588 void free_hot_cold_page_list(struct list_head *list, bool cold)
2590 struct page *page, *next;
2592 list_for_each_entry_safe(page, next, list, lru) {
2593 trace_mm_page_free_batched(page, cold);
2594 free_hot_cold_page(page, cold);
2599 * split_page takes a non-compound higher-order page, and splits it into
2600 * n (1<<order) sub-pages: page[0..n]
2601 * Each sub-page must be freed individually.
2603 * Note: this is probably too low level an operation for use in drivers.
2604 * Please consult with lkml before using this in your driver.
2606 void split_page(struct page *page, unsigned int order)
2610 VM_BUG_ON_PAGE(PageCompound(page), page);
2611 VM_BUG_ON_PAGE(!page_count(page), page);
2613 #ifdef CONFIG_KMEMCHECK
2615 * Split shadow pages too, because free(page[0]) would
2616 * otherwise free the whole shadow.
2618 if (kmemcheck_page_is_tracked(page))
2619 split_page(virt_to_page(page[0].shadow), order);
2622 for (i = 1; i < (1 << order); i++)
2623 set_page_refcounted(page + i);
2624 split_page_owner(page, order);
2626 EXPORT_SYMBOL_GPL(split_page);
2628 int __isolate_free_page(struct page *page, unsigned int order)
2630 unsigned long watermark;
2634 BUG_ON(!PageBuddy(page));
2636 zone = page_zone(page);
2637 mt = get_pageblock_migratetype(page);
2639 if (!is_migrate_isolate(mt)) {
2641 * Obey watermarks as if the page was being allocated. We can
2642 * emulate a high-order watermark check with a raised order-0
2643 * watermark, because we already know our high-order page
2646 watermark = min_wmark_pages(zone) + (1UL << order);
2647 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2650 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2653 /* Remove page from free list */
2654 list_del(&page->lru);
2655 zone->free_area[order].nr_free--;
2656 rmv_page_order(page);
2659 * Set the pageblock if the isolated page is at least half of a
2662 if (order >= pageblock_order - 1) {
2663 struct page *endpage = page + (1 << order) - 1;
2664 for (; page < endpage; page += pageblock_nr_pages) {
2665 int mt = get_pageblock_migratetype(page);
2666 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2667 && !is_migrate_highatomic(mt))
2668 set_pageblock_migratetype(page,
2674 return 1UL << order;
2678 * Update NUMA hit/miss statistics
2680 * Must be called with interrupts disabled.
2682 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2685 enum zone_stat_item local_stat = NUMA_LOCAL;
2687 if (z->node != numa_node_id())
2688 local_stat = NUMA_OTHER;
2690 if (z->node == preferred_zone->node)
2691 __inc_zone_state(z, NUMA_HIT);
2693 __inc_zone_state(z, NUMA_MISS);
2694 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2696 __inc_zone_state(z, local_stat);
2700 /* Remove page from the per-cpu list, caller must protect the list */
2701 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2702 bool cold, struct per_cpu_pages *pcp,
2703 struct list_head *list)
2708 if (list_empty(list)) {
2709 pcp->count += rmqueue_bulk(zone, 0,
2712 if (unlikely(list_empty(list)))
2717 page = list_last_entry(list, struct page, lru);
2719 page = list_first_entry(list, struct page, lru);
2721 list_del(&page->lru);
2723 } while (check_new_pcp(page));
2728 /* Lock and remove page from the per-cpu list */
2729 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2730 struct zone *zone, unsigned int order,
2731 gfp_t gfp_flags, int migratetype)
2733 struct per_cpu_pages *pcp;
2734 struct list_head *list;
2735 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2737 unsigned long flags;
2739 local_irq_save(flags);
2740 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2741 list = &pcp->lists[migratetype];
2742 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2744 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2745 zone_statistics(preferred_zone, zone);
2747 local_irq_restore(flags);
2752 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2755 struct page *rmqueue(struct zone *preferred_zone,
2756 struct zone *zone, unsigned int order,
2757 gfp_t gfp_flags, unsigned int alloc_flags,
2760 unsigned long flags;
2763 if (likely(order == 0)) {
2764 page = rmqueue_pcplist(preferred_zone, zone, order,
2765 gfp_flags, migratetype);
2770 * We most definitely don't want callers attempting to
2771 * allocate greater than order-1 page units with __GFP_NOFAIL.
2773 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2774 spin_lock_irqsave(&zone->lock, flags);
2778 if (alloc_flags & ALLOC_HARDER) {
2779 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2781 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2784 page = __rmqueue(zone, order, migratetype);
2785 } while (page && check_new_pages(page, order));
2786 spin_unlock(&zone->lock);
2789 __mod_zone_freepage_state(zone, -(1 << order),
2790 get_pcppage_migratetype(page));
2792 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2793 zone_statistics(preferred_zone, zone);
2794 local_irq_restore(flags);
2797 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2801 local_irq_restore(flags);
2805 #ifdef CONFIG_FAIL_PAGE_ALLOC
2808 struct fault_attr attr;
2810 bool ignore_gfp_highmem;
2811 bool ignore_gfp_reclaim;
2813 } fail_page_alloc = {
2814 .attr = FAULT_ATTR_INITIALIZER,
2815 .ignore_gfp_reclaim = true,
2816 .ignore_gfp_highmem = true,
2820 static int __init setup_fail_page_alloc(char *str)
2822 return setup_fault_attr(&fail_page_alloc.attr, str);
2824 __setup("fail_page_alloc=", setup_fail_page_alloc);
2826 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2828 if (order < fail_page_alloc.min_order)
2830 if (gfp_mask & __GFP_NOFAIL)
2832 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2834 if (fail_page_alloc.ignore_gfp_reclaim &&
2835 (gfp_mask & __GFP_DIRECT_RECLAIM))
2838 return should_fail(&fail_page_alloc.attr, 1 << order);
2841 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2843 static int __init fail_page_alloc_debugfs(void)
2845 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2848 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2849 &fail_page_alloc.attr);
2851 return PTR_ERR(dir);
2853 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2854 &fail_page_alloc.ignore_gfp_reclaim))
2856 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2857 &fail_page_alloc.ignore_gfp_highmem))
2859 if (!debugfs_create_u32("min-order", mode, dir,
2860 &fail_page_alloc.min_order))
2865 debugfs_remove_recursive(dir);
2870 late_initcall(fail_page_alloc_debugfs);
2872 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2874 #else /* CONFIG_FAIL_PAGE_ALLOC */
2876 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2881 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2884 * Return true if free base pages are above 'mark'. For high-order checks it
2885 * will return true of the order-0 watermark is reached and there is at least
2886 * one free page of a suitable size. Checking now avoids taking the zone lock
2887 * to check in the allocation paths if no pages are free.
2889 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2890 int classzone_idx, unsigned int alloc_flags,
2895 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2897 /* free_pages may go negative - that's OK */
2898 free_pages -= (1 << order) - 1;
2900 if (alloc_flags & ALLOC_HIGH)
2904 * If the caller does not have rights to ALLOC_HARDER then subtract
2905 * the high-atomic reserves. This will over-estimate the size of the
2906 * atomic reserve but it avoids a search.
2908 if (likely(!alloc_harder))
2909 free_pages -= z->nr_reserved_highatomic;
2914 /* If allocation can't use CMA areas don't use free CMA pages */
2915 if (!(alloc_flags & ALLOC_CMA))
2916 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2920 * Check watermarks for an order-0 allocation request. If these
2921 * are not met, then a high-order request also cannot go ahead
2922 * even if a suitable page happened to be free.
2924 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2927 /* If this is an order-0 request then the watermark is fine */
2931 /* For a high-order request, check at least one suitable page is free */
2932 for (o = order; o < MAX_ORDER; o++) {
2933 struct free_area *area = &z->free_area[o];
2942 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2943 if (!list_empty(&area->free_list[mt]))
2948 if ((alloc_flags & ALLOC_CMA) &&
2949 !list_empty(&area->free_list[MIGRATE_CMA])) {
2957 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2958 int classzone_idx, unsigned int alloc_flags)
2960 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2961 zone_page_state(z, NR_FREE_PAGES));
2964 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2965 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2967 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2971 /* If allocation can't use CMA areas don't use free CMA pages */
2972 if (!(alloc_flags & ALLOC_CMA))
2973 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2977 * Fast check for order-0 only. If this fails then the reserves
2978 * need to be calculated. There is a corner case where the check
2979 * passes but only the high-order atomic reserve are free. If
2980 * the caller is !atomic then it'll uselessly search the free
2981 * list. That corner case is then slower but it is harmless.
2983 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2986 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2990 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2991 unsigned long mark, int classzone_idx)
2993 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2995 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2996 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2998 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3003 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3005 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3008 #else /* CONFIG_NUMA */
3009 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3013 #endif /* CONFIG_NUMA */
3016 * get_page_from_freelist goes through the zonelist trying to allocate
3019 static struct page *
3020 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3021 const struct alloc_context *ac)
3023 struct zoneref *z = ac->preferred_zoneref;
3025 struct pglist_data *last_pgdat_dirty_limit = NULL;
3028 * Scan zonelist, looking for a zone with enough free.
3029 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3031 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3036 if (cpusets_enabled() &&
3037 (alloc_flags & ALLOC_CPUSET) &&
3038 !__cpuset_zone_allowed(zone, gfp_mask))
3041 * When allocating a page cache page for writing, we
3042 * want to get it from a node that is within its dirty
3043 * limit, such that no single node holds more than its
3044 * proportional share of globally allowed dirty pages.
3045 * The dirty limits take into account the node's
3046 * lowmem reserves and high watermark so that kswapd
3047 * should be able to balance it without having to
3048 * write pages from its LRU list.
3050 * XXX: For now, allow allocations to potentially
3051 * exceed the per-node dirty limit in the slowpath
3052 * (spread_dirty_pages unset) before going into reclaim,
3053 * which is important when on a NUMA setup the allowed
3054 * nodes are together not big enough to reach the
3055 * global limit. The proper fix for these situations
3056 * will require awareness of nodes in the
3057 * dirty-throttling and the flusher threads.
3059 if (ac->spread_dirty_pages) {
3060 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3063 if (!node_dirty_ok(zone->zone_pgdat)) {
3064 last_pgdat_dirty_limit = zone->zone_pgdat;
3069 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3070 if (!zone_watermark_fast(zone, order, mark,
3071 ac_classzone_idx(ac), alloc_flags)) {
3074 /* Checked here to keep the fast path fast */
3075 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3076 if (alloc_flags & ALLOC_NO_WATERMARKS)
3079 if (node_reclaim_mode == 0 ||
3080 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3083 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3085 case NODE_RECLAIM_NOSCAN:
3088 case NODE_RECLAIM_FULL:
3089 /* scanned but unreclaimable */
3092 /* did we reclaim enough */
3093 if (zone_watermark_ok(zone, order, mark,
3094 ac_classzone_idx(ac), alloc_flags))
3102 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3103 gfp_mask, alloc_flags, ac->migratetype);
3105 prep_new_page(page, order, gfp_mask, alloc_flags);
3108 * If this is a high-order atomic allocation then check
3109 * if the pageblock should be reserved for the future
3111 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3112 reserve_highatomic_pageblock(page, zone, order);
3122 * Large machines with many possible nodes should not always dump per-node
3123 * meminfo in irq context.
3125 static inline bool should_suppress_show_mem(void)
3130 ret = in_interrupt();
3135 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3137 unsigned int filter = SHOW_MEM_FILTER_NODES;
3138 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3140 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3144 * This documents exceptions given to allocations in certain
3145 * contexts that are allowed to allocate outside current's set
3148 if (!(gfp_mask & __GFP_NOMEMALLOC))
3149 if (test_thread_flag(TIF_MEMDIE) ||
3150 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3151 filter &= ~SHOW_MEM_FILTER_NODES;
3152 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3153 filter &= ~SHOW_MEM_FILTER_NODES;
3155 show_mem(filter, nodemask);
3158 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3160 struct va_format vaf;
3162 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3163 DEFAULT_RATELIMIT_BURST);
3165 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3168 pr_warn("%s: ", current->comm);
3170 va_start(args, fmt);
3173 pr_cont("%pV", &vaf);
3176 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3178 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3180 pr_cont("(null)\n");
3182 cpuset_print_current_mems_allowed();
3185 warn_alloc_show_mem(gfp_mask, nodemask);
3188 static inline struct page *
3189 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3190 unsigned int alloc_flags,
3191 const struct alloc_context *ac)
3195 page = get_page_from_freelist(gfp_mask, order,
3196 alloc_flags|ALLOC_CPUSET, ac);
3198 * fallback to ignore cpuset restriction if our nodes
3202 page = get_page_from_freelist(gfp_mask, order,
3208 static inline struct page *
3209 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3210 const struct alloc_context *ac, unsigned long *did_some_progress)
3212 struct oom_control oc = {
3213 .zonelist = ac->zonelist,
3214 .nodemask = ac->nodemask,
3216 .gfp_mask = gfp_mask,
3221 *did_some_progress = 0;
3224 * Acquire the oom lock. If that fails, somebody else is
3225 * making progress for us.
3227 if (!mutex_trylock(&oom_lock)) {
3228 *did_some_progress = 1;
3229 schedule_timeout_uninterruptible(1);
3234 * Go through the zonelist yet one more time, keep very high watermark
3235 * here, this is only to catch a parallel oom killing, we must fail if
3236 * we're still under heavy pressure.
3238 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3239 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3243 /* Coredumps can quickly deplete all memory reserves */
3244 if (current->flags & PF_DUMPCORE)
3246 /* The OOM killer will not help higher order allocs */
3247 if (order > PAGE_ALLOC_COSTLY_ORDER)
3249 /* The OOM killer does not needlessly kill tasks for lowmem */
3250 if (ac->high_zoneidx < ZONE_NORMAL)
3252 if (pm_suspended_storage())
3255 * XXX: GFP_NOFS allocations should rather fail than rely on
3256 * other request to make a forward progress.
3257 * We are in an unfortunate situation where out_of_memory cannot
3258 * do much for this context but let's try it to at least get
3259 * access to memory reserved if the current task is killed (see
3260 * out_of_memory). Once filesystems are ready to handle allocation
3261 * failures more gracefully we should just bail out here.
3264 /* The OOM killer may not free memory on a specific node */
3265 if (gfp_mask & __GFP_THISNODE)
3268 /* Exhausted what can be done so it's blamo time */
3269 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3270 *did_some_progress = 1;
3273 * Help non-failing allocations by giving them access to memory
3276 if (gfp_mask & __GFP_NOFAIL)
3277 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3278 ALLOC_NO_WATERMARKS, ac);
3281 mutex_unlock(&oom_lock);
3286 * Maximum number of compaction retries wit a progress before OOM
3287 * killer is consider as the only way to move forward.
3289 #define MAX_COMPACT_RETRIES 16
3291 #ifdef CONFIG_COMPACTION
3292 /* Try memory compaction for high-order allocations before reclaim */
3293 static struct page *
3294 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3295 unsigned int alloc_flags, const struct alloc_context *ac,
3296 enum compact_priority prio, enum compact_result *compact_result)
3299 unsigned int noreclaim_flag;
3304 noreclaim_flag = memalloc_noreclaim_save();
3305 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3307 memalloc_noreclaim_restore(noreclaim_flag);
3309 if (*compact_result <= COMPACT_INACTIVE)
3313 * At least in one zone compaction wasn't deferred or skipped, so let's
3314 * count a compaction stall
3316 count_vm_event(COMPACTSTALL);
3318 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3321 struct zone *zone = page_zone(page);
3323 zone->compact_blockskip_flush = false;
3324 compaction_defer_reset(zone, order, true);
3325 count_vm_event(COMPACTSUCCESS);
3330 * It's bad if compaction run occurs and fails. The most likely reason
3331 * is that pages exist, but not enough to satisfy watermarks.
3333 count_vm_event(COMPACTFAIL);
3341 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3342 enum compact_result compact_result,
3343 enum compact_priority *compact_priority,
3344 int *compaction_retries)
3346 int max_retries = MAX_COMPACT_RETRIES;
3349 int retries = *compaction_retries;
3350 enum compact_priority priority = *compact_priority;
3355 if (compaction_made_progress(compact_result))
3356 (*compaction_retries)++;
3359 * compaction considers all the zone as desperately out of memory
3360 * so it doesn't really make much sense to retry except when the
3361 * failure could be caused by insufficient priority
3363 if (compaction_failed(compact_result))
3364 goto check_priority;
3367 * make sure the compaction wasn't deferred or didn't bail out early
3368 * due to locks contention before we declare that we should give up.
3369 * But do not retry if the given zonelist is not suitable for
3372 if (compaction_withdrawn(compact_result)) {
3373 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3378 * !costly requests are much more important than __GFP_REPEAT
3379 * costly ones because they are de facto nofail and invoke OOM
3380 * killer to move on while costly can fail and users are ready
3381 * to cope with that. 1/4 retries is rather arbitrary but we
3382 * would need much more detailed feedback from compaction to
3383 * make a better decision.
3385 if (order > PAGE_ALLOC_COSTLY_ORDER)
3387 if (*compaction_retries <= max_retries) {
3393 * Make sure there are attempts at the highest priority if we exhausted
3394 * all retries or failed at the lower priorities.
3397 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3398 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3400 if (*compact_priority > min_priority) {
3401 (*compact_priority)--;
3402 *compaction_retries = 0;
3406 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3410 static inline struct page *
3411 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3412 unsigned int alloc_flags, const struct alloc_context *ac,
3413 enum compact_priority prio, enum compact_result *compact_result)
3415 *compact_result = COMPACT_SKIPPED;
3420 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3421 enum compact_result compact_result,
3422 enum compact_priority *compact_priority,
3423 int *compaction_retries)
3428 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3432 * There are setups with compaction disabled which would prefer to loop
3433 * inside the allocator rather than hit the oom killer prematurely.
3434 * Let's give them a good hope and keep retrying while the order-0
3435 * watermarks are OK.
3437 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3439 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3440 ac_classzone_idx(ac), alloc_flags))
3445 #endif /* CONFIG_COMPACTION */
3447 /* Perform direct synchronous page reclaim */
3449 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3450 const struct alloc_context *ac)
3452 struct reclaim_state reclaim_state;
3454 unsigned int noreclaim_flag;
3458 /* We now go into synchronous reclaim */
3459 cpuset_memory_pressure_bump();
3460 noreclaim_flag = memalloc_noreclaim_save();
3461 lockdep_set_current_reclaim_state(gfp_mask);
3462 reclaim_state.reclaimed_slab = 0;
3463 current->reclaim_state = &reclaim_state;
3465 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3468 current->reclaim_state = NULL;
3469 lockdep_clear_current_reclaim_state();
3470 memalloc_noreclaim_restore(noreclaim_flag);
3477 /* The really slow allocator path where we enter direct reclaim */
3478 static inline struct page *
3479 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3480 unsigned int alloc_flags, const struct alloc_context *ac,
3481 unsigned long *did_some_progress)
3483 struct page *page = NULL;
3484 bool drained = false;
3486 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3487 if (unlikely(!(*did_some_progress)))
3491 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3494 * If an allocation failed after direct reclaim, it could be because
3495 * pages are pinned on the per-cpu lists or in high alloc reserves.
3496 * Shrink them them and try again
3498 if (!page && !drained) {
3499 unreserve_highatomic_pageblock(ac, false);
3500 drain_all_pages(NULL);
3508 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3512 pg_data_t *last_pgdat = NULL;
3514 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3515 ac->high_zoneidx, ac->nodemask) {
3516 if (last_pgdat != zone->zone_pgdat)
3517 wakeup_kswapd(zone, order, ac->high_zoneidx);
3518 last_pgdat = zone->zone_pgdat;
3522 static inline unsigned int
3523 gfp_to_alloc_flags(gfp_t gfp_mask)
3525 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3527 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3528 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3531 * The caller may dip into page reserves a bit more if the caller
3532 * cannot run direct reclaim, or if the caller has realtime scheduling
3533 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3534 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3536 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3538 if (gfp_mask & __GFP_ATOMIC) {
3540 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3541 * if it can't schedule.
3543 if (!(gfp_mask & __GFP_NOMEMALLOC))
3544 alloc_flags |= ALLOC_HARDER;
3546 * Ignore cpuset mems f