1 // SPDX-License-Identifier: GPL-2.0
3 * Slab allocator functions that are independent of the allocator strategy
5 * (C) 2012 Christoph Lameter <cl@linux.com>
7 #include <linux/slab.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/module.h>
16 #include <linux/cpu.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <asm/cacheflush.h>
21 #include <asm/tlbflush.h>
23 #include <linux/memcontrol.h>
25 #define CREATE_TRACE_POINTS
26 #include <trace/events/kmem.h>
30 enum slab_state slab_state;
31 LIST_HEAD(slab_caches);
32 DEFINE_MUTEX(slab_mutex);
33 struct kmem_cache *kmem_cache;
35 #ifdef CONFIG_HARDENED_USERCOPY
36 bool usercopy_fallback __ro_after_init =
37 IS_ENABLED(CONFIG_HARDENED_USERCOPY_FALLBACK);
38 module_param(usercopy_fallback, bool, 0400);
39 MODULE_PARM_DESC(usercopy_fallback,
40 "WARN instead of reject usercopy whitelist violations");
43 static LIST_HEAD(slab_caches_to_rcu_destroy);
44 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
45 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
46 slab_caches_to_rcu_destroy_workfn);
49 * Set of flags that will prevent slab merging
51 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
52 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
53 SLAB_FAILSLAB | SLAB_KASAN)
55 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
59 * Merge control. If this is set then no merging of slab caches will occur.
61 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
63 static int __init setup_slab_nomerge(char *str)
70 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
73 __setup("slab_nomerge", setup_slab_nomerge);
76 * Determine the size of a slab object
78 unsigned int kmem_cache_size(struct kmem_cache *s)
80 return s->object_size;
82 EXPORT_SYMBOL(kmem_cache_size);
84 #ifdef CONFIG_DEBUG_VM
85 static int kmem_cache_sanity_check(const char *name, unsigned int size)
87 struct kmem_cache *s = NULL;
89 if (!name || in_interrupt() || size < sizeof(void *) ||
90 size > KMALLOC_MAX_SIZE) {
91 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
95 list_for_each_entry(s, &slab_caches, list) {
100 * This happens when the module gets unloaded and doesn't
101 * destroy its slab cache and no-one else reuses the vmalloc
102 * area of the module. Print a warning.
104 res = probe_kernel_address(s->name, tmp);
106 pr_err("Slab cache with size %d has lost its name\n",
112 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
116 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
122 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
126 for (i = 0; i < nr; i++) {
128 kmem_cache_free(s, p[i]);
134 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
139 for (i = 0; i < nr; i++) {
140 void *x = p[i] = kmem_cache_alloc(s, flags);
142 __kmem_cache_free_bulk(s, i, p);
149 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
151 LIST_HEAD(slab_root_caches);
153 void slab_init_memcg_params(struct kmem_cache *s)
155 s->memcg_params.root_cache = NULL;
156 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
157 INIT_LIST_HEAD(&s->memcg_params.children);
160 static int init_memcg_params(struct kmem_cache *s,
161 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
163 struct memcg_cache_array *arr;
166 s->memcg_params.root_cache = root_cache;
167 s->memcg_params.memcg = memcg;
168 INIT_LIST_HEAD(&s->memcg_params.children_node);
169 INIT_LIST_HEAD(&s->memcg_params.kmem_caches_node);
173 slab_init_memcg_params(s);
175 if (!memcg_nr_cache_ids)
178 arr = kvzalloc(sizeof(struct memcg_cache_array) +
179 memcg_nr_cache_ids * sizeof(void *),
184 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
188 static void destroy_memcg_params(struct kmem_cache *s)
190 if (is_root_cache(s))
191 kvfree(rcu_access_pointer(s->memcg_params.memcg_caches));
194 static void free_memcg_params(struct rcu_head *rcu)
196 struct memcg_cache_array *old;
198 old = container_of(rcu, struct memcg_cache_array, rcu);
202 static int update_memcg_params(struct kmem_cache *s, int new_array_size)
204 struct memcg_cache_array *old, *new;
206 new = kvzalloc(sizeof(struct memcg_cache_array) +
207 new_array_size * sizeof(void *), GFP_KERNEL);
211 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
212 lockdep_is_held(&slab_mutex));
214 memcpy(new->entries, old->entries,
215 memcg_nr_cache_ids * sizeof(void *));
217 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
219 call_rcu(&old->rcu, free_memcg_params);
223 int memcg_update_all_caches(int num_memcgs)
225 struct kmem_cache *s;
228 mutex_lock(&slab_mutex);
229 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
230 ret = update_memcg_params(s, num_memcgs);
232 * Instead of freeing the memory, we'll just leave the caches
233 * up to this point in an updated state.
238 mutex_unlock(&slab_mutex);
242 void memcg_link_cache(struct kmem_cache *s)
244 if (is_root_cache(s)) {
245 list_add(&s->root_caches_node, &slab_root_caches);
247 list_add(&s->memcg_params.children_node,
248 &s->memcg_params.root_cache->memcg_params.children);
249 list_add(&s->memcg_params.kmem_caches_node,
250 &s->memcg_params.memcg->kmem_caches);
254 static void memcg_unlink_cache(struct kmem_cache *s)
256 if (is_root_cache(s)) {
257 list_del(&s->root_caches_node);
259 list_del(&s->memcg_params.children_node);
260 list_del(&s->memcg_params.kmem_caches_node);
264 static inline int init_memcg_params(struct kmem_cache *s,
265 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
270 static inline void destroy_memcg_params(struct kmem_cache *s)
274 static inline void memcg_unlink_cache(struct kmem_cache *s)
277 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
280 * Figure out what the alignment of the objects will be given a set of
281 * flags, a user specified alignment and the size of the objects.
283 static unsigned int calculate_alignment(slab_flags_t flags,
284 unsigned int align, unsigned int size)
287 * If the user wants hardware cache aligned objects then follow that
288 * suggestion if the object is sufficiently large.
290 * The hardware cache alignment cannot override the specified
291 * alignment though. If that is greater then use it.
293 if (flags & SLAB_HWCACHE_ALIGN) {
296 ralign = cache_line_size();
297 while (size <= ralign / 2)
299 align = max(align, ralign);
302 if (align < ARCH_SLAB_MINALIGN)
303 align = ARCH_SLAB_MINALIGN;
305 return ALIGN(align, sizeof(void *));
309 * Find a mergeable slab cache
311 int slab_unmergeable(struct kmem_cache *s)
313 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
316 if (!is_root_cache(s))
326 * We may have set a slab to be unmergeable during bootstrap.
334 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
335 slab_flags_t flags, const char *name, void (*ctor)(void *))
337 struct kmem_cache *s;
345 size = ALIGN(size, sizeof(void *));
346 align = calculate_alignment(flags, align, size);
347 size = ALIGN(size, align);
348 flags = kmem_cache_flags(size, flags, name, NULL);
350 if (flags & SLAB_NEVER_MERGE)
353 list_for_each_entry_reverse(s, &slab_root_caches, root_caches_node) {
354 if (slab_unmergeable(s))
360 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
363 * Check if alignment is compatible.
364 * Courtesy of Adrian Drzewiecki
366 if ((s->size & ~(align - 1)) != s->size)
369 if (s->size - size >= sizeof(void *))
372 if (IS_ENABLED(CONFIG_SLAB) && align &&
373 (align > s->align || s->align % align))
381 static struct kmem_cache *create_cache(const char *name,
382 unsigned int object_size, unsigned int size, unsigned int align,
383 slab_flags_t flags, size_t useroffset,
384 size_t usersize, void (*ctor)(void *),
385 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
387 struct kmem_cache *s;
390 if (WARN_ON(useroffset + usersize > object_size))
391 useroffset = usersize = 0;
394 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
399 s->object_size = object_size;
403 s->useroffset = useroffset;
404 s->usersize = usersize;
406 err = init_memcg_params(s, memcg, root_cache);
410 err = __kmem_cache_create(s, flags);
415 list_add(&s->list, &slab_caches);
423 destroy_memcg_params(s);
424 kmem_cache_free(kmem_cache, s);
429 * kmem_cache_create_usercopy - Create a cache.
430 * @name: A string which is used in /proc/slabinfo to identify this cache.
431 * @size: The size of objects to be created in this cache.
432 * @align: The required alignment for the objects.
434 * @useroffset: Usercopy region offset
435 * @usersize: Usercopy region size
436 * @ctor: A constructor for the objects.
438 * Returns a ptr to the cache on success, NULL on failure.
439 * Cannot be called within a interrupt, but can be interrupted.
440 * The @ctor is run when new pages are allocated by the cache.
444 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
445 * to catch references to uninitialised memory.
447 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
448 * for buffer overruns.
450 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
451 * cacheline. This can be beneficial if you're counting cycles as closely
455 kmem_cache_create_usercopy(const char *name,
456 unsigned int size, unsigned int align,
457 slab_flags_t flags, size_t useroffset, size_t usersize,
458 void (*ctor)(void *))
460 struct kmem_cache *s = NULL;
461 const char *cache_name;
466 memcg_get_cache_ids();
468 mutex_lock(&slab_mutex);
470 err = kmem_cache_sanity_check(name, size);
475 /* Refuse requests with allocator specific flags */
476 if (flags & ~SLAB_FLAGS_PERMITTED) {
482 * Some allocators will constraint the set of valid flags to a subset
483 * of all flags. We expect them to define CACHE_CREATE_MASK in this
484 * case, and we'll just provide them with a sanitized version of the
487 flags &= CACHE_CREATE_MASK;
489 /* Fail closed on bad usersize of useroffset values. */
490 if (WARN_ON(!usersize && useroffset) ||
491 WARN_ON(size < usersize || size - usersize < useroffset))
492 usersize = useroffset = 0;
495 s = __kmem_cache_alias(name, size, align, flags, ctor);
499 cache_name = kstrdup_const(name, GFP_KERNEL);
505 s = create_cache(cache_name, size, size,
506 calculate_alignment(flags, align, size),
507 flags, useroffset, usersize, ctor, NULL, NULL);
510 kfree_const(cache_name);
514 mutex_unlock(&slab_mutex);
516 memcg_put_cache_ids();
521 if (flags & SLAB_PANIC)
522 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
525 pr_warn("kmem_cache_create(%s) failed with error %d\n",
533 EXPORT_SYMBOL(kmem_cache_create_usercopy);
536 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
537 slab_flags_t flags, void (*ctor)(void *))
539 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
542 EXPORT_SYMBOL(kmem_cache_create);
544 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
546 LIST_HEAD(to_destroy);
547 struct kmem_cache *s, *s2;
550 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
551 * @slab_caches_to_rcu_destroy list. The slab pages are freed
552 * through RCU and and the associated kmem_cache are dereferenced
553 * while freeing the pages, so the kmem_caches should be freed only
554 * after the pending RCU operations are finished. As rcu_barrier()
555 * is a pretty slow operation, we batch all pending destructions
558 mutex_lock(&slab_mutex);
559 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
560 mutex_unlock(&slab_mutex);
562 if (list_empty(&to_destroy))
567 list_for_each_entry_safe(s, s2, &to_destroy, list) {
568 #ifdef SLAB_SUPPORTS_SYSFS
569 sysfs_slab_release(s);
571 slab_kmem_cache_release(s);
576 static int shutdown_cache(struct kmem_cache *s)
578 /* free asan quarantined objects */
579 kasan_cache_shutdown(s);
581 if (__kmem_cache_shutdown(s) != 0)
584 memcg_unlink_cache(s);
587 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
588 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
589 schedule_work(&slab_caches_to_rcu_destroy_work);
591 #ifdef SLAB_SUPPORTS_SYSFS
592 sysfs_slab_release(s);
594 slab_kmem_cache_release(s);
601 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
603 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
604 * @memcg: The memory cgroup the new cache is for.
605 * @root_cache: The parent of the new cache.
607 * This function attempts to create a kmem cache that will serve allocation
608 * requests going from @memcg to @root_cache. The new cache inherits properties
611 void memcg_create_kmem_cache(struct mem_cgroup *memcg,
612 struct kmem_cache *root_cache)
614 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
615 struct cgroup_subsys_state *css = &memcg->css;
616 struct memcg_cache_array *arr;
617 struct kmem_cache *s = NULL;
624 mutex_lock(&slab_mutex);
627 * The memory cgroup could have been offlined while the cache
628 * creation work was pending.
630 if (memcg->kmem_state != KMEM_ONLINE)
633 idx = memcg_cache_id(memcg);
634 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
635 lockdep_is_held(&slab_mutex));
638 * Since per-memcg caches are created asynchronously on first
639 * allocation (see memcg_kmem_get_cache()), several threads can try to
640 * create the same cache, but only one of them may succeed.
642 if (arr->entries[idx])
645 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
646 cache_name = kasprintf(GFP_KERNEL, "%s(%llu:%s)", root_cache->name,
647 css->serial_nr, memcg_name_buf);
651 s = create_cache(cache_name, root_cache->object_size,
652 root_cache->size, root_cache->align,
653 root_cache->flags & CACHE_CREATE_MASK,
654 root_cache->useroffset, root_cache->usersize,
655 root_cache->ctor, memcg, root_cache);
657 * If we could not create a memcg cache, do not complain, because
658 * that's not critical at all as we can always proceed with the root
667 * Since readers won't lock (see cache_from_memcg_idx()), we need a
668 * barrier here to ensure nobody will see the kmem_cache partially
672 arr->entries[idx] = s;
675 mutex_unlock(&slab_mutex);
681 static void kmemcg_deactivate_workfn(struct work_struct *work)
683 struct kmem_cache *s = container_of(work, struct kmem_cache,
684 memcg_params.deact_work);
689 mutex_lock(&slab_mutex);
691 s->memcg_params.deact_fn(s);
693 mutex_unlock(&slab_mutex);
698 /* done, put the ref from slab_deactivate_memcg_cache_rcu_sched() */
699 css_put(&s->memcg_params.memcg->css);
702 static void kmemcg_deactivate_rcufn(struct rcu_head *head)
704 struct kmem_cache *s = container_of(head, struct kmem_cache,
705 memcg_params.deact_rcu_head);
708 * We need to grab blocking locks. Bounce to ->deact_work. The
709 * work item shares the space with the RCU head and can't be
710 * initialized eariler.
712 INIT_WORK(&s->memcg_params.deact_work, kmemcg_deactivate_workfn);
713 queue_work(memcg_kmem_cache_wq, &s->memcg_params.deact_work);
717 * slab_deactivate_memcg_cache_rcu_sched - schedule deactivation after a
718 * sched RCU grace period
719 * @s: target kmem_cache
720 * @deact_fn: deactivation function to call
722 * Schedule @deact_fn to be invoked with online cpus, mems and slab_mutex
723 * held after a sched RCU grace period. The slab is guaranteed to stay
724 * alive until @deact_fn is finished. This is to be used from
725 * __kmemcg_cache_deactivate().
727 void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
728 void (*deact_fn)(struct kmem_cache *))
730 if (WARN_ON_ONCE(is_root_cache(s)) ||
731 WARN_ON_ONCE(s->memcg_params.deact_fn))
734 /* pin memcg so that @s doesn't get destroyed in the middle */
735 css_get(&s->memcg_params.memcg->css);
737 s->memcg_params.deact_fn = deact_fn;
738 call_rcu_sched(&s->memcg_params.deact_rcu_head, kmemcg_deactivate_rcufn);
741 void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
744 struct memcg_cache_array *arr;
745 struct kmem_cache *s, *c;
747 idx = memcg_cache_id(memcg);
752 mutex_lock(&slab_mutex);
753 list_for_each_entry(s, &slab_root_caches, root_caches_node) {
754 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
755 lockdep_is_held(&slab_mutex));
756 c = arr->entries[idx];
760 __kmemcg_cache_deactivate(c);
761 arr->entries[idx] = NULL;
763 mutex_unlock(&slab_mutex);
769 void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
771 struct kmem_cache *s, *s2;
776 mutex_lock(&slab_mutex);
777 list_for_each_entry_safe(s, s2, &memcg->kmem_caches,
778 memcg_params.kmem_caches_node) {
780 * The cgroup is about to be freed and therefore has no charges
781 * left. Hence, all its caches must be empty by now.
783 BUG_ON(shutdown_cache(s));
785 mutex_unlock(&slab_mutex);
791 static int shutdown_memcg_caches(struct kmem_cache *s)
793 struct memcg_cache_array *arr;
794 struct kmem_cache *c, *c2;
798 BUG_ON(!is_root_cache(s));
801 * First, shutdown active caches, i.e. caches that belong to online
804 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
805 lockdep_is_held(&slab_mutex));
806 for_each_memcg_cache_index(i) {
810 if (shutdown_cache(c))
812 * The cache still has objects. Move it to a temporary
813 * list so as not to try to destroy it for a second
814 * time while iterating over inactive caches below.
816 list_move(&c->memcg_params.children_node, &busy);
819 * The cache is empty and will be destroyed soon. Clear
820 * the pointer to it in the memcg_caches array so that
821 * it will never be accessed even if the root cache
824 arr->entries[i] = NULL;
828 * Second, shutdown all caches left from memory cgroups that are now
831 list_for_each_entry_safe(c, c2, &s->memcg_params.children,
832 memcg_params.children_node)
835 list_splice(&busy, &s->memcg_params.children);
838 * A cache being destroyed must be empty. In particular, this means
839 * that all per memcg caches attached to it must be empty too.
841 if (!list_empty(&s->memcg_params.children))
846 static inline int shutdown_memcg_caches(struct kmem_cache *s)
850 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
852 void slab_kmem_cache_release(struct kmem_cache *s)
854 __kmem_cache_release(s);
855 destroy_memcg_params(s);
856 kfree_const(s->name);
857 kmem_cache_free(kmem_cache, s);
860 void kmem_cache_destroy(struct kmem_cache *s)
870 mutex_lock(&slab_mutex);
876 err = shutdown_memcg_caches(s);
878 err = shutdown_cache(s);
881 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
886 mutex_unlock(&slab_mutex);
891 EXPORT_SYMBOL(kmem_cache_destroy);
894 * kmem_cache_shrink - Shrink a cache.
895 * @cachep: The cache to shrink.
897 * Releases as many slabs as possible for a cache.
898 * To help debugging, a zero exit status indicates all slabs were released.
900 int kmem_cache_shrink(struct kmem_cache *cachep)
906 kasan_cache_shrink(cachep);
907 ret = __kmem_cache_shrink(cachep);
912 EXPORT_SYMBOL(kmem_cache_shrink);
914 bool slab_is_available(void)
916 return slab_state >= UP;
920 /* Create a cache during boot when no slab services are available yet */
921 void __init create_boot_cache(struct kmem_cache *s, const char *name,
922 unsigned int size, slab_flags_t flags,
923 unsigned int useroffset, unsigned int usersize)
928 s->size = s->object_size = size;
929 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
930 s->useroffset = useroffset;
931 s->usersize = usersize;
933 slab_init_memcg_params(s);
935 err = __kmem_cache_create(s, flags);
938 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
941 s->refcount = -1; /* Exempt from merging for now */
944 struct kmem_cache *__init create_kmalloc_cache(const char *name,
945 unsigned int size, slab_flags_t flags,
946 unsigned int useroffset, unsigned int usersize)
948 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
951 panic("Out of memory when creating slab %s\n", name);
953 create_boot_cache(s, name, size, flags, useroffset, usersize);
954 list_add(&s->list, &slab_caches);
960 struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
961 EXPORT_SYMBOL(kmalloc_caches);
963 #ifdef CONFIG_ZONE_DMA
964 struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1] __ro_after_init;
965 EXPORT_SYMBOL(kmalloc_dma_caches);
969 * Conversion table for small slabs sizes / 8 to the index in the
970 * kmalloc array. This is necessary for slabs < 192 since we have non power
971 * of two cache sizes there. The size of larger slabs can be determined using
974 static u8 size_index[24] __ro_after_init = {
1001 static inline unsigned int size_index_elem(unsigned int bytes)
1003 return (bytes - 1) / 8;
1007 * Find the kmem_cache structure that serves a given size of
1010 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
1014 if (unlikely(size > KMALLOC_MAX_SIZE)) {
1015 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
1021 return ZERO_SIZE_PTR;
1023 index = size_index[size_index_elem(size)];
1025 index = fls(size - 1);
1027 #ifdef CONFIG_ZONE_DMA
1028 if (unlikely((flags & GFP_DMA)))
1029 return kmalloc_dma_caches[index];
1032 return kmalloc_caches[index];
1036 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
1037 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
1040 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
1041 {NULL, 0}, {"kmalloc-96", 96},
1042 {"kmalloc-192", 192}, {"kmalloc-8", 8},
1043 {"kmalloc-16", 16}, {"kmalloc-32", 32},
1044 {"kmalloc-64", 64}, {"kmalloc-128", 128},
1045 {"kmalloc-256", 256}, {"kmalloc-512", 512},
1046 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
1047 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
1048 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
1049 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
1050 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
1051 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
1052 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
1053 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
1054 {"kmalloc-67108864", 67108864}
1058 * Patch up the size_index table if we have strange large alignment
1059 * requirements for the kmalloc array. This is only the case for
1060 * MIPS it seems. The standard arches will not generate any code here.
1062 * Largest permitted alignment is 256 bytes due to the way we
1063 * handle the index determination for the smaller caches.
1065 * Make sure that nothing crazy happens if someone starts tinkering
1066 * around with ARCH_KMALLOC_MINALIGN
1068 void __init setup_kmalloc_cache_index_table(void)
1072 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
1073 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
1075 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
1076 unsigned int elem = size_index_elem(i);
1078 if (elem >= ARRAY_SIZE(size_index))
1080 size_index[elem] = KMALLOC_SHIFT_LOW;
1083 if (KMALLOC_MIN_SIZE >= 64) {
1085 * The 96 byte size cache is not used if the alignment
1088 for (i = 64 + 8; i <= 96; i += 8)
1089 size_index[size_index_elem(i)] = 7;
1093 if (KMALLOC_MIN_SIZE >= 128) {
1095 * The 192 byte sized cache is not used if the alignment
1096 * is 128 byte. Redirect kmalloc to use the 256 byte cache
1099 for (i = 128 + 8; i <= 192; i += 8)
1100 size_index[size_index_elem(i)] = 8;
1104 static void __init new_kmalloc_cache(int idx, slab_flags_t flags)
1106 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
1107 kmalloc_info[idx].size, flags, 0,
1108 kmalloc_info[idx].size);
1112 * Create the kmalloc array. Some of the regular kmalloc arrays
1113 * may already have been created because they were needed to
1114 * enable allocations for slab creation.
1116 void __init create_kmalloc_caches(slab_flags_t flags)
1120 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
1121 if (!kmalloc_caches[i])
1122 new_kmalloc_cache(i, flags);
1125 * Caches that are not of the two-to-the-power-of size.
1126 * These have to be created immediately after the
1127 * earlier power of two caches
1129 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
1130 new_kmalloc_cache(1, flags);
1131 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
1132 new_kmalloc_cache(2, flags);
1135 /* Kmalloc array is now usable */
1138 #ifdef CONFIG_ZONE_DMA
1139 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
1140 struct kmem_cache *s = kmalloc_caches[i];
1143 unsigned int size = kmalloc_size(i);
1144 char *n = kasprintf(GFP_NOWAIT,
1145 "dma-kmalloc-%u", size);
1148 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
1149 size, SLAB_CACHE_DMA | flags, 0, 0);
1154 #endif /* !CONFIG_SLOB */
1157 * To avoid unnecessary overhead, we pass through large allocation requests
1158 * directly to the page allocator. We use __GFP_COMP, because we will need to
1159 * know the allocation order to free the pages properly in kfree.
1161 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1166 flags |= __GFP_COMP;
1167 page = alloc_pages(flags, order);
1168 ret = page ? page_address(page) : NULL;
1169 kmemleak_alloc(ret, size, 1, flags);
1170 kasan_kmalloc_large(ret, size, flags);
1173 EXPORT_SYMBOL(kmalloc_order);
1175 #ifdef CONFIG_TRACING
1176 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1178 void *ret = kmalloc_order(size, flags, order);
1179 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1182 EXPORT_SYMBOL(kmalloc_order_trace);
1185 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1186 /* Randomize a generic freelist */
1187 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1193 for (i = 0; i < count; i++)
1196 /* Fisher-Yates shuffle */
1197 for (i = count - 1; i > 0; i--) {
1198 rand = prandom_u32_state(state);
1200 swap(list[i], list[rand]);
1204 /* Create a random sequence per cache */
1205 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1208 struct rnd_state state;
1210 if (count < 2 || cachep->random_seq)
1213 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1214 if (!cachep->random_seq)
1217 /* Get best entropy at this stage of boot */
1218 prandom_seed_state(&state, get_random_long());
1220 freelist_randomize(&state, cachep->random_seq, count);
1224 /* Destroy the per-cache random freelist sequence */
1225 void cache_random_seq_destroy(struct kmem_cache *cachep)
1227 kfree(cachep->random_seq);
1228 cachep->random_seq = NULL;
1230 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1232 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1234 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1236 #define SLABINFO_RIGHTS S_IRUSR
1239 static void print_slabinfo_header(struct seq_file *m)
1242 * Output format version, so at least we can change it
1243 * without _too_ many complaints.
1245 #ifdef CONFIG_DEBUG_SLAB
1246 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1248 seq_puts(m, "slabinfo - version: 2.1\n");
1250 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1251 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1252 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1253 #ifdef CONFIG_DEBUG_SLAB
1254 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1255 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1260 void *slab_start(struct seq_file *m, loff_t *pos)
1262 mutex_lock(&slab_mutex);
1263 return seq_list_start(&slab_root_caches, *pos);
1266 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1268 return seq_list_next(p, &slab_root_caches, pos);
1271 void slab_stop(struct seq_file *m, void *p)
1273 mutex_unlock(&slab_mutex);
1277 memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1279 struct kmem_cache *c;
1280 struct slabinfo sinfo;
1282 if (!is_root_cache(s))
1285 for_each_memcg_cache(c, s) {
1286 memset(&sinfo, 0, sizeof(sinfo));
1287 get_slabinfo(c, &sinfo);
1289 info->active_slabs += sinfo.active_slabs;
1290 info->num_slabs += sinfo.num_slabs;
1291 info->shared_avail += sinfo.shared_avail;
1292 info->active_objs += sinfo.active_objs;
1293 info->num_objs += sinfo.num_objs;
1297 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1299 struct slabinfo sinfo;
1301 memset(&sinfo, 0, sizeof(sinfo));
1302 get_slabinfo(s, &sinfo);
1304 memcg_accumulate_slabinfo(s, &sinfo);
1306 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1307 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1308 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1310 seq_printf(m, " : tunables %4u %4u %4u",
1311 sinfo.limit, sinfo.batchcount, sinfo.shared);
1312 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1313 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1314 slabinfo_show_stats(m, s);
1318 static int slab_show(struct seq_file *m, void *p)
1320 struct kmem_cache *s = list_entry(p, struct kmem_cache, root_caches_node);
1322 if (p == slab_root_caches.next)
1323 print_slabinfo_header(m);
1328 void dump_unreclaimable_slab(void)
1330 struct kmem_cache *s, *s2;
1331 struct slabinfo sinfo;
1334 * Here acquiring slab_mutex is risky since we don't prefer to get
1335 * sleep in oom path. But, without mutex hold, it may introduce a
1337 * Use mutex_trylock to protect the list traverse, dump nothing
1338 * without acquiring the mutex.
1340 if (!mutex_trylock(&slab_mutex)) {
1341 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1345 pr_info("Unreclaimable slab info:\n");
1346 pr_info("Name Used Total\n");
1348 list_for_each_entry_safe(s, s2, &slab_caches, list) {
1349 if (!is_root_cache(s) || (s->flags & SLAB_RECLAIM_ACCOUNT))
1352 get_slabinfo(s, &sinfo);
1354 if (sinfo.num_objs > 0)
1355 pr_info("%-17s %10luKB %10luKB\n", cache_name(s),
1356 (sinfo.active_objs * s->size) / 1024,
1357 (sinfo.num_objs * s->size) / 1024);
1359 mutex_unlock(&slab_mutex);
1362 #if defined(CONFIG_MEMCG)
1363 void *memcg_slab_start(struct seq_file *m, loff_t *pos)
1365 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1367 mutex_lock(&slab_mutex);
1368 return seq_list_start(&memcg->kmem_caches, *pos);
1371 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos)
1373 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1375 return seq_list_next(p, &memcg->kmem_caches, pos);
1378 void memcg_slab_stop(struct seq_file *m, void *p)
1380 mutex_unlock(&slab_mutex);
1383 int memcg_slab_show(struct seq_file *m, void *p)
1385 struct kmem_cache *s = list_entry(p, struct kmem_cache,
1386 memcg_params.kmem_caches_node);
1387 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1389 if (p == memcg->kmem_caches.next)
1390 print_slabinfo_header(m);
1397 * slabinfo_op - iterator that generates /proc/slabinfo
1406 * num-pages-per-slab
1407 * + further values on SMP and with statistics enabled
1409 static const struct seq_operations slabinfo_op = {
1410 .start = slab_start,
1416 static int slabinfo_open(struct inode *inode, struct file *file)
1418 return seq_open(file, &slabinfo_op);
1421 static const struct file_operations proc_slabinfo_operations = {
1422 .open = slabinfo_open,
1424 .write = slabinfo_write,
1425 .llseek = seq_lseek,
1426 .release = seq_release,
1429 static int __init slab_proc_init(void)
1431 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1432 &proc_slabinfo_operations);
1435 module_init(slab_proc_init);
1436 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1438 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1447 if (ks >= new_size) {
1448 kasan_krealloc((void *)p, new_size, flags);
1452 ret = kmalloc_track_caller(new_size, flags);
1460 * __krealloc - like krealloc() but don't free @p.
1461 * @p: object to reallocate memory for.
1462 * @new_size: how many bytes of memory are required.
1463 * @flags: the type of memory to allocate.
1465 * This function is like krealloc() except it never frees the originally
1466 * allocated buffer. Use this if you don't want to free the buffer immediately
1467 * like, for example, with RCU.
1469 void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1471 if (unlikely(!new_size))
1472 return ZERO_SIZE_PTR;
1474 return __do_krealloc(p, new_size, flags);
1477 EXPORT_SYMBOL(__krealloc);
1480 * krealloc - reallocate memory. The contents will remain unchanged.
1481 * @p: object to reallocate memory for.
1482 * @new_size: how many bytes of memory are required.
1483 * @flags: the type of memory to allocate.
1485 * The contents of the object pointed to are preserved up to the
1486 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1487 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1488 * %NULL pointer, the object pointed to is freed.
1490 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1494 if (unlikely(!new_size)) {
1496 return ZERO_SIZE_PTR;
1499 ret = __do_krealloc(p, new_size, flags);
1500 if (ret && p != ret)
1505 EXPORT_SYMBOL(krealloc);
1508 * kzfree - like kfree but zero memory
1509 * @p: object to free memory of
1511 * The memory of the object @p points to is zeroed before freed.
1512 * If @p is %NULL, kzfree() does nothing.
1514 * Note: this function zeroes the whole allocated buffer which can be a good
1515 * deal bigger than the requested buffer size passed to kmalloc(). So be
1516 * careful when using this function in performance sensitive code.
1518 void kzfree(const void *p)
1521 void *mem = (void *)p;
1523 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1529 EXPORT_SYMBOL(kzfree);
1531 /* Tracepoints definitions. */
1532 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1533 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1534 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1535 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1536 EXPORT_TRACEPOINT_SYMBOL(kfree);
1537 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);