1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
39 #include <trace/events/kmem.h>
45 * 1. slab_mutex (Global Mutex)
47 * 3. slab_lock(page) (Only on some arches and for debugging)
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * Overloading of page flags that are otherwise used for LRU management.
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
119 static inline int kmem_cache_debug(struct kmem_cache *s)
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
128 void *fixup_red_left(struct kmem_cache *s, void *p)
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
146 * Issues still to be resolved:
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150 * - Variable sizing of the per node arrays
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
163 #define MIN_PARTIAL 5
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
170 #define MAX_PARTIAL 10
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
194 /* Internal SLUB flags */
196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
201 * Tracking user of a slab.
203 #define TRACK_ADDRS_COUNT 16
205 unsigned long addr; /* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
231 #ifdef CONFIG_SLUB_STATS
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
236 raw_cpu_inc(s->cpu_slab->stat[si]);
240 /********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache *s,
263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 (unsigned long)ptr_addr);
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
269 return freelist_dereference(s, object + s->offset);
272 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
275 prefetch(freelist_dereference(s, object + s->offset));
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
280 unsigned long freepointer_addr;
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s, object);
286 freepointer_addr = (unsigned long)object + s->offset;
287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 return freelist_ptr(s, p, freepointer_addr);
291 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
293 unsigned long freeptr_addr = (unsigned long)object + s->offset;
295 #ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object == fp); /* naive detection of double free or corruption */
299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
302 /* Loop over all objects in a slab */
303 #define for_each_object(__p, __s, __addr, __objects) \
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
313 /* Determine object index from a given position */
314 static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
316 return (p - addr) / s->size;
319 static inline unsigned int order_objects(unsigned int order, unsigned int size, unsigned int reserved)
321 return (((unsigned int)PAGE_SIZE << order) - reserved) / size;
324 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
325 unsigned int size, unsigned int reserved)
327 struct kmem_cache_order_objects x = {
328 (order << OO_SHIFT) + order_objects(order, size, reserved)
334 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
336 return x.x >> OO_SHIFT;
339 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
341 return x.x & OO_MASK;
345 * Per slab locking using the pagelock
347 static __always_inline void slab_lock(struct page *page)
349 VM_BUG_ON_PAGE(PageTail(page), page);
350 bit_spin_lock(PG_locked, &page->flags);
353 static __always_inline void slab_unlock(struct page *page)
355 VM_BUG_ON_PAGE(PageTail(page), page);
356 __bit_spin_unlock(PG_locked, &page->flags);
359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
362 tmp.counters = counters_new;
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_refcount. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_refcount, so
367 * be careful and only assign to the fields we need.
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 set_page_slub_counters(page, counters_new);
403 stat(s, CMPXCHG_DOUBLE_FAIL);
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
429 local_irq_save(flags);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 set_page_slub_counters(page, counters_new);
436 local_irq_restore(flags);
440 local_irq_restore(flags);
444 stat(s, CMPXCHG_DOUBLE_FAIL);
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
453 #ifdef CONFIG_SLUB_DEBUG
455 * Determine a map of object in use on a page.
457 * Node listlock must be held to guarantee that the page does
458 * not vanish from under us.
460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
463 void *addr = page_address(page);
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
469 static inline unsigned int size_from_object(struct kmem_cache *s)
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
477 static inline void *restore_red_left(struct kmem_cache *s, void *p)
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
491 static slab_flags_t slub_debug;
494 static char *slub_debug_slabs;
495 static int disable_higher_order_debug;
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
503 static inline void metadata_access_enable(void)
505 kasan_disable_current();
508 static inline void metadata_access_disable(void)
510 kasan_enable_current();
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
526 base = page_address(page);
527 object = restore_red_left(s, object);
528 if (object < base || object >= base + page->objects * s->size ||
529 (object - base) % s->size) {
536 static void print_section(char *level, char *text, u8 *addr,
539 metadata_access_enable();
540 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
542 metadata_access_disable();
545 static struct track *get_track(struct kmem_cache *s, void *object,
546 enum track_item alloc)
551 p = object + s->offset + sizeof(void *);
553 p = object + s->inuse;
558 static void set_track(struct kmem_cache *s, void *object,
559 enum track_item alloc, unsigned long addr)
561 struct track *p = get_track(s, object, alloc);
564 #ifdef CONFIG_STACKTRACE
565 struct stack_trace trace;
568 trace.nr_entries = 0;
569 trace.max_entries = TRACK_ADDRS_COUNT;
570 trace.entries = p->addrs;
572 metadata_access_enable();
573 save_stack_trace(&trace);
574 metadata_access_disable();
576 /* See rant in lockdep.c */
577 if (trace.nr_entries != 0 &&
578 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
581 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
585 p->cpu = smp_processor_id();
586 p->pid = current->pid;
589 memset(p, 0, sizeof(struct track));
592 static void init_tracking(struct kmem_cache *s, void *object)
594 if (!(s->flags & SLAB_STORE_USER))
597 set_track(s, object, TRACK_FREE, 0UL);
598 set_track(s, object, TRACK_ALLOC, 0UL);
601 static void print_track(const char *s, struct track *t, unsigned long pr_time)
606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
608 #ifdef CONFIG_STACKTRACE
611 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
613 pr_err("\t%pS\n", (void *)t->addrs[i]);
620 static void print_tracking(struct kmem_cache *s, void *object)
622 unsigned long pr_time = jiffies;
623 if (!(s->flags & SLAB_STORE_USER))
626 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
627 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
630 static void print_page_info(struct page *page)
632 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
633 page, page->objects, page->inuse, page->freelist, page->flags);
637 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
639 struct va_format vaf;
645 pr_err("=============================================================================\n");
646 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
647 pr_err("-----------------------------------------------------------------------------\n\n");
649 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
653 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
655 struct va_format vaf;
661 pr_err("FIX %s: %pV\n", s->name, &vaf);
665 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
667 unsigned int off; /* Offset of last byte */
668 u8 *addr = page_address(page);
670 print_tracking(s, p);
672 print_page_info(page);
674 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
675 p, p - addr, get_freepointer(s, p));
677 if (s->flags & SLAB_RED_ZONE)
678 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
680 else if (p > addr + 16)
681 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
683 print_section(KERN_ERR, "Object ", p,
684 min_t(unsigned int, s->object_size, PAGE_SIZE));
685 if (s->flags & SLAB_RED_ZONE)
686 print_section(KERN_ERR, "Redzone ", p + s->object_size,
687 s->inuse - s->object_size);
690 off = s->offset + sizeof(void *);
694 if (s->flags & SLAB_STORE_USER)
695 off += 2 * sizeof(struct track);
697 off += kasan_metadata_size(s);
699 if (off != size_from_object(s))
700 /* Beginning of the filler is the free pointer */
701 print_section(KERN_ERR, "Padding ", p + off,
702 size_from_object(s) - off);
707 void object_err(struct kmem_cache *s, struct page *page,
708 u8 *object, char *reason)
710 slab_bug(s, "%s", reason);
711 print_trailer(s, page, object);
714 static void slab_err(struct kmem_cache *s, struct page *page,
715 const char *fmt, ...)
721 vsnprintf(buf, sizeof(buf), fmt, args);
723 slab_bug(s, "%s", buf);
724 print_page_info(page);
728 static void init_object(struct kmem_cache *s, void *object, u8 val)
732 if (s->flags & SLAB_RED_ZONE)
733 memset(p - s->red_left_pad, val, s->red_left_pad);
735 if (s->flags & __OBJECT_POISON) {
736 memset(p, POISON_FREE, s->object_size - 1);
737 p[s->object_size - 1] = POISON_END;
740 if (s->flags & SLAB_RED_ZONE)
741 memset(p + s->object_size, val, s->inuse - s->object_size);
744 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
745 void *from, void *to)
747 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
748 memset(from, data, to - from);
751 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
752 u8 *object, char *what,
753 u8 *start, unsigned int value, unsigned int bytes)
758 metadata_access_enable();
759 fault = memchr_inv(start, value, bytes);
760 metadata_access_disable();
765 while (end > fault && end[-1] == value)
768 slab_bug(s, "%s overwritten", what);
769 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
770 fault, end - 1, fault[0], value);
771 print_trailer(s, page, object);
773 restore_bytes(s, what, value, fault, end);
781 * Bytes of the object to be managed.
782 * If the freepointer may overlay the object then the free
783 * pointer is the first word of the object.
785 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
788 * object + s->object_size
789 * Padding to reach word boundary. This is also used for Redzoning.
790 * Padding is extended by another word if Redzoning is enabled and
791 * object_size == inuse.
793 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
794 * 0xcc (RED_ACTIVE) for objects in use.
797 * Meta data starts here.
799 * A. Free pointer (if we cannot overwrite object on free)
800 * B. Tracking data for SLAB_STORE_USER
801 * C. Padding to reach required alignment boundary or at mininum
802 * one word if debugging is on to be able to detect writes
803 * before the word boundary.
805 * Padding is done using 0x5a (POISON_INUSE)
808 * Nothing is used beyond s->size.
810 * If slabcaches are merged then the object_size and inuse boundaries are mostly
811 * ignored. And therefore no slab options that rely on these boundaries
812 * may be used with merged slabcaches.
815 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
817 unsigned long off = s->inuse; /* The end of info */
820 /* Freepointer is placed after the object. */
821 off += sizeof(void *);
823 if (s->flags & SLAB_STORE_USER)
824 /* We also have user information there */
825 off += 2 * sizeof(struct track);
827 off += kasan_metadata_size(s);
829 if (size_from_object(s) == off)
832 return check_bytes_and_report(s, page, p, "Object padding",
833 p + off, POISON_INUSE, size_from_object(s) - off);
836 /* Check the pad bytes at the end of a slab page */
837 static int slab_pad_check(struct kmem_cache *s, struct page *page)
846 if (!(s->flags & SLAB_POISON))
849 start = page_address(page);
850 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
851 end = start + length;
852 remainder = length % s->size;
856 pad = end - remainder;
857 metadata_access_enable();
858 fault = memchr_inv(pad, POISON_INUSE, remainder);
859 metadata_access_disable();
862 while (end > fault && end[-1] == POISON_INUSE)
865 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
866 print_section(KERN_ERR, "Padding ", pad, remainder);
868 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
872 static int check_object(struct kmem_cache *s, struct page *page,
873 void *object, u8 val)
876 u8 *endobject = object + s->object_size;
878 if (s->flags & SLAB_RED_ZONE) {
879 if (!check_bytes_and_report(s, page, object, "Redzone",
880 object - s->red_left_pad, val, s->red_left_pad))
883 if (!check_bytes_and_report(s, page, object, "Redzone",
884 endobject, val, s->inuse - s->object_size))
887 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
888 check_bytes_and_report(s, page, p, "Alignment padding",
889 endobject, POISON_INUSE,
890 s->inuse - s->object_size);
894 if (s->flags & SLAB_POISON) {
895 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
896 (!check_bytes_and_report(s, page, p, "Poison", p,
897 POISON_FREE, s->object_size - 1) ||
898 !check_bytes_and_report(s, page, p, "Poison",
899 p + s->object_size - 1, POISON_END, 1)))
902 * check_pad_bytes cleans up on its own.
904 check_pad_bytes(s, page, p);
907 if (!s->offset && val == SLUB_RED_ACTIVE)
909 * Object and freepointer overlap. Cannot check
910 * freepointer while object is allocated.
914 /* Check free pointer validity */
915 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
916 object_err(s, page, p, "Freepointer corrupt");
918 * No choice but to zap it and thus lose the remainder
919 * of the free objects in this slab. May cause
920 * another error because the object count is now wrong.
922 set_freepointer(s, p, NULL);
928 static int check_slab(struct kmem_cache *s, struct page *page)
932 VM_BUG_ON(!irqs_disabled());
934 if (!PageSlab(page)) {
935 slab_err(s, page, "Not a valid slab page");
939 maxobj = order_objects(compound_order(page), s->size, s->reserved);
940 if (page->objects > maxobj) {
941 slab_err(s, page, "objects %u > max %u",
942 page->objects, maxobj);
945 if (page->inuse > page->objects) {
946 slab_err(s, page, "inuse %u > max %u",
947 page->inuse, page->objects);
950 /* Slab_pad_check fixes things up after itself */
951 slab_pad_check(s, page);
956 * Determine if a certain object on a page is on the freelist. Must hold the
957 * slab lock to guarantee that the chains are in a consistent state.
959 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
967 while (fp && nr <= page->objects) {
970 if (!check_valid_pointer(s, page, fp)) {
972 object_err(s, page, object,
973 "Freechain corrupt");
974 set_freepointer(s, object, NULL);
976 slab_err(s, page, "Freepointer corrupt");
977 page->freelist = NULL;
978 page->inuse = page->objects;
979 slab_fix(s, "Freelist cleared");
985 fp = get_freepointer(s, object);
989 max_objects = order_objects(compound_order(page), s->size, s->reserved);
990 if (max_objects > MAX_OBJS_PER_PAGE)
991 max_objects = MAX_OBJS_PER_PAGE;
993 if (page->objects != max_objects) {
994 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
995 page->objects, max_objects);
996 page->objects = max_objects;
997 slab_fix(s, "Number of objects adjusted.");
999 if (page->inuse != page->objects - nr) {
1000 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1001 page->inuse, page->objects - nr);
1002 page->inuse = page->objects - nr;
1003 slab_fix(s, "Object count adjusted.");
1005 return search == NULL;
1008 static void trace(struct kmem_cache *s, struct page *page, void *object,
1011 if (s->flags & SLAB_TRACE) {
1012 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1014 alloc ? "alloc" : "free",
1015 object, page->inuse,
1019 print_section(KERN_INFO, "Object ", (void *)object,
1027 * Tracking of fully allocated slabs for debugging purposes.
1029 static void add_full(struct kmem_cache *s,
1030 struct kmem_cache_node *n, struct page *page)
1032 if (!(s->flags & SLAB_STORE_USER))
1035 lockdep_assert_held(&n->list_lock);
1036 list_add(&page->lru, &n->full);
1039 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1041 if (!(s->flags & SLAB_STORE_USER))
1044 lockdep_assert_held(&n->list_lock);
1045 list_del(&page->lru);
1048 /* Tracking of the number of slabs for debugging purposes */
1049 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1051 struct kmem_cache_node *n = get_node(s, node);
1053 return atomic_long_read(&n->nr_slabs);
1056 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1058 return atomic_long_read(&n->nr_slabs);
1061 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1063 struct kmem_cache_node *n = get_node(s, node);
1066 * May be called early in order to allocate a slab for the
1067 * kmem_cache_node structure. Solve the chicken-egg
1068 * dilemma by deferring the increment of the count during
1069 * bootstrap (see early_kmem_cache_node_alloc).
1072 atomic_long_inc(&n->nr_slabs);
1073 atomic_long_add(objects, &n->total_objects);
1076 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1078 struct kmem_cache_node *n = get_node(s, node);
1080 atomic_long_dec(&n->nr_slabs);
1081 atomic_long_sub(objects, &n->total_objects);
1084 /* Object debug checks for alloc/free paths */
1085 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1088 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1091 init_object(s, object, SLUB_RED_INACTIVE);
1092 init_tracking(s, object);
1095 static inline int alloc_consistency_checks(struct kmem_cache *s,
1097 void *object, unsigned long addr)
1099 if (!check_slab(s, page))
1102 if (!check_valid_pointer(s, page, object)) {
1103 object_err(s, page, object, "Freelist Pointer check fails");
1107 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1113 static noinline int alloc_debug_processing(struct kmem_cache *s,
1115 void *object, unsigned long addr)
1117 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1118 if (!alloc_consistency_checks(s, page, object, addr))
1122 /* Success perform special debug activities for allocs */
1123 if (s->flags & SLAB_STORE_USER)
1124 set_track(s, object, TRACK_ALLOC, addr);
1125 trace(s, page, object, 1);
1126 init_object(s, object, SLUB_RED_ACTIVE);
1130 if (PageSlab(page)) {
1132 * If this is a slab page then lets do the best we can
1133 * to avoid issues in the future. Marking all objects
1134 * as used avoids touching the remaining objects.
1136 slab_fix(s, "Marking all objects used");
1137 page->inuse = page->objects;
1138 page->freelist = NULL;
1143 static inline int free_consistency_checks(struct kmem_cache *s,
1144 struct page *page, void *object, unsigned long addr)
1146 if (!check_valid_pointer(s, page, object)) {
1147 slab_err(s, page, "Invalid object pointer 0x%p", object);
1151 if (on_freelist(s, page, object)) {
1152 object_err(s, page, object, "Object already free");
1156 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1159 if (unlikely(s != page->slab_cache)) {
1160 if (!PageSlab(page)) {
1161 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1163 } else if (!page->slab_cache) {
1164 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1168 object_err(s, page, object,
1169 "page slab pointer corrupt.");
1175 /* Supports checking bulk free of a constructed freelist */
1176 static noinline int free_debug_processing(
1177 struct kmem_cache *s, struct page *page,
1178 void *head, void *tail, int bulk_cnt,
1181 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1182 void *object = head;
1184 unsigned long uninitialized_var(flags);
1187 spin_lock_irqsave(&n->list_lock, flags);
1190 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1191 if (!check_slab(s, page))
1198 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1199 if (!free_consistency_checks(s, page, object, addr))
1203 if (s->flags & SLAB_STORE_USER)
1204 set_track(s, object, TRACK_FREE, addr);
1205 trace(s, page, object, 0);
1206 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1207 init_object(s, object, SLUB_RED_INACTIVE);
1209 /* Reached end of constructed freelist yet? */
1210 if (object != tail) {
1211 object = get_freepointer(s, object);
1217 if (cnt != bulk_cnt)
1218 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1222 spin_unlock_irqrestore(&n->list_lock, flags);
1224 slab_fix(s, "Object at 0x%p not freed", object);
1228 static int __init setup_slub_debug(char *str)
1230 slub_debug = DEBUG_DEFAULT_FLAGS;
1231 if (*str++ != '=' || !*str)
1233 * No options specified. Switch on full debugging.
1239 * No options but restriction on slabs. This means full
1240 * debugging for slabs matching a pattern.
1247 * Switch off all debugging measures.
1252 * Determine which debug features should be switched on
1254 for (; *str && *str != ','; str++) {
1255 switch (tolower(*str)) {
1257 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1260 slub_debug |= SLAB_RED_ZONE;
1263 slub_debug |= SLAB_POISON;
1266 slub_debug |= SLAB_STORE_USER;
1269 slub_debug |= SLAB_TRACE;
1272 slub_debug |= SLAB_FAILSLAB;
1276 * Avoid enabling debugging on caches if its minimum
1277 * order would increase as a result.
1279 disable_higher_order_debug = 1;
1282 pr_err("slub_debug option '%c' unknown. skipped\n",
1289 slub_debug_slabs = str + 1;
1294 __setup("slub_debug", setup_slub_debug);
1296 slab_flags_t kmem_cache_flags(unsigned int object_size,
1297 slab_flags_t flags, const char *name,
1298 void (*ctor)(void *))
1301 * Enable debugging if selected on the kernel commandline.
1303 if (slub_debug && (!slub_debug_slabs || (name &&
1304 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1305 flags |= slub_debug;
1309 #else /* !CONFIG_SLUB_DEBUG */
1310 static inline void setup_object_debug(struct kmem_cache *s,
1311 struct page *page, void *object) {}
1313 static inline int alloc_debug_processing(struct kmem_cache *s,
1314 struct page *page, void *object, unsigned long addr) { return 0; }
1316 static inline int free_debug_processing(
1317 struct kmem_cache *s, struct page *page,
1318 void *head, void *tail, int bulk_cnt,
1319 unsigned long addr) { return 0; }
1321 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1323 static inline int check_object(struct kmem_cache *s, struct page *page,
1324 void *object, u8 val) { return 1; }
1325 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1326 struct page *page) {}
1327 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1328 struct page *page) {}
1329 slab_flags_t kmem_cache_flags(unsigned int object_size,
1330 slab_flags_t flags, const char *name,
1331 void (*ctor)(void *))
1335 #define slub_debug 0
1337 #define disable_higher_order_debug 0
1339 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1341 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1343 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1345 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1348 #endif /* CONFIG_SLUB_DEBUG */
1351 * Hooks for other subsystems that check memory allocations. In a typical
1352 * production configuration these hooks all should produce no code at all.
1354 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1356 kmemleak_alloc(ptr, size, 1, flags);
1357 kasan_kmalloc_large(ptr, size, flags);
1360 static __always_inline void kfree_hook(void *x)
1363 kasan_kfree_large(x, _RET_IP_);
1366 static __always_inline void *slab_free_hook(struct kmem_cache *s, void *x)
1370 kmemleak_free_recursive(x, s->flags);
1373 * Trouble is that we may no longer disable interrupts in the fast path
1374 * So in order to make the debug calls that expect irqs to be
1375 * disabled we need to disable interrupts temporarily.
1377 #ifdef CONFIG_LOCKDEP
1379 unsigned long flags;
1381 local_irq_save(flags);
1382 debug_check_no_locks_freed(x, s->object_size);
1383 local_irq_restore(flags);
1386 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1387 debug_check_no_obj_freed(x, s->object_size);
1389 freeptr = get_freepointer(s, x);
1391 * kasan_slab_free() may put x into memory quarantine, delaying its
1392 * reuse. In this case the object's freelist pointer is changed.
1394 kasan_slab_free(s, x, _RET_IP_);
1398 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1399 void *head, void *tail)
1402 * Compiler cannot detect this function can be removed if slab_free_hook()
1403 * evaluates to nothing. Thus, catch all relevant config debug options here.
1405 #if defined(CONFIG_LOCKDEP) || \
1406 defined(CONFIG_DEBUG_KMEMLEAK) || \
1407 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1408 defined(CONFIG_KASAN)
1410 void *object = head;
1411 void *tail_obj = tail ? : head;
1415 freeptr = slab_free_hook(s, object);
1416 } while ((object != tail_obj) && (object = freeptr));
1420 static void setup_object(struct kmem_cache *s, struct page *page,
1423 setup_object_debug(s, page, object);
1424 kasan_init_slab_obj(s, object);
1425 if (unlikely(s->ctor)) {
1426 kasan_unpoison_object_data(s, object);
1428 kasan_poison_object_data(s, object);
1433 * Slab allocation and freeing
1435 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1436 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1439 unsigned int order = oo_order(oo);
1441 if (node == NUMA_NO_NODE)
1442 page = alloc_pages(flags, order);
1444 page = __alloc_pages_node(node, flags, order);
1446 if (page && memcg_charge_slab(page, flags, order, s)) {
1447 __free_pages(page, order);
1454 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1455 /* Pre-initialize the random sequence cache */
1456 static int init_cache_random_seq(struct kmem_cache *s)
1458 unsigned int count = oo_objects(s->oo);
1461 /* Bailout if already initialised */
1465 err = cache_random_seq_create(s, count, GFP_KERNEL);
1467 pr_err("SLUB: Unable to initialize free list for %s\n",
1472 /* Transform to an offset on the set of pages */
1473 if (s->random_seq) {
1476 for (i = 0; i < count; i++)
1477 s->random_seq[i] *= s->size;
1482 /* Initialize each random sequence freelist per cache */
1483 static void __init init_freelist_randomization(void)
1485 struct kmem_cache *s;
1487 mutex_lock(&slab_mutex);
1489 list_for_each_entry(s, &slab_caches, list)
1490 init_cache_random_seq(s);
1492 mutex_unlock(&slab_mutex);
1495 /* Get the next entry on the pre-computed freelist randomized */
1496 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1497 unsigned long *pos, void *start,
1498 unsigned long page_limit,
1499 unsigned long freelist_count)
1504 * If the target page allocation failed, the number of objects on the
1505 * page might be smaller than the usual size defined by the cache.
1508 idx = s->random_seq[*pos];
1510 if (*pos >= freelist_count)
1512 } while (unlikely(idx >= page_limit));
1514 return (char *)start + idx;
1517 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1518 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1523 unsigned long idx, pos, page_limit, freelist_count;
1525 if (page->objects < 2 || !s->random_seq)
1528 freelist_count = oo_objects(s->oo);
1529 pos = get_random_int() % freelist_count;
1531 page_limit = page->objects * s->size;
1532 start = fixup_red_left(s, page_address(page));
1534 /* First entry is used as the base of the freelist */
1535 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1537 page->freelist = cur;
1539 for (idx = 1; idx < page->objects; idx++) {
1540 setup_object(s, page, cur);
1541 next = next_freelist_entry(s, page, &pos, start, page_limit,
1543 set_freepointer(s, cur, next);
1546 setup_object(s, page, cur);
1547 set_freepointer(s, cur, NULL);
1552 static inline int init_cache_random_seq(struct kmem_cache *s)
1556 static inline void init_freelist_randomization(void) { }
1557 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1561 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1563 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1566 struct kmem_cache_order_objects oo = s->oo;
1572 flags &= gfp_allowed_mask;
1574 if (gfpflags_allow_blocking(flags))
1577 flags |= s->allocflags;
1580 * Let the initial higher-order allocation fail under memory pressure
1581 * so we fall-back to the minimum order allocation.
1583 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1584 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1585 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1587 page = alloc_slab_page(s, alloc_gfp, node, oo);
1588 if (unlikely(!page)) {
1592 * Allocation may have failed due to fragmentation.
1593 * Try a lower order alloc if possible
1595 page = alloc_slab_page(s, alloc_gfp, node, oo);
1596 if (unlikely(!page))
1598 stat(s, ORDER_FALLBACK);
1601 page->objects = oo_objects(oo);
1603 order = compound_order(page);
1604 page->slab_cache = s;
1605 __SetPageSlab(page);
1606 if (page_is_pfmemalloc(page))
1607 SetPageSlabPfmemalloc(page);
1609 start = page_address(page);
1611 if (unlikely(s->flags & SLAB_POISON))
1612 memset(start, POISON_INUSE, PAGE_SIZE << order);
1614 kasan_poison_slab(page);
1616 shuffle = shuffle_freelist(s, page);
1619 for_each_object_idx(p, idx, s, start, page->objects) {
1620 setup_object(s, page, p);
1621 if (likely(idx < page->objects))
1622 set_freepointer(s, p, p + s->size);
1624 set_freepointer(s, p, NULL);
1626 page->freelist = fixup_red_left(s, start);
1629 page->inuse = page->objects;
1633 if (gfpflags_allow_blocking(flags))
1634 local_irq_disable();
1638 mod_lruvec_page_state(page,
1639 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1640 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1643 inc_slabs_node(s, page_to_nid(page), page->objects);
1648 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1650 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1651 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1652 flags &= ~GFP_SLAB_BUG_MASK;
1653 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1654 invalid_mask, &invalid_mask, flags, &flags);
1658 return allocate_slab(s,
1659 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1662 static void __free_slab(struct kmem_cache *s, struct page *page)
1664 int order = compound_order(page);
1665 int pages = 1 << order;
1667 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1670 slab_pad_check(s, page);
1671 for_each_object(p, s, page_address(page),
1673 check_object(s, page, p, SLUB_RED_INACTIVE);
1676 mod_lruvec_page_state(page,
1677 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1678 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1681 __ClearPageSlabPfmemalloc(page);
1682 __ClearPageSlab(page);
1684 page_mapcount_reset(page);
1685 if (current->reclaim_state)
1686 current->reclaim_state->reclaimed_slab += pages;
1687 memcg_uncharge_slab(page, order, s);
1688 __free_pages(page, order);
1691 #define need_reserve_slab_rcu \
1692 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1694 static void rcu_free_slab(struct rcu_head *h)
1698 if (need_reserve_slab_rcu)
1699 page = virt_to_head_page(h);
1701 page = container_of((struct list_head *)h, struct page, lru);
1703 __free_slab(page->slab_cache, page);
1706 static void free_slab(struct kmem_cache *s, struct page *page)
1708 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1709 struct rcu_head *head;
1711 if (need_reserve_slab_rcu) {
1712 int order = compound_order(page);
1713 int offset = (PAGE_SIZE << order) - s->reserved;
1715 VM_BUG_ON(s->reserved != sizeof(*head));
1716 head = page_address(page) + offset;
1718 head = &page->rcu_head;
1721 call_rcu(head, rcu_free_slab);
1723 __free_slab(s, page);
1726 static void discard_slab(struct kmem_cache *s, struct page *page)
1728 dec_slabs_node(s, page_to_nid(page), page->objects);
1733 * Management of partially allocated slabs.
1736 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1739 if (tail == DEACTIVATE_TO_TAIL)
1740 list_add_tail(&page->lru, &n->partial);
1742 list_add(&page->lru, &n->partial);
1745 static inline void add_partial(struct kmem_cache_node *n,
1746 struct page *page, int tail)
1748 lockdep_assert_held(&n->list_lock);
1749 __add_partial(n, page, tail);
1752 static inline void remove_partial(struct kmem_cache_node *n,
1755 lockdep_assert_held(&n->list_lock);
1756 list_del(&page->lru);
1761 * Remove slab from the partial list, freeze it and
1762 * return the pointer to the freelist.
1764 * Returns a list of objects or NULL if it fails.
1766 static inline void *acquire_slab(struct kmem_cache *s,
1767 struct kmem_cache_node *n, struct page *page,
1768 int mode, int *objects)
1771 unsigned long counters;
1774 lockdep_assert_held(&n->list_lock);
1777 * Zap the freelist and set the frozen bit.
1778 * The old freelist is the list of objects for the
1779 * per cpu allocation list.
1781 freelist = page->freelist;
1782 counters = page->counters;
1783 new.counters = counters;
1784 *objects = new.objects - new.inuse;
1786 new.inuse = page->objects;
1787 new.freelist = NULL;
1789 new.freelist = freelist;
1792 VM_BUG_ON(new.frozen);
1795 if (!__cmpxchg_double_slab(s, page,
1797 new.freelist, new.counters,
1801 remove_partial(n, page);
1806 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1807 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1810 * Try to allocate a partial slab from a specific node.
1812 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1813 struct kmem_cache_cpu *c, gfp_t flags)
1815 struct page *page, *page2;
1816 void *object = NULL;
1817 unsigned int available = 0;
1821 * Racy check. If we mistakenly see no partial slabs then we
1822 * just allocate an empty slab. If we mistakenly try to get a
1823 * partial slab and there is none available then get_partials()
1826 if (!n || !n->nr_partial)
1829 spin_lock(&n->list_lock);
1830 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1833 if (!pfmemalloc_match(page, flags))
1836 t = acquire_slab(s, n, page, object == NULL, &objects);
1840 available += objects;
1843 stat(s, ALLOC_FROM_PARTIAL);
1846 put_cpu_partial(s, page, 0);
1847 stat(s, CPU_PARTIAL_NODE);
1849 if (!kmem_cache_has_cpu_partial(s)
1850 || available > slub_cpu_partial(s) / 2)
1854 spin_unlock(&n->list_lock);
1859 * Get a page from somewhere. Search in increasing NUMA distances.
1861 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1862 struct kmem_cache_cpu *c)
1865 struct zonelist *zonelist;
1868 enum zone_type high_zoneidx = gfp_zone(flags);
1870 unsigned int cpuset_mems_cookie;
1873 * The defrag ratio allows a configuration of the tradeoffs between
1874 * inter node defragmentation and node local allocations. A lower
1875 * defrag_ratio increases the tendency to do local allocations
1876 * instead of attempting to obtain partial slabs from other nodes.
1878 * If the defrag_ratio is set to 0 then kmalloc() always
1879 * returns node local objects. If the ratio is higher then kmalloc()
1880 * may return off node objects because partial slabs are obtained
1881 * from other nodes and filled up.
1883 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1884 * (which makes defrag_ratio = 1000) then every (well almost)
1885 * allocation will first attempt to defrag slab caches on other nodes.
1886 * This means scanning over all nodes to look for partial slabs which
1887 * may be expensive if we do it every time we are trying to find a slab
1888 * with available objects.
1890 if (!s->remote_node_defrag_ratio ||
1891 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1895 cpuset_mems_cookie = read_mems_allowed_begin();
1896 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1897 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1898 struct kmem_cache_node *n;
1900 n = get_node(s, zone_to_nid(zone));
1902 if (n && cpuset_zone_allowed(zone, flags) &&
1903 n->nr_partial > s->min_partial) {
1904 object = get_partial_node(s, n, c, flags);
1907 * Don't check read_mems_allowed_retry()
1908 * here - if mems_allowed was updated in
1909 * parallel, that was a harmless race
1910 * between allocation and the cpuset
1917 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1923 * Get a partial page, lock it and return it.
1925 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1926 struct kmem_cache_cpu *c)
1929 int searchnode = node;
1931 if (node == NUMA_NO_NODE)
1932 searchnode = numa_mem_id();
1933 else if (!node_present_pages(node))
1934 searchnode = node_to_mem_node(node);
1936 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1937 if (object || node != NUMA_NO_NODE)
1940 return get_any_partial(s, flags, c);
1943 #ifdef CONFIG_PREEMPT
1945 * Calculate the next globally unique transaction for disambiguiation
1946 * during cmpxchg. The transactions start with the cpu number and are then
1947 * incremented by CONFIG_NR_CPUS.
1949 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1952 * No preemption supported therefore also no need to check for
1958 static inline unsigned long next_tid(unsigned long tid)
1960 return tid + TID_STEP;
1963 static inline unsigned int tid_to_cpu(unsigned long tid)
1965 return tid % TID_STEP;
1968 static inline unsigned long tid_to_event(unsigned long tid)
1970 return tid / TID_STEP;
1973 static inline unsigned int init_tid(int cpu)
1978 static inline void note_cmpxchg_failure(const char *n,
1979 const struct kmem_cache *s, unsigned long tid)
1981 #ifdef SLUB_DEBUG_CMPXCHG
1982 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1984 pr_info("%s %s: cmpxchg redo ", n, s->name);
1986 #ifdef CONFIG_PREEMPT
1987 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1988 pr_warn("due to cpu change %d -> %d\n",
1989 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1992 if (tid_to_event(tid) != tid_to_event(actual_tid))
1993 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1994 tid_to_event(tid), tid_to_event(actual_tid));
1996 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1997 actual_tid, tid, next_tid(tid));
1999 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2002 static void init_kmem_cache_cpus(struct kmem_cache *s)
2006 for_each_possible_cpu(cpu)
2007 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2011 * Remove the cpu slab
2013 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2014 void *freelist, struct kmem_cache_cpu *c)
2016 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2017 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2019 enum slab_modes l = M_NONE, m = M_NONE;
2021 int tail = DEACTIVATE_TO_HEAD;
2025 if (page->freelist) {
2026 stat(s, DEACTIVATE_REMOTE_FREES);
2027 tail = DEACTIVATE_TO_TAIL;
2031 * Stage one: Free all available per cpu objects back
2032 * to the page freelist while it is still frozen. Leave the
2035 * There is no need to take the list->lock because the page
2038 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2040 unsigned long counters;
2043 prior = page->freelist;
2044 counters = page->counters;
2045 set_freepointer(s, freelist, prior);
2046 new.counters = counters;
2048 VM_BUG_ON(!new.frozen);
2050 } while (!__cmpxchg_double_slab(s, page,
2052 freelist, new.counters,
2053 "drain percpu freelist"));
2055 freelist = nextfree;
2059 * Stage two: Ensure that the page is unfrozen while the
2060 * list presence reflects the actual number of objects
2063 * We setup the list membership and then perform a cmpxchg
2064 * with the count. If there is a mismatch then the page
2065 * is not unfrozen but the page is on the wrong list.
2067 * Then we restart the process which may have to remove
2068 * the page from the list that we just put it on again
2069 * because the number of objects in the slab may have
2074 old.freelist = page->freelist;
2075 old.counters = page->counters;
2076 VM_BUG_ON(!old.frozen);
2078 /* Determine target state of the slab */
2079 new.counters = old.counters;
2082 set_freepointer(s, freelist, old.freelist);
2083 new.freelist = freelist;
2085 new.freelist = old.freelist;
2089 if (!new.inuse && n->nr_partial >= s->min_partial)
2091 else if (new.freelist) {
2096 * Taking the spinlock removes the possiblity
2097 * that acquire_slab() will see a slab page that
2100 spin_lock(&n->list_lock);
2104 if (kmem_cache_debug(s) && !lock) {
2107 * This also ensures that the scanning of full
2108 * slabs from diagnostic functions will not see
2111 spin_lock(&n->list_lock);
2119 remove_partial(n, page);
2121 else if (l == M_FULL)
2123 remove_full(s, n, page);
2125 if (m == M_PARTIAL) {
2127 add_partial(n, page, tail);
2130 } else if (m == M_FULL) {
2132 stat(s, DEACTIVATE_FULL);
2133 add_full(s, n, page);
2139 if (!__cmpxchg_double_slab(s, page,
2140 old.freelist, old.counters,
2141 new.freelist, new.counters,
2146 spin_unlock(&n->list_lock);
2149 stat(s, DEACTIVATE_EMPTY);
2150 discard_slab(s, page);
2159 * Unfreeze all the cpu partial slabs.
2161 * This function must be called with interrupts disabled
2162 * for the cpu using c (or some other guarantee must be there
2163 * to guarantee no concurrent accesses).
2165 static void unfreeze_partials(struct kmem_cache *s,
2166 struct kmem_cache_cpu *c)
2168 #ifdef CONFIG_SLUB_CPU_PARTIAL
2169 struct kmem_cache_node *n = NULL, *n2 = NULL;
2170 struct page *page, *discard_page = NULL;
2172 while ((page = c->partial)) {
2176 c->partial = page->next;
2178 n2 = get_node(s, page_to_nid(page));
2181 spin_unlock(&n->list_lock);
2184 spin_lock(&n->list_lock);
2189 old.freelist = page->freelist;
2190 old.counters = page->counters;
2191 VM_BUG_ON(!old.frozen);
2193 new.counters = old.counters;
2194 new.freelist = old.freelist;
2198 } while (!__cmpxchg_double_slab(s, page,
2199 old.freelist, old.counters,
2200 new.freelist, new.counters,
2201 "unfreezing slab"));
2203 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2204 page->next = discard_page;
2205 discard_page = page;
2207 add_partial(n, page, DEACTIVATE_TO_TAIL);
2208 stat(s, FREE_ADD_PARTIAL);
2213 spin_unlock(&n->list_lock);
2215 while (discard_page) {
2216 page = discard_page;
2217 discard_page = discard_page->next;
2219 stat(s, DEACTIVATE_EMPTY);
2220 discard_slab(s, page);
2227 * Put a page that was just frozen (in __slab_free) into a partial page
2228 * slot if available.
2230 * If we did not find a slot then simply move all the partials to the
2231 * per node partial list.
2233 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2235 #ifdef CONFIG_SLUB_CPU_PARTIAL
2236 struct page *oldpage;
2244 oldpage = this_cpu_read(s->cpu_slab->partial);
2247 pobjects = oldpage->pobjects;
2248 pages = oldpage->pages;
2249 if (drain && pobjects > s->cpu_partial) {
2250 unsigned long flags;
2252 * partial array is full. Move the existing
2253 * set to the per node partial list.
2255 local_irq_save(flags);
2256 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2257 local_irq_restore(flags);
2261 stat(s, CPU_PARTIAL_DRAIN);
2266 pobjects += page->objects - page->inuse;
2268 page->pages = pages;
2269 page->pobjects = pobjects;
2270 page->next = oldpage;
2272 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2274 if (unlikely(!s->cpu_partial)) {
2275 unsigned long flags;
2277 local_irq_save(flags);
2278 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2279 local_irq_restore(flags);
2285 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2287 stat(s, CPUSLAB_FLUSH);
2288 deactivate_slab(s, c->page, c->freelist, c);
2290 c->tid = next_tid(c->tid);
2296 * Called from IPI handler with interrupts disabled.
2298 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2300 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2306 unfreeze_partials(s, c);
2310 static void flush_cpu_slab(void *d)
2312 struct kmem_cache *s = d;
2314 __flush_cpu_slab(s, smp_processor_id());
2317 static bool has_cpu_slab(int cpu, void *info)
2319 struct kmem_cache *s = info;
2320 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2322 return c->page || slub_percpu_partial(c);
2325 static void flush_all(struct kmem_cache *s)
2327 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2331 * Use the cpu notifier to insure that the cpu slabs are flushed when
2334 static int slub_cpu_dead(unsigned int cpu)
2336 struct kmem_cache *s;
2337 unsigned long flags;
2339 mutex_lock(&slab_mutex);
2340 list_for_each_entry(s, &slab_caches, list) {
2341 local_irq_save(flags);
2342 __flush_cpu_slab(s, cpu);
2343 local_irq_restore(flags);
2345 mutex_unlock(&slab_mutex);
2350 * Check if the objects in a per cpu structure fit numa
2351 * locality expectations.
2353 static inline int node_match(struct page *page, int node)
2356 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2362 #ifdef CONFIG_SLUB_DEBUG
2363 static int count_free(struct page *page)
2365 return page->objects - page->inuse;
2368 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2370 return atomic_long_read(&n->total_objects);
2372 #endif /* CONFIG_SLUB_DEBUG */
2374 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2375 static unsigned long count_partial(struct kmem_cache_node *n,
2376 int (*get_count)(struct page *))
2378 unsigned long flags;
2379 unsigned long x = 0;
2382 spin_lock_irqsave(&n->list_lock, flags);
2383 list_for_each_entry(page, &n->partial, lru)
2384 x += get_count(page);
2385 spin_unlock_irqrestore(&n->list_lock, flags);
2388 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2390 static noinline void
2391 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2393 #ifdef CONFIG_SLUB_DEBUG
2394 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2395 DEFAULT_RATELIMIT_BURST);
2397 struct kmem_cache_node *n;
2399 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2402 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2403 nid, gfpflags, &gfpflags);
2404 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2405 s->name, s->object_size, s->size, oo_order(s->oo),
2408 if (oo_order(s->min) > get_order(s->object_size))
2409 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2412 for_each_kmem_cache_node(s, node, n) {
2413 unsigned long nr_slabs;
2414 unsigned long nr_objs;
2415 unsigned long nr_free;
2417 nr_free = count_partial(n, count_free);
2418 nr_slabs = node_nr_slabs(n);
2419 nr_objs = node_nr_objs(n);
2421 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2422 node, nr_slabs, nr_objs, nr_free);
2427 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2428 int node, struct kmem_cache_cpu **pc)
2431 struct kmem_cache_cpu *c = *pc;
2434 freelist = get_partial(s, flags, node, c);
2439 page = new_slab(s, flags, node);
2441 c = raw_cpu_ptr(s->cpu_slab);
2446 * No other reference to the page yet so we can
2447 * muck around with it freely without cmpxchg
2449 freelist = page->freelist;
2450 page->freelist = NULL;
2452 stat(s, ALLOC_SLAB);
2461 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2463 if (unlikely(PageSlabPfmemalloc(page)))
2464 return gfp_pfmemalloc_allowed(gfpflags);
2470 * Check the page->freelist of a page and either transfer the freelist to the
2471 * per cpu freelist or deactivate the page.
2473 * The page is still frozen if the return value is not NULL.
2475 * If this function returns NULL then the page has been unfrozen.
2477 * This function must be called with interrupt disabled.
2479 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2482 unsigned long counters;
2486 freelist = page->freelist;
2487 counters = page->counters;
2489 new.counters = counters;
2490 VM_BUG_ON(!new.frozen);
2492 new.inuse = page->objects;
2493 new.frozen = freelist != NULL;
2495 } while (!__cmpxchg_double_slab(s, page,
2504 * Slow path. The lockless freelist is empty or we need to perform
2507 * Processing is still very fast if new objects have been freed to the
2508 * regular freelist. In that case we simply take over the regular freelist
2509 * as the lockless freelist and zap the regular freelist.
2511 * If that is not working then we fall back to the partial lists. We take the
2512 * first element of the freelist as the object to allocate now and move the
2513 * rest of the freelist to the lockless freelist.
2515 * And if we were unable to get a new slab from the partial slab lists then
2516 * we need to allocate a new slab. This is the slowest path since it involves
2517 * a call to the page allocator and the setup of a new slab.
2519 * Version of __slab_alloc to use when we know that interrupts are
2520 * already disabled (which is the case for bulk allocation).
2522 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2523 unsigned long addr, struct kmem_cache_cpu *c)
2533 if (unlikely(!node_match(page, node))) {
2534 int searchnode = node;
2536 if (node != NUMA_NO_NODE && !node_present_pages(node))
2537 searchnode = node_to_mem_node(node);
2539 if (unlikely(!node_match(page, searchnode))) {
2540 stat(s, ALLOC_NODE_MISMATCH);
2541 deactivate_slab(s, page, c->freelist, c);
2547 * By rights, we should be searching for a slab page that was
2548 * PFMEMALLOC but right now, we are losing the pfmemalloc
2549 * information when the page leaves the per-cpu allocator
2551 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2552 deactivate_slab(s, page, c->freelist, c);
2556 /* must check again c->freelist in case of cpu migration or IRQ */
2557 freelist = c->freelist;
2561 freelist = get_freelist(s, page);
2565 stat(s, DEACTIVATE_BYPASS);
2569 stat(s, ALLOC_REFILL);
2573 * freelist is pointing to the list of objects to be used.
2574 * page is pointing to the page from which the objects are obtained.
2575 * That page must be frozen for per cpu allocations to work.
2577 VM_BUG_ON(!c->page->frozen);
2578 c->freelist = get_freepointer(s, freelist);
2579 c->tid = next_tid(c->tid);
2584 if (slub_percpu_partial(c)) {
2585 page = c->page = slub_percpu_partial(c);
2586 slub_set_percpu_partial(c, page);
2587 stat(s, CPU_PARTIAL_ALLOC);
2591 freelist = new_slab_objects(s, gfpflags, node, &c);
2593 if (unlikely(!freelist)) {
2594 slab_out_of_memory(s, gfpflags, node);
2599 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2602 /* Only entered in the debug case */
2603 if (kmem_cache_debug(s) &&
2604 !alloc_debug_processing(s, page, freelist, addr))
2605 goto new_slab; /* Slab failed checks. Next slab needed */
2607 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2612 * Another one that disabled interrupt and compensates for possible
2613 * cpu changes by refetching the per cpu area pointer.
2615 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2616 unsigned long addr, struct kmem_cache_cpu *c)
2619 unsigned long flags;
2621 local_irq_save(flags);
2622 #ifdef CONFIG_PREEMPT
2624 * We may have been preempted and rescheduled on a different
2625 * cpu before disabling interrupts. Need to reload cpu area
2628 c = this_cpu_ptr(s->cpu_slab);
2631 p = ___slab_alloc(s, gfpflags, node, addr, c);
2632 local_irq_restore(flags);
2637 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2638 * have the fastpath folded into their functions. So no function call
2639 * overhead for requests that can be satisfied on the fastpath.
2641 * The fastpath works by first checking if the lockless freelist can be used.
2642 * If not then __slab_alloc is called for slow processing.
2644 * Otherwise we can simply pick the next object from the lockless free list.
2646 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2647 gfp_t gfpflags, int node, unsigned long addr)
2650 struct kmem_cache_cpu *c;
2654 s = slab_pre_alloc_hook(s, gfpflags);
2659 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2660 * enabled. We may switch back and forth between cpus while
2661 * reading from one cpu area. That does not matter as long
2662 * as we end up on the original cpu again when doing the cmpxchg.
2664 * We should guarantee that tid and kmem_cache are retrieved on
2665 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2666 * to check if it is matched or not.
2669 tid = this_cpu_read(s->cpu_slab->tid);
2670 c = raw_cpu_ptr(s->cpu_slab);
2671 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2672 unlikely(tid != READ_ONCE(c->tid)));
2675 * Irqless object alloc/free algorithm used here depends on sequence
2676 * of fetching cpu_slab's data. tid should be fetched before anything
2677 * on c to guarantee that object and page associated with previous tid
2678 * won't be used with current tid. If we fetch tid first, object and
2679 * page could be one associated with next tid and our alloc/free
2680 * request will be failed. In this case, we will retry. So, no problem.
2685 * The transaction ids are globally unique per cpu and per operation on
2686 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2687 * occurs on the right processor and that there was no operation on the
2688 * linked list in between.
2691 object = c->freelist;
2693 if (unlikely(!object || !node_match(page, node))) {
2694 object = __slab_alloc(s, gfpflags, node, addr, c);
2695 stat(s, ALLOC_SLOWPATH);
2697 void *next_object = get_freepointer_safe(s, object);
2700 * The cmpxchg will only match if there was no additional
2701 * operation and if we are on the right processor.
2703 * The cmpxchg does the following atomically (without lock
2705 * 1. Relocate first pointer to the current per cpu area.
2706 * 2. Verify that tid and freelist have not been changed
2707 * 3. If they were not changed replace tid and freelist
2709 * Since this is without lock semantics the protection is only
2710 * against code executing on this cpu *not* from access by
2713 if (unlikely(!this_cpu_cmpxchg_double(
2714 s->cpu_slab->freelist, s->cpu_slab->tid,
2716 next_object, next_tid(tid)))) {
2718 note_cmpxchg_failure("slab_alloc", s, tid);
2721 prefetch_freepointer(s, next_object);
2722 stat(s, ALLOC_FASTPATH);
2725 if (unlikely(gfpflags & __GFP_ZERO) && object)
2726 memset(object, 0, s->object_size);
2728 slab_post_alloc_hook(s, gfpflags, 1, &object);
2733 static __always_inline void *slab_alloc(struct kmem_cache *s,
2734 gfp_t gfpflags, unsigned long addr)
2736 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2739 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2741 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2743 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2748 EXPORT_SYMBOL(kmem_cache_alloc);
2750 #ifdef CONFIG_TRACING
2751 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2753 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2754 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2755 kasan_kmalloc(s, ret, size, gfpflags);
2758 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2762 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2764 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2766 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2767 s->object_size, s->size, gfpflags, node);
2771 EXPORT_SYMBOL(kmem_cache_alloc_node);
2773 #ifdef CONFIG_TRACING
2774 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2776 int node, size_t size)
2778 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2780 trace_kmalloc_node(_RET_IP_, ret,
2781 size, s->size, gfpflags, node);
2783 kasan_kmalloc(s, ret, size, gfpflags);
2786 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2791 * Slow path handling. This may still be called frequently since objects
2792 * have a longer lifetime than the cpu slabs in most processing loads.
2794 * So we still attempt to reduce cache line usage. Just take the slab
2795 * lock and free the item. If there is no additional partial page
2796 * handling required then we can return immediately.
2798 static void __slab_free(struct kmem_cache *s, struct page *page,
2799 void *head, void *tail, int cnt,
2806 unsigned long counters;
2807 struct kmem_cache_node *n = NULL;
2808 unsigned long uninitialized_var(flags);
2810 stat(s, FREE_SLOWPATH);
2812 if (kmem_cache_debug(s) &&
2813 !free_debug_processing(s, page, head, tail, cnt, addr))
2818 spin_unlock_irqrestore(&n->list_lock, flags);
2821 prior = page->freelist;
2822 counters = page->counters;
2823 set_freepointer(s, tail, prior);
2824 new.counters = counters;
2825 was_frozen = new.frozen;
2827 if ((!new.inuse || !prior) && !was_frozen) {
2829 if (kmem_cache_has_cpu_partial(s) && !prior) {
2832 * Slab was on no list before and will be
2834 * We can defer the list move and instead
2839 } else { /* Needs to be taken off a list */
2841 n = get_node(s, page_to_nid(page));
2843 * Speculatively acquire the list_lock.
2844 * If the cmpxchg does not succeed then we may
2845 * drop the list_lock without any processing.
2847 * Otherwise the list_lock will synchronize with
2848 * other processors updating the list of slabs.
2850 spin_lock_irqsave(&n->list_lock, flags);
2855 } while (!cmpxchg_double_slab(s, page,
2863 * If we just froze the page then put it onto the
2864 * per cpu partial list.
2866 if (new.frozen && !was_frozen) {
2867 put_cpu_partial(s, page, 1);
2868 stat(s, CPU_PARTIAL_FREE);
2871 * The list lock was not taken therefore no list
2872 * activity can be necessary.
2875 stat(s, FREE_FROZEN);
2879 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2883 * Objects left in the slab. If it was not on the partial list before
2886 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2887 if (kmem_cache_debug(s))
2888 remove_full(s, n, page);
2889 add_partial(n, page, DEACTIVATE_TO_TAIL);
2890 stat(s, FREE_ADD_PARTIAL);
2892 spin_unlock_irqrestore(&n->list_lock, flags);
2898 * Slab on the partial list.
2900 remove_partial(n, page);
2901 stat(s, FREE_REMOVE_PARTIAL);
2903 /* Slab must be on the full list */
2904 remove_full(s, n, page);
2907 spin_unlock_irqrestore(&n->list_lock, flags);
2909 discard_slab(s, page);
2913 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2914 * can perform fastpath freeing without additional function calls.
2916 * The fastpath is only possible if we are freeing to the current cpu slab
2917 * of this processor. This typically the case if we have just allocated
2920 * If fastpath is not possible then fall back to __slab_free where we deal
2921 * with all sorts of special processing.
2923 * Bulk free of a freelist with several objects (all pointing to the
2924 * same page) possible by specifying head and tail ptr, plus objects
2925 * count (cnt). Bulk free indicated by tail pointer being set.
2927 static __always_inline void do_slab_free(struct kmem_cache *s,
2928 struct page *page, void *head, void *tail,
2929 int cnt, unsigned long addr)
2931 void *tail_obj = tail ? : head;
2932 struct kmem_cache_cpu *c;
2936 * Determine the currently cpus per cpu slab.
2937 * The cpu may change afterward. However that does not matter since
2938 * data is retrieved via this pointer. If we are on the same cpu
2939 * during the cmpxchg then the free will succeed.
2942 tid = this_cpu_read(s->cpu_slab->tid);
2943 c = raw_cpu_ptr(s->cpu_slab);
2944 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2945 unlikely(tid != READ_ONCE(c->tid)));
2947 /* Same with comment on barrier() in slab_alloc_node() */
2950 if (likely(page == c->page)) {
2951 set_freepointer(s, tail_obj, c->freelist);
2953 if (unlikely(!this_cpu_cmpxchg_double(
2954 s->cpu_slab->freelist, s->cpu_slab->tid,
2956 head, next_tid(tid)))) {
2958 note_cmpxchg_failure("slab_free", s, tid);
2961 stat(s, FREE_FASTPATH);
2963 __slab_free(s, page, head, tail_obj, cnt, addr);
2967 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2968 void *head, void *tail, int cnt,
2971 slab_free_freelist_hook(s, head, tail);
2973 * slab_free_freelist_hook() could have put the items into quarantine.
2974 * If so, no need to free them.
2976 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2978 do_slab_free(s, page, head, tail, cnt, addr);
2982 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2984 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2988 void kmem_cache_free(struct kmem_cache *s, void *x)
2990 s = cache_from_obj(s, x);
2993 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2994 trace_kmem_cache_free(_RET_IP_, x);
2996 EXPORT_SYMBOL(kmem_cache_free);
2998 struct detached_freelist {
3003 struct kmem_cache *s;
3007 * This function progressively scans the array with free objects (with
3008 * a limited look ahead) and extract objects belonging to the same
3009 * page. It builds a detached freelist directly within the given
3010 * page/objects. This can happen without any need for
3011 * synchronization, because the objects are owned by running process.
3012 * The freelist is build up as a single linked list in the objects.
3013 * The idea is, that this detached freelist can then be bulk
3014 * transferred to the real freelist(s), but only requiring a single
3015 * synchronization primitive. Look ahead in the array is limited due
3016 * to performance reasons.
3019 int build_detached_freelist(struct kmem_cache *s, size_t size,
3020 void **p, struct detached_freelist *df)
3022 size_t first_skipped_index = 0;
3027 /* Always re-init detached_freelist */
3032 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3033 } while (!object && size);
3038 page = virt_to_head_page(object);
3040 /* Handle kalloc'ed objects */
3041 if (unlikely(!PageSlab(page))) {
3042 BUG_ON(!PageCompound(page));
3044 __free_pages(page, compound_order(page));
3045 p[size] = NULL; /* mark object processed */
3048 /* Derive kmem_cache from object */
3049 df->s = page->slab_cache;
3051 df->s = cache_from_obj(s, object); /* Support for memcg */
3054 /* Start new detached freelist */
3056 set_freepointer(df->s, object, NULL);
3058 df->freelist = object;
3059 p[size] = NULL; /* mark object processed */
3065 continue; /* Skip processed objects */
3067 /* df->page is always set at this point */
3068 if (df->page == virt_to_head_page(object)) {
3069 /* Opportunity build freelist */
3070 set_freepointer(df->s, object, df->freelist);
3071 df->freelist = object;
3073 p[size] = NULL; /* mark object processed */
3078 /* Limit look ahead search */
3082 if (!first_skipped_index)
3083 first_skipped_index = size + 1;
3086 return first_skipped_index;
3089 /* Note that interrupts must be enabled when calling this function. */
3090 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3096 struct detached_freelist df;
3098 size = build_detached_freelist(s, size, p, &df);
3102 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3103 } while (likely(size));
3105 EXPORT_SYMBOL(kmem_cache_free_bulk);
3107 /* Note that interrupts must be enabled when calling this function. */
3108 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3111 struct kmem_cache_cpu *c;
3114 /* memcg and kmem_cache debug support */
3115 s = slab_pre_alloc_hook(s, flags);
3119 * Drain objects in the per cpu slab, while disabling local
3120 * IRQs, which protects against PREEMPT and interrupts
3121 * handlers invoking normal fastpath.
3123 local_irq_disable();
3124 c = this_cpu_ptr(s->cpu_slab);
3126 for (i = 0; i < size; i++) {
3127 void *object = c->freelist;
3129 if (unlikely(!object)) {
3131 * Invoking slow path likely have side-effect
3132 * of re-populating per CPU c->freelist
3134 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3136 if (unlikely(!p[i]))
3139 c = this_cpu_ptr(s->cpu_slab);
3140 continue; /* goto for-loop */
3142 c->freelist = get_freepointer(s, object);
3145 c->tid = next_tid(c->tid);
3148 /* Clear memory outside IRQ disabled fastpath loop */
3149 if (unlikely(flags & __GFP_ZERO)) {
3152 for (j = 0; j < i; j++)
3153 memset(p[j], 0, s->object_size);
3156 /* memcg and kmem_cache debug support */
3157 slab_post_alloc_hook(s, flags, size, p);
3161 slab_post_alloc_hook(s, flags, i, p);
3162 __kmem_cache_free_bulk(s, i, p);
3165 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3169 * Object placement in a slab is made very easy because we always start at
3170 * offset 0. If we tune the size of the object to the alignment then we can
3171 * get the required alignment by putting one properly sized object after
3174 * Notice that the allocation order determines the sizes of the per cpu
3175 * caches. Each processor has always one slab available for allocations.
3176 * Increasing the allocation order reduces the number of times that slabs
3177 * must be moved on and off the partial lists and is therefore a factor in
3182 * Mininum / Maximum order of slab pages. This influences locking overhead
3183 * and slab fragmentation. A higher order reduces the number of partial slabs
3184 * and increases the number of allocations possible without having to
3185 * take the list_lock.
3187 static unsigned int slub_min_order;
3188 static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3189 static unsigned int slub_min_objects;
3192 * Calculate the order of allocation given an slab object size.
3194 * The order of allocation has significant impact on performance and other
3195 * system components. Generally order 0 allocations should be preferred since
3196 * order 0 does not cause fragmentation in the page allocator. Larger objects
3197 * be problematic to put into order 0 slabs because there may be too much
3198 * unused space left. We go to a higher order if more than 1/16th of the slab
3201 * In order to reach satisfactory performance we must ensure that a minimum
3202 * number of objects is in one slab. Otherwise we may generate too much
3203 * activity on the partial lists which requires taking the list_lock. This is
3204 * less a concern for large slabs though which are rarely used.
3206 * slub_max_order specifies the order where we begin to stop considering the
3207 * number of objects in a slab as critical. If we reach slub_max_order then
3208 * we try to keep the page order as low as possible. So we accept more waste
3209 * of space in favor of a small page order.
3211 * Higher order allocations also allow the placement of more objects in a
3212 * slab and thereby reduce object handling overhead. If the user has
3213 * requested a higher mininum order then we start with that one instead of
3214 * the smallest order which will fit the object.
3216 static inline unsigned int slab_order(unsigned int size,
3217 unsigned int min_objects, unsigned int max_order,
3218 unsigned int fract_leftover, unsigned int reserved)
3220 unsigned int min_order = slub_min_order;
3223 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3224 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3226 for (order = max(min_order, (unsigned int)get_order(min_objects * size + reserved));
3227 order <= max_order; order++) {
3229 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
3232 rem = (slab_size - reserved) % size;
3234 if (rem <= slab_size / fract_leftover)
3241 static inline int calculate_order(unsigned int size, unsigned int reserved)
3244 unsigned int min_objects;
3245 unsigned int max_objects;
3248 * Attempt to find best configuration for a slab. This
3249 * works by first attempting to generate a layout with
3250 * the best configuration and backing off gradually.
3252 * First we increase the acceptable waste in a slab. Then
3253 * we reduce the minimum objects required in a slab.
3255 min_objects = slub_min_objects;
3257 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3258 max_objects = order_objects(slub_max_order, size, reserved);
3259 min_objects = min(min_objects, max_objects);
3261 while (min_objects > 1) {
3262 unsigned int fraction;
3265 while (fraction >= 4) {
3266 order = slab_order(size, min_objects,
3267 slub_max_order, fraction, reserved);
3268 if (order <= slub_max_order)
3276 * We were unable to place multiple objects in a slab. Now
3277 * lets see if we can place a single object there.
3279 order = slab_order(size, 1, slub_max_order, 1, reserved);
3280 if (order <= slub_max_order)
3284 * Doh this slab cannot be placed using slub_max_order.
3286 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3287 if (order < MAX_ORDER)
3293 init_kmem_cache_node(struct kmem_cache_node *n)
3296 spin_lock_init(&n->list_lock);
3297 INIT_LIST_HEAD(&n->partial);
3298 #ifdef CONFIG_SLUB_DEBUG
3299 atomic_long_set(&n->nr_slabs, 0);
3300 atomic_long_set(&n->total_objects, 0);
3301 INIT_LIST_HEAD(&n->full);
3305 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3307 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3308 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3311 * Must align to double word boundary for the double cmpxchg
3312 * instructions to work; see __pcpu_double_call_return_bool().
3314 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3315 2 * sizeof(void *));
3320 init_kmem_cache_cpus(s);
3325 static struct kmem_cache *kmem_cache_node;
3328 * No kmalloc_node yet so do it by hand. We know that this is the first
3329 * slab on the node for this slabcache. There are no concurrent accesses
3332 * Note that this function only works on the kmem_cache_node
3333 * when allocating for the kmem_cache_node. This is used for bootstrapping
3334 * memory on a fresh node that has no slab structures yet.
3336 static void early_kmem_cache_node_alloc(int node)
3339 struct kmem_cache_node *n;
3341 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3343 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3346 if (page_to_nid(page) != node) {
3347 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3348 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3353 page->freelist = get_freepointer(kmem_cache_node, n);
3356 kmem_cache_node->node[node] = n;
3357 #ifdef CONFIG_SLUB_DEBUG
3358 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3359 init_tracking(kmem_cache_node, n);
3361 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3363 init_kmem_cache_node(n);
3364 inc_slabs_node(kmem_cache_node, node, page->objects);
3367 * No locks need to be taken here as it has just been
3368 * initialized and there is no concurrent access.
3370 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3373 static void free_kmem_cache_nodes(struct kmem_cache *s)
3376 struct kmem_cache_node *n;
3378 for_each_kmem_cache_node(s, node, n) {
3379 s->node[node] = NULL;
3380 kmem_cache_free(kmem_cache_node, n);
3384 void __kmem_cache_release(struct kmem_cache *s)
3386 cache_random_seq_destroy(s);
3387 free_percpu(s->cpu_slab);
3388 free_kmem_cache_nodes(s);
3391 static int init_kmem_cache_nodes(struct kmem_cache *s)
3395 for_each_node_state(node, N_NORMAL_MEMORY) {
3396 struct kmem_cache_node *n;
3398 if (slab_state == DOWN) {
3399 early_kmem_cache_node_alloc(node);
3402 n = kmem_cache_alloc_node(kmem_cache_node,
3406 free_kmem_cache_nodes(s);
3410 init_kmem_cache_node(n);
3416 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3418 if (min < MIN_PARTIAL)
3420 else if (min > MAX_PARTIAL)
3422 s->min_partial = min;
3425 static void set_cpu_partial(struct kmem_cache *s)
3427 #ifdef CONFIG_SLUB_CPU_PARTIAL
3429 * cpu_partial determined the maximum number of objects kept in the
3430 * per cpu partial lists of a processor.
3432 * Per cpu partial lists mainly contain slabs that just have one
3433 * object freed. If they are used for allocation then they can be
3434 * filled up again with minimal effort. The slab will never hit the
3435 * per node partial lists and therefore no locking will be required.
3437 * This setting also determines
3439 * A) The number of objects from per cpu partial slabs dumped to the
3440 * per node list when we reach the limit.
3441 * B) The number of objects in cpu partial slabs to extract from the
3442 * per node list when we run out of per cpu objects. We only fetch
3443 * 50% to keep some capacity around for frees.
3445 if (!kmem_cache_has_cpu_partial(s))
3447 else if (s->size >= PAGE_SIZE)
3449 else if (s->size >= 1024)
3451 else if (s->size >= 256)
3452 s->cpu_partial = 13;
3454 s->cpu_partial = 30;
3459 * calculate_sizes() determines the order and the distribution of data within
3462 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3464 slab_flags_t flags = s->flags;
3465 unsigned int size = s->object_size;
3469 * Round up object size to the next word boundary. We can only
3470 * place the free pointer at word boundaries and this determines
3471 * the possible location of the free pointer.
3473 size = ALIGN(size, sizeof(void *));
3475 #ifdef CONFIG_SLUB_DEBUG
3477 * Determine if we can poison the object itself. If the user of
3478 * the slab may touch the object after free or before allocation
3479 * then we should never poison the object itself.
3481 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3483 s->flags |= __OBJECT_POISON;
3485 s->flags &= ~__OBJECT_POISON;
3489 * If we are Redzoning then check if there is some space between the
3490 * end of the object and the free pointer. If not then add an
3491 * additional word to have some bytes to store Redzone information.
3493 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3494 size += sizeof(void *);
3498 * With that we have determined the number of bytes in actual use
3499 * by the object. This is the potential offset to the free pointer.
3503 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3506 * Relocate free pointer after the object if it is not
3507 * permitted to overwrite the first word of the object on
3510 * This is the case if we do RCU, have a constructor or
3511 * destructor or are poisoning the objects.
3514 size += sizeof(void *);
3517 #ifdef CONFIG_SLUB_DEBUG
3518 if (flags & SLAB_STORE_USER)
3520 * Need to store information about allocs and frees after
3523 size += 2 * sizeof(struct track);
3526 kasan_cache_create(s, &size, &s->flags);
3527 #ifdef CONFIG_SLUB_DEBUG
3528 if (flags & SLAB_RED_ZONE) {
3530 * Add some empty padding so that we can catch
3531 * overwrites from earlier objects rather than let
3532 * tracking information or the free pointer be
3533 * corrupted if a user writes before the start
3536 size += sizeof(void *);
3538 s->red_left_pad = sizeof(void *);
3539 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3540 size += s->red_left_pad;
3545 * SLUB stores one object immediately after another beginning from
3546 * offset 0. In order to align the objects we have to simply size
3547 * each object to conform to the alignment.
3549 size = ALIGN(size, s->align);
3551 if (forced_order >= 0)
3552 order = forced_order;
3554 order = calculate_order(size, s->reserved);
3561 s->allocflags |= __GFP_COMP;
3563 if (s->flags & SLAB_CACHE_DMA)
3564 s->allocflags |= GFP_DMA;
3566 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3567 s->allocflags |= __GFP_RECLAIMABLE;
3570 * Determine the number of objects per slab
3572 s->oo = oo_make(order, size, s->reserved);
3573 s->min = oo_make(get_order(size), size, s->reserved);
3574 if (oo_objects(s->oo) > oo_objects(s->max))
3577 return !!oo_objects(s->oo);
3580 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3582 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3584 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3585 s->random = get_random_long();
3588 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3589 s->reserved = sizeof(struct rcu_head);
3591 if (!calculate_sizes(s, -1))
3593 if (disable_higher_order_debug) {
3595 * Disable debugging flags that store metadata if the min slab
3598 if (get_order(s->size) > get_order(s->object_size)) {
3599 s->flags &= ~DEBUG_METADATA_FLAGS;
3601 if (!calculate_sizes(s, -1))
3606 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3607 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3608 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3609 /* Enable fast mode */
3610 s->flags |= __CMPXCHG_DOUBLE;
3614 * The larger the object size is, the more pages we want on the partial
3615 * list to avoid pounding the page allocator excessively.
3617 set_min_partial(s, ilog2(s->size) / 2);
3622 s->remote_node_defrag_ratio = 1000;
3625 /* Initialize the pre-computed randomized freelist if slab is up */
3626 if (slab_state >= UP) {
3627 if (init_cache_random_seq(s))
3631 if (!init_kmem_cache_nodes(s))
3634 if (alloc_kmem_cache_cpus(s))
3637 free_kmem_cache_nodes(s);
3639 if (flags & SLAB_PANIC)
3640 panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
3641 s->name, s->size, s->size,
3642 oo_order(s->oo), s->offset, (unsigned long)flags);
3646 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3649 #ifdef CONFIG_SLUB_DEBUG
3650 void *addr = page_address(page);
3652 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3653 sizeof(long), GFP_ATOMIC);
3656 slab_err(s, page, text, s->name);
3659 get_map(s, page, map);
3660 for_each_object(p, s, addr, page->objects) {
3662 if (!test_bit(slab_index(p, s, addr), map)) {
3663 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3664 print_tracking(s, p);
3673 * Attempt to free all partial slabs on a node.
3674 * This is called from __kmem_cache_shutdown(). We must take list_lock
3675 * because sysfs file might still access partial list after the shutdowning.
3677 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3680 struct page *page, *h;
3682 BUG_ON(irqs_disabled());
3683 spin_lock_irq(&n->list_lock);
3684 list_for_each_entry_safe(page, h, &n->partial, lru) {
3686 remove_partial(n, page);
3687 list_add(&page->lru, &discard);
3689 list_slab_objects(s, page,
3690 "Objects remaining in %s on __kmem_cache_shutdown()");
3693 spin_unlock_irq(&n->list_lock);
3695 list_for_each_entry_safe(page, h, &discard, lru)
3696 discard_slab(s, page);
3700 * Release all resources used by a slab cache.
3702 int __kmem_cache_shutdown(struct kmem_cache *s)
3705 struct kmem_cache_node *n;
3708 /* Attempt to free all objects */
3709 for_each_kmem_cache_node(s, node, n) {
3711 if (n->nr_partial || slabs_node(s, node))
3714 sysfs_slab_remove(s);
3718 /********************************************************************
3720 *******************************************************************/
3722 static int __init setup_slub_min_order(char *str)
3724 get_option(&str, (int *)&slub_min_order);
3729 __setup("slub_min_order=", setup_slub_min_order);
3731 static int __init setup_slub_max_order(char *str)
3733 get_option(&str, (int *)&slub_max_order);
3734 slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
3739 __setup("slub_max_order=", setup_slub_max_order);
3741 static int __init setup_slub_min_objects(char *str)
3743 get_option(&str, (int *)&slub_min_objects);
3748 __setup("slub_min_objects=", setup_slub_min_objects);
3750 void *__kmalloc(size_t size, gfp_t flags)
3752 struct kmem_cache *s;
3755 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3756 return kmalloc_large(size, flags);
3758 s = kmalloc_slab(size, flags);
3760 if (unlikely(ZERO_OR_NULL_PTR(s)))
3763 ret = slab_alloc(s, flags, _RET_IP_);
3765 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3767 kasan_kmalloc(s, ret, size, flags);
3771 EXPORT_SYMBOL(__kmalloc);
3774 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3779 flags |= __GFP_COMP;
3780 page = alloc_pages_node(node, flags, get_order(size));
3782 ptr = page_address(page);
3784 kmalloc_large_node_hook(ptr, size, flags);
3788 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3790 struct kmem_cache *s;
3793 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3794 ret = kmalloc_large_node(size, flags, node);
3796 trace_kmalloc_node(_RET_IP_, ret,
3797 size, PAGE_SIZE << get_order(size),
3803 s = kmalloc_slab(size, flags);
3805 if (unlikely(ZERO_OR_NULL_PTR(s)))
3808 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3810 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3812 kasan_kmalloc(s, ret, size, flags);
3816 EXPORT_SYMBOL(__kmalloc_node);
3819 #ifdef CONFIG_HARDENED_USERCOPY
3821 * Rejects incorrectly sized objects and objects that are to be copied
3822 * to/from userspace but do not fall entirely within the containing slab
3823 * cache's usercopy region.
3825 * Returns NULL if check passes, otherwise const char * to name of cache
3826 * to indicate an error.
3828 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3831 struct kmem_cache *s;
3832 unsigned int offset;
3835 /* Find object and usable object size. */
3836 s = page->slab_cache;
3838 /* Reject impossible pointers. */
3839 if (ptr < page_address(page))
3840 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3843 /* Find offset within object. */
3844 offset = (ptr - page_address(page)) % s->size;
3846 /* Adjust for redzone and reject if within the redzone. */
3847 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3848 if (offset < s->red_left_pad)
3849 usercopy_abort("SLUB object in left red zone",
3850 s->name, to_user, offset, n);
3851 offset -= s->red_left_pad;
3854 /* Allow address range falling entirely within usercopy region. */
3855 if (offset >= s->useroffset &&
3856 offset - s->useroffset <= s->usersize &&
3857 n <= s->useroffset - offset + s->usersize)
3861 * If the copy is still within the allocated object, produce
3862 * a warning instead of rejecting the copy. This is intended
3863 * to be a temporary method to find any missing usercopy
3866 object_size = slab_ksize(s);
3867 if (usercopy_fallback &&
3868 offset <= object_size && n <= object_size - offset) {
3869 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3873 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3875 #endif /* CONFIG_HARDENED_USERCOPY */
3877 static size_t __ksize(const void *object)
3881 if (unlikely(object == ZERO_SIZE_PTR))
3884 page = virt_to_head_page(object);
3886 if (unlikely(!PageSlab(page))) {
3887 WARN_ON(!PageCompound(page));
3888 return PAGE_SIZE << compound_order(page);
3891 return slab_ksize(page->slab_cache);
3894 size_t ksize(const void *object)
3896 size_t size = __ksize(object);
3897 /* We assume that ksize callers could use whole allocated area,
3898 * so we need to unpoison this area.
3900 kasan_unpoison_shadow(object, size);
3903 EXPORT_SYMBOL(ksize);
3905 void kfree(const void *x)
3908 void *object = (void *)x;
3910 trace_kfree(_RET_IP_, x);
3912 if (unlikely(ZERO_OR_NULL_PTR(x)))
3915 page = virt_to_head_page(x);
3916 if (unlikely(!PageSlab(page))) {
3917 BUG_ON(!PageCompound(page));
3919 __free_pages(page, compound_order(page));
3922 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3924 EXPORT_SYMBOL(kfree);
3926 #define SHRINK_PROMOTE_MAX 32
3929 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3930 * up most to the head of the partial lists. New allocations will then
3931 * fill those up and thus they can be removed from the partial lists.
3933 * The slabs with the least items are placed last. This results in them
3934 * being allocated from last increasing the chance that the last objects
3935 * are freed in them.
3937 int __kmem_cache_shrink(struct kmem_cache *s)
3941 struct kmem_cache_node *n;
3944 struct list_head discard;
3945 struct list_head promote[SHRINK_PROMOTE_MAX];
3946 unsigned long flags;
3950 for_each_kmem_cache_node(s, node, n) {
3951 INIT_LIST_HEAD(&discard);
3952 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3953 INIT_LIST_HEAD(promote + i);
3955 spin_lock_irqsave(&n->list_lock, flags);
3958 * Build lists of slabs to discard or promote.
3960 * Note that concurrent frees may occur while we hold the
3961 * list_lock. page->inuse here is the upper limit.
3963 list_for_each_entry_safe(page, t, &n->partial, lru) {
3964 int free = page->objects - page->inuse;
3966 /* Do not reread page->inuse */
3969 /* We do not keep full slabs on the list */
3972 if (free == page->objects) {
3973 list_move(&page->lru, &discard);
3975 } else if (free <= SHRINK_PROMOTE_MAX)
3976 list_move(&page->lru, promote + free - 1);
3980 * Promote the slabs filled up most to the head of the
3983 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3984 list_splice(promote + i, &n->partial);
3986 spin_unlock_irqrestore(&n->list_lock, flags);
3988 /* Release empty slabs */
3989 list_for_each_entry_safe(page, t, &discard, lru)
3990 discard_slab(s, page);
3992 if (slabs_node(s, node))
4000 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4003 * Called with all the locks held after a sched RCU grace period.
4004 * Even if @s becomes empty after shrinking, we can't know that @s
4005 * doesn't have allocations already in-flight and thus can't
4006 * destroy @s until the associated memcg is released.
4008 * However, let's remove the sysfs files for empty caches here.
4009 * Each cache has a lot of interface files which aren't
4010 * particularly useful for empty draining caches; otherwise, we can
4011 * easily end up with millions of unnecessary sysfs files on
4012 * systems which have a lot of memory and transient cgroups.
4014 if (!__kmem_cache_shrink(s))
4015 sysfs_slab_remove(s);
4018 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4021 * Disable empty slabs caching. Used to avoid pinning offline
4022 * memory cgroups by kmem pages that can be freed.
4024 slub_set_cpu_partial(s, 0);
4028 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4029 * we have to make sure the change is visible before shrinking.
4031 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4035 static int slab_mem_going_offline_callback(void *arg)
4037 struct kmem_cache *s;
4039 mutex_lock(&slab_mutex);
4040 list_for_each_entry(s, &slab_caches, list)
4041 __kmem_cache_shrink(s);
4042 mutex_unlock(&slab_mutex);
4047 static void slab_mem_offline_callback(void *arg)
4049 struct kmem_cache_node *n;
4050 struct kmem_cache *s;
4051 struct memory_notify *marg = arg;
4054 offline_node = marg->status_change_nid_normal;
4057 * If the node still has available memory. we need kmem_cache_node
4060 if (offline_node < 0)
4063 mutex_lock(&slab_mutex);
4064 list_for_each_entry(s, &slab_caches, list) {
4065 n = get_node(s, offline_node);
4068 * if n->nr_slabs > 0, slabs still exist on the node
4069 * that is going down. We were unable to free them,
4070 * and offline_pages() function shouldn't call this
4071 * callback. So, we must fail.
4073 BUG_ON(slabs_node(s, offline_node));
4075 s->node[offline_node] = NULL;
4076 kmem_cache_free(kmem_cache_node, n);
4079 mutex_unlock(&slab_mutex);
4082 static int slab_mem_going_online_callback(void *arg)
4084 struct kmem_cache_node *n;
4085 struct kmem_cache *s;
4086 struct memory_notify *marg = arg;
4087 int nid = marg->status_change_nid_normal;
4091 * If the node's memory is already available, then kmem_cache_node is
4092 * already created. Nothing to do.
4098 * We are bringing a node online. No memory is available yet. We must
4099 * allocate a kmem_cache_node structure in order to bring the node
4102 mutex_lock(&slab_mutex);
4103 list_for_each_entry(s, &slab_caches, list) {
4105 * XXX: kmem_cache_alloc_node will fallback to other nodes
4106 * since memory is not yet available from the node that
4109 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4114 init_kmem_cache_node(n);
4118 mutex_unlock(&slab_mutex);
4122 static int slab_memory_callback(struct notifier_block *self,
4123 unsigned long action, void *arg)
4128 case MEM_GOING_ONLINE:
4129 ret = slab_mem_going_online_callback(arg);
4131 case MEM_GOING_OFFLINE:
4132 ret = slab_mem_going_offline_callback(arg);
4135 case MEM_CANCEL_ONLINE:
4136 slab_mem_offline_callback(arg);
4139 case MEM_CANCEL_OFFLINE:
4143 ret = notifier_from_errno(ret);
4149 static struct notifier_block slab_memory_callback_nb = {
4150 .notifier_call = slab_memory_callback,
4151 .priority = SLAB_CALLBACK_PRI,
4154 /********************************************************************
4155 * Basic setup of slabs
4156 *******************************************************************/
4159 * Used for early kmem_cache structures that were allocated using
4160 * the page allocator. Allocate them properly then fix up the pointers
4161 * that may be pointing to the wrong kmem_cache structure.
4164 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4167 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4168 struct kmem_cache_node *n;
4170 memcpy(s, static_cache, kmem_cache->object_size);
4173 * This runs very early, and only the boot processor is supposed to be
4174 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4177 __flush_cpu_slab(s, smp_processor_id());
4178 for_each_kmem_cache_node(s, node, n) {
4181 list_for_each_entry(p, &n->partial, lru)
4184 #ifdef CONFIG_SLUB_DEBUG
4185 list_for_each_entry(p, &n->full, lru)
4189 slab_init_memcg_params(s);
4190 list_add(&s->list, &slab_caches);
4191 memcg_link_cache(s);
4195 void __init kmem_cache_init(void)
4197 static __initdata struct kmem_cache boot_kmem_cache,
4198 boot_kmem_cache_node;
4200 if (debug_guardpage_minorder())
4203 kmem_cache_node = &boot_kmem_cache_node;
4204 kmem_cache = &boot_kmem_cache;
4206 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4207 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4209 register_hotmemory_notifier(&slab_memory_callback_nb);
4211 /* Able to allocate the per node structures */
4212 slab_state = PARTIAL;
4214 create_boot_cache(kmem_cache, "kmem_cache",
4215 offsetof(struct kmem_cache, node) +
4216 nr_node_ids * sizeof(struct kmem_cache_node *),
4217 SLAB_HWCACHE_ALIGN, 0, 0);
4219 kmem_cache = bootstrap(&boot_kmem_cache);
4222 * Allocate kmem_cache_node properly from the kmem_cache slab.
4223 * kmem_cache_node is separately allocated so no need to
4224 * update any list pointers.
4226 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4228 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4229 setup_kmalloc_cache_index_table();
4230 create_kmalloc_caches(0);
4232 /* Setup random freelists for each cache */
4233 init_freelist_randomization();
4235 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4238 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%d\n",
4240 slub_min_order, slub_max_order, slub_min_objects,
4241 nr_cpu_ids, nr_node_ids);
4244 void __init kmem_cache_init_late(void)
4249 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4250 slab_flags_t flags, void (*ctor)(void *))
4252 struct kmem_cache *s, *c;
4254 s = find_mergeable(size, align, flags, name, ctor);
4259 * Adjust the object sizes so that we clear
4260 * the complete object on kzalloc.
4262 s->object_size = max(s->object_size, size);
4263 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
4265 for_each_memcg_cache(c, s) {
4266 c->object_size = s->object_size;
4267 c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4270 if (sysfs_slab_alias(s, name)) {
4279 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4283 err = kmem_cache_open(s, flags);
4287 /* Mutex is not taken during early boot */
4288 if (slab_state <= UP)
4291 memcg_propagate_slab_attrs(s);
4292 err = sysfs_slab_add(s);
4294 __kmem_cache_release(s);
4299 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4301 struct kmem_cache *s;
4304 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4305 return kmalloc_large(size, gfpflags);
4307 s = kmalloc_slab(size, gfpflags);
4309 if (unlikely(ZERO_OR_NULL_PTR(s)))
4312 ret = slab_alloc(s, gfpflags, caller);
4314 /* Honor the call site pointer we received. */
4315 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4321 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4322 int node, unsigned long caller)
4324 struct kmem_cache *s;
4327 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4328 ret = kmalloc_large_node(size, gfpf