4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
74 PLIST_HEAD(swap_active_head);
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 static DEFINE_MUTEX(swapon_mutex);
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 static inline unsigned char swap_count(unsigned char ent)
103 return ent & ~SWAP_HAS_CACHE; /* may include COUNT_CONTINUED flag */
106 /* Reclaim the swap entry anyway if possible */
107 #define TTRS_ANYWAY 0x1
109 * Reclaim the swap entry if there are no more mappings of the
112 #define TTRS_UNMAPPED 0x2
113 /* Reclaim the swap entry if swap is getting full*/
114 #define TTRS_FULL 0x4
116 /* returns 1 if swap entry is freed */
117 static int __try_to_reclaim_swap(struct swap_info_struct *si,
118 unsigned long offset, unsigned long flags)
120 swp_entry_t entry = swp_entry(si->type, offset);
124 page = find_get_page(swap_address_space(entry), offset);
128 * When this function is called from scan_swap_map_slots() and it's
129 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
130 * here. We have to use trylock for avoiding deadlock. This is a special
131 * case and you should use try_to_free_swap() with explicit lock_page()
132 * in usual operations.
134 if (trylock_page(page)) {
135 if ((flags & TTRS_ANYWAY) ||
136 ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
137 ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
138 ret = try_to_free_swap(page);
146 * swapon tell device that all the old swap contents can be discarded,
147 * to allow the swap device to optimize its wear-levelling.
149 static int discard_swap(struct swap_info_struct *si)
151 struct swap_extent *se;
152 sector_t start_block;
156 /* Do not discard the swap header page! */
157 se = &si->first_swap_extent;
158 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
159 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
161 err = blkdev_issue_discard(si->bdev, start_block,
162 nr_blocks, GFP_KERNEL, 0);
168 list_for_each_entry(se, &si->first_swap_extent.list, list) {
169 start_block = se->start_block << (PAGE_SHIFT - 9);
170 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
172 err = blkdev_issue_discard(si->bdev, start_block,
173 nr_blocks, GFP_KERNEL, 0);
179 return err; /* That will often be -EOPNOTSUPP */
183 * swap allocation tell device that a cluster of swap can now be discarded,
184 * to allow the swap device to optimize its wear-levelling.
186 static void discard_swap_cluster(struct swap_info_struct *si,
187 pgoff_t start_page, pgoff_t nr_pages)
189 struct swap_extent *se = si->curr_swap_extent;
190 int found_extent = 0;
193 if (se->start_page <= start_page &&
194 start_page < se->start_page + se->nr_pages) {
195 pgoff_t offset = start_page - se->start_page;
196 sector_t start_block = se->start_block + offset;
197 sector_t nr_blocks = se->nr_pages - offset;
199 if (nr_blocks > nr_pages)
200 nr_blocks = nr_pages;
201 start_page += nr_blocks;
202 nr_pages -= nr_blocks;
205 si->curr_swap_extent = se;
207 start_block <<= PAGE_SHIFT - 9;
208 nr_blocks <<= PAGE_SHIFT - 9;
209 if (blkdev_issue_discard(si->bdev, start_block,
210 nr_blocks, GFP_NOIO, 0))
214 se = list_next_entry(se, list);
218 #ifdef CONFIG_THP_SWAP
219 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
221 #define swap_entry_size(size) (size)
223 #define SWAPFILE_CLUSTER 256
226 * Define swap_entry_size() as constant to let compiler to optimize
227 * out some code if !CONFIG_THP_SWAP
229 #define swap_entry_size(size) 1
231 #define LATENCY_LIMIT 256
233 static inline void cluster_set_flag(struct swap_cluster_info *info,
239 static inline unsigned int cluster_count(struct swap_cluster_info *info)
244 static inline void cluster_set_count(struct swap_cluster_info *info,
250 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
251 unsigned int c, unsigned int f)
257 static inline unsigned int cluster_next(struct swap_cluster_info *info)
262 static inline void cluster_set_next(struct swap_cluster_info *info,
268 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
269 unsigned int n, unsigned int f)
275 static inline bool cluster_is_free(struct swap_cluster_info *info)
277 return info->flags & CLUSTER_FLAG_FREE;
280 static inline bool cluster_is_null(struct swap_cluster_info *info)
282 return info->flags & CLUSTER_FLAG_NEXT_NULL;
285 static inline void cluster_set_null(struct swap_cluster_info *info)
287 info->flags = CLUSTER_FLAG_NEXT_NULL;
291 static inline bool cluster_is_huge(struct swap_cluster_info *info)
293 if (IS_ENABLED(CONFIG_THP_SWAP))
294 return info->flags & CLUSTER_FLAG_HUGE;
298 static inline void cluster_clear_huge(struct swap_cluster_info *info)
300 info->flags &= ~CLUSTER_FLAG_HUGE;
303 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
304 unsigned long offset)
306 struct swap_cluster_info *ci;
308 ci = si->cluster_info;
310 ci += offset / SWAPFILE_CLUSTER;
311 spin_lock(&ci->lock);
316 static inline void unlock_cluster(struct swap_cluster_info *ci)
319 spin_unlock(&ci->lock);
323 * Determine the locking method in use for this device. Return
324 * swap_cluster_info if SSD-style cluster-based locking is in place.
326 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
327 struct swap_info_struct *si, unsigned long offset)
329 struct swap_cluster_info *ci;
331 /* Try to use fine-grained SSD-style locking if available: */
332 ci = lock_cluster(si, offset);
333 /* Otherwise, fall back to traditional, coarse locking: */
335 spin_lock(&si->lock);
340 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
341 struct swap_cluster_info *ci)
346 spin_unlock(&si->lock);
349 static inline bool cluster_list_empty(struct swap_cluster_list *list)
351 return cluster_is_null(&list->head);
354 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
356 return cluster_next(&list->head);
359 static void cluster_list_init(struct swap_cluster_list *list)
361 cluster_set_null(&list->head);
362 cluster_set_null(&list->tail);
365 static void cluster_list_add_tail(struct swap_cluster_list *list,
366 struct swap_cluster_info *ci,
369 if (cluster_list_empty(list)) {
370 cluster_set_next_flag(&list->head, idx, 0);
371 cluster_set_next_flag(&list->tail, idx, 0);
373 struct swap_cluster_info *ci_tail;
374 unsigned int tail = cluster_next(&list->tail);
377 * Nested cluster lock, but both cluster locks are
378 * only acquired when we held swap_info_struct->lock
381 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
382 cluster_set_next(ci_tail, idx);
383 spin_unlock(&ci_tail->lock);
384 cluster_set_next_flag(&list->tail, idx, 0);
388 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
389 struct swap_cluster_info *ci)
393 idx = cluster_next(&list->head);
394 if (cluster_next(&list->tail) == idx) {
395 cluster_set_null(&list->head);
396 cluster_set_null(&list->tail);
398 cluster_set_next_flag(&list->head,
399 cluster_next(&ci[idx]), 0);
404 /* Add a cluster to discard list and schedule it to do discard */
405 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
409 * If scan_swap_map() can't find a free cluster, it will check
410 * si->swap_map directly. To make sure the discarding cluster isn't
411 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
412 * will be cleared after discard
414 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
415 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
417 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
419 schedule_work(&si->discard_work);
422 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
424 struct swap_cluster_info *ci = si->cluster_info;
426 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
427 cluster_list_add_tail(&si->free_clusters, ci, idx);
431 * Doing discard actually. After a cluster discard is finished, the cluster
432 * will be added to free cluster list. caller should hold si->lock.
434 static void swap_do_scheduled_discard(struct swap_info_struct *si)
436 struct swap_cluster_info *info, *ci;
439 info = si->cluster_info;
441 while (!cluster_list_empty(&si->discard_clusters)) {
442 idx = cluster_list_del_first(&si->discard_clusters, info);
443 spin_unlock(&si->lock);
445 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
448 spin_lock(&si->lock);
449 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
450 __free_cluster(si, idx);
451 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
452 0, SWAPFILE_CLUSTER);
457 static void swap_discard_work(struct work_struct *work)
459 struct swap_info_struct *si;
461 si = container_of(work, struct swap_info_struct, discard_work);
463 spin_lock(&si->lock);
464 swap_do_scheduled_discard(si);
465 spin_unlock(&si->lock);
468 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
470 struct swap_cluster_info *ci = si->cluster_info;
472 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
473 cluster_list_del_first(&si->free_clusters, ci);
474 cluster_set_count_flag(ci + idx, 0, 0);
477 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
479 struct swap_cluster_info *ci = si->cluster_info + idx;
481 VM_BUG_ON(cluster_count(ci) != 0);
483 * If the swap is discardable, prepare discard the cluster
484 * instead of free it immediately. The cluster will be freed
487 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
488 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
489 swap_cluster_schedule_discard(si, idx);
493 __free_cluster(si, idx);
497 * The cluster corresponding to page_nr will be used. The cluster will be
498 * removed from free cluster list and its usage counter will be increased.
500 static void inc_cluster_info_page(struct swap_info_struct *p,
501 struct swap_cluster_info *cluster_info, unsigned long page_nr)
503 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
507 if (cluster_is_free(&cluster_info[idx]))
508 alloc_cluster(p, idx);
510 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
511 cluster_set_count(&cluster_info[idx],
512 cluster_count(&cluster_info[idx]) + 1);
516 * The cluster corresponding to page_nr decreases one usage. If the usage
517 * counter becomes 0, which means no page in the cluster is in using, we can
518 * optionally discard the cluster and add it to free cluster list.
520 static void dec_cluster_info_page(struct swap_info_struct *p,
521 struct swap_cluster_info *cluster_info, unsigned long page_nr)
523 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
528 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
529 cluster_set_count(&cluster_info[idx],
530 cluster_count(&cluster_info[idx]) - 1);
532 if (cluster_count(&cluster_info[idx]) == 0)
533 free_cluster(p, idx);
537 * It's possible scan_swap_map() uses a free cluster in the middle of free
538 * cluster list. Avoiding such abuse to avoid list corruption.
541 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
542 unsigned long offset)
544 struct percpu_cluster *percpu_cluster;
547 offset /= SWAPFILE_CLUSTER;
548 conflict = !cluster_list_empty(&si->free_clusters) &&
549 offset != cluster_list_first(&si->free_clusters) &&
550 cluster_is_free(&si->cluster_info[offset]);
555 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
556 cluster_set_null(&percpu_cluster->index);
561 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
562 * might involve allocating a new cluster for current CPU too.
564 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
565 unsigned long *offset, unsigned long *scan_base)
567 struct percpu_cluster *cluster;
568 struct swap_cluster_info *ci;
570 unsigned long tmp, max;
573 cluster = this_cpu_ptr(si->percpu_cluster);
574 if (cluster_is_null(&cluster->index)) {
575 if (!cluster_list_empty(&si->free_clusters)) {
576 cluster->index = si->free_clusters.head;
577 cluster->next = cluster_next(&cluster->index) *
579 } else if (!cluster_list_empty(&si->discard_clusters)) {
581 * we don't have free cluster but have some clusters in
582 * discarding, do discard now and reclaim them
584 swap_do_scheduled_discard(si);
585 *scan_base = *offset = si->cluster_next;
594 * Other CPUs can use our cluster if they can't find a free cluster,
595 * check if there is still free entry in the cluster
598 max = min_t(unsigned long, si->max,
599 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
601 cluster_set_null(&cluster->index);
604 ci = lock_cluster(si, tmp);
606 if (!si->swap_map[tmp]) {
614 cluster_set_null(&cluster->index);
617 cluster->next = tmp + 1;
623 static void __del_from_avail_list(struct swap_info_struct *p)
628 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
631 static void del_from_avail_list(struct swap_info_struct *p)
633 spin_lock(&swap_avail_lock);
634 __del_from_avail_list(p);
635 spin_unlock(&swap_avail_lock);
638 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
639 unsigned int nr_entries)
641 unsigned int end = offset + nr_entries - 1;
643 if (offset == si->lowest_bit)
644 si->lowest_bit += nr_entries;
645 if (end == si->highest_bit)
646 si->highest_bit -= nr_entries;
647 si->inuse_pages += nr_entries;
648 if (si->inuse_pages == si->pages) {
649 si->lowest_bit = si->max;
651 del_from_avail_list(si);
655 static void add_to_avail_list(struct swap_info_struct *p)
659 spin_lock(&swap_avail_lock);
661 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
662 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
664 spin_unlock(&swap_avail_lock);
667 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
668 unsigned int nr_entries)
670 unsigned long end = offset + nr_entries - 1;
671 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
673 if (offset < si->lowest_bit)
674 si->lowest_bit = offset;
675 if (end > si->highest_bit) {
676 bool was_full = !si->highest_bit;
678 si->highest_bit = end;
679 if (was_full && (si->flags & SWP_WRITEOK))
680 add_to_avail_list(si);
682 atomic_long_add(nr_entries, &nr_swap_pages);
683 si->inuse_pages -= nr_entries;
684 if (si->flags & SWP_BLKDEV)
685 swap_slot_free_notify =
686 si->bdev->bd_disk->fops->swap_slot_free_notify;
688 swap_slot_free_notify = NULL;
689 while (offset <= end) {
690 frontswap_invalidate_page(si->type, offset);
691 if (swap_slot_free_notify)
692 swap_slot_free_notify(si->bdev, offset);
697 static int scan_swap_map_slots(struct swap_info_struct *si,
698 unsigned char usage, int nr,
701 struct swap_cluster_info *ci;
702 unsigned long offset;
703 unsigned long scan_base;
704 unsigned long last_in_cluster = 0;
705 int latency_ration = LATENCY_LIMIT;
712 * We try to cluster swap pages by allocating them sequentially
713 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
714 * way, however, we resort to first-free allocation, starting
715 * a new cluster. This prevents us from scattering swap pages
716 * all over the entire swap partition, so that we reduce
717 * overall disk seek times between swap pages. -- sct
718 * But we do now try to find an empty cluster. -Andrea
719 * And we let swap pages go all over an SSD partition. Hugh
722 si->flags += SWP_SCANNING;
723 scan_base = offset = si->cluster_next;
726 if (si->cluster_info) {
727 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
733 if (unlikely(!si->cluster_nr--)) {
734 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
735 si->cluster_nr = SWAPFILE_CLUSTER - 1;
739 spin_unlock(&si->lock);
742 * If seek is expensive, start searching for new cluster from
743 * start of partition, to minimize the span of allocated swap.
744 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
745 * case, just handled by scan_swap_map_try_ssd_cluster() above.
747 scan_base = offset = si->lowest_bit;
748 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
750 /* Locate the first empty (unaligned) cluster */
751 for (; last_in_cluster <= si->highest_bit; offset++) {
752 if (si->swap_map[offset])
753 last_in_cluster = offset + SWAPFILE_CLUSTER;
754 else if (offset == last_in_cluster) {
755 spin_lock(&si->lock);
756 offset -= SWAPFILE_CLUSTER - 1;
757 si->cluster_next = offset;
758 si->cluster_nr = SWAPFILE_CLUSTER - 1;
761 if (unlikely(--latency_ration < 0)) {
763 latency_ration = LATENCY_LIMIT;
768 spin_lock(&si->lock);
769 si->cluster_nr = SWAPFILE_CLUSTER - 1;
773 if (si->cluster_info) {
774 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
775 /* take a break if we already got some slots */
778 if (!scan_swap_map_try_ssd_cluster(si, &offset,
783 if (!(si->flags & SWP_WRITEOK))
785 if (!si->highest_bit)
787 if (offset > si->highest_bit)
788 scan_base = offset = si->lowest_bit;
790 ci = lock_cluster(si, offset);
791 /* reuse swap entry of cache-only swap if not busy. */
792 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
795 spin_unlock(&si->lock);
796 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
797 spin_lock(&si->lock);
798 /* entry was freed successfully, try to use this again */
801 goto scan; /* check next one */
804 if (si->swap_map[offset]) {
811 si->swap_map[offset] = usage;
812 inc_cluster_info_page(si, si->cluster_info, offset);
815 swap_range_alloc(si, offset, 1);
816 si->cluster_next = offset + 1;
817 slots[n_ret++] = swp_entry(si->type, offset);
819 /* got enough slots or reach max slots? */
820 if ((n_ret == nr) || (offset >= si->highest_bit))
823 /* search for next available slot */
825 /* time to take a break? */
826 if (unlikely(--latency_ration < 0)) {
829 spin_unlock(&si->lock);
831 spin_lock(&si->lock);
832 latency_ration = LATENCY_LIMIT;
835 /* try to get more slots in cluster */
836 if (si->cluster_info) {
837 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
845 /* non-ssd case, still more slots in cluster? */
846 if (si->cluster_nr && !si->swap_map[offset]) {
852 si->flags -= SWP_SCANNING;
856 spin_unlock(&si->lock);
857 while (++offset <= si->highest_bit) {
858 if (!si->swap_map[offset]) {
859 spin_lock(&si->lock);
862 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
863 spin_lock(&si->lock);
866 if (unlikely(--latency_ration < 0)) {
868 latency_ration = LATENCY_LIMIT;
871 offset = si->lowest_bit;
872 while (offset < scan_base) {
873 if (!si->swap_map[offset]) {
874 spin_lock(&si->lock);
877 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
878 spin_lock(&si->lock);
881 if (unlikely(--latency_ration < 0)) {
883 latency_ration = LATENCY_LIMIT;
887 spin_lock(&si->lock);
890 si->flags -= SWP_SCANNING;
894 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
897 struct swap_cluster_info *ci;
898 unsigned long offset, i;
902 * Should not even be attempting cluster allocations when huge
903 * page swap is disabled. Warn and fail the allocation.
905 if (!IS_ENABLED(CONFIG_THP_SWAP)) {
910 if (cluster_list_empty(&si->free_clusters))
913 idx = cluster_list_first(&si->free_clusters);
914 offset = idx * SWAPFILE_CLUSTER;
915 ci = lock_cluster(si, offset);
916 alloc_cluster(si, idx);
917 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
919 map = si->swap_map + offset;
920 for (i = 0; i < SWAPFILE_CLUSTER; i++)
921 map[i] = SWAP_HAS_CACHE;
923 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
924 *slot = swp_entry(si->type, offset);
929 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
931 unsigned long offset = idx * SWAPFILE_CLUSTER;
932 struct swap_cluster_info *ci;
934 ci = lock_cluster(si, offset);
935 cluster_set_count_flag(ci, 0, 0);
936 free_cluster(si, idx);
938 swap_range_free(si, offset, SWAPFILE_CLUSTER);
941 static unsigned long scan_swap_map(struct swap_info_struct *si,
947 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
950 return swp_offset(entry);
956 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
958 unsigned long size = swap_entry_size(entry_size);
959 struct swap_info_struct *si, *next;
964 /* Only single cluster request supported */
965 WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
967 avail_pgs = atomic_long_read(&nr_swap_pages) / size;
971 if (n_goal > SWAP_BATCH)
974 if (n_goal > avail_pgs)
977 atomic_long_sub(n_goal * size, &nr_swap_pages);
979 spin_lock(&swap_avail_lock);
982 node = numa_node_id();
983 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
984 /* requeue si to after same-priority siblings */
985 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
986 spin_unlock(&swap_avail_lock);
987 spin_lock(&si->lock);
988 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
989 spin_lock(&swap_avail_lock);
990 if (plist_node_empty(&si->avail_lists[node])) {
991 spin_unlock(&si->lock);
994 WARN(!si->highest_bit,
995 "swap_info %d in list but !highest_bit\n",
997 WARN(!(si->flags & SWP_WRITEOK),
998 "swap_info %d in list but !SWP_WRITEOK\n",
1000 __del_from_avail_list(si);
1001 spin_unlock(&si->lock);
1004 if (size == SWAPFILE_CLUSTER) {
1005 if (!(si->flags & SWP_FILE))
1006 n_ret = swap_alloc_cluster(si, swp_entries);
1008 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1009 n_goal, swp_entries);
1010 spin_unlock(&si->lock);
1011 if (n_ret || size == SWAPFILE_CLUSTER)
1013 pr_debug("scan_swap_map of si %d failed to find offset\n",
1016 spin_lock(&swap_avail_lock);
1019 * if we got here, it's likely that si was almost full before,
1020 * and since scan_swap_map() can drop the si->lock, multiple
1021 * callers probably all tried to get a page from the same si
1022 * and it filled up before we could get one; or, the si filled
1023 * up between us dropping swap_avail_lock and taking si->lock.
1024 * Since we dropped the swap_avail_lock, the swap_avail_head
1025 * list may have been modified; so if next is still in the
1026 * swap_avail_head list then try it, otherwise start over
1027 * if we have not gotten any slots.
1029 if (plist_node_empty(&next->avail_lists[node]))
1033 spin_unlock(&swap_avail_lock);
1037 atomic_long_add((long)(n_goal - n_ret) * size,
1043 /* The only caller of this function is now suspend routine */
1044 swp_entry_t get_swap_page_of_type(int type)
1046 struct swap_info_struct *si;
1049 si = swap_info[type];
1050 spin_lock(&si->lock);
1051 if (si && (si->flags & SWP_WRITEOK)) {
1052 atomic_long_dec(&nr_swap_pages);
1053 /* This is called for allocating swap entry, not cache */
1054 offset = scan_swap_map(si, 1);
1056 spin_unlock(&si->lock);
1057 return swp_entry(type, offset);
1059 atomic_long_inc(&nr_swap_pages);
1061 spin_unlock(&si->lock);
1062 return (swp_entry_t) {0};
1065 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1067 struct swap_info_struct *p;
1068 unsigned long offset, type;
1072 type = swp_type(entry);
1073 if (type >= nr_swapfiles)
1075 p = swap_info[type];
1076 if (!(p->flags & SWP_USED))
1078 offset = swp_offset(entry);
1079 if (offset >= p->max)
1084 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1087 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1090 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1095 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1097 struct swap_info_struct *p;
1099 p = __swap_info_get(entry);
1102 if (!p->swap_map[swp_offset(entry)])
1107 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1113 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1115 struct swap_info_struct *p;
1117 p = _swap_info_get(entry);
1119 spin_lock(&p->lock);
1123 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1124 struct swap_info_struct *q)
1126 struct swap_info_struct *p;
1128 p = _swap_info_get(entry);
1132 spin_unlock(&q->lock);
1134 spin_lock(&p->lock);
1139 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1140 unsigned long offset,
1141 unsigned char usage)
1143 unsigned char count;
1144 unsigned char has_cache;
1146 count = p->swap_map[offset];
1148 has_cache = count & SWAP_HAS_CACHE;
1149 count &= ~SWAP_HAS_CACHE;
1151 if (usage == SWAP_HAS_CACHE) {
1152 VM_BUG_ON(!has_cache);
1154 } else if (count == SWAP_MAP_SHMEM) {
1156 * Or we could insist on shmem.c using a special
1157 * swap_shmem_free() and free_shmem_swap_and_cache()...
1160 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1161 if (count == COUNT_CONTINUED) {
1162 if (swap_count_continued(p, offset, count))
1163 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1165 count = SWAP_MAP_MAX;
1170 usage = count | has_cache;
1171 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1176 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1177 swp_entry_t entry, unsigned char usage)
1179 struct swap_cluster_info *ci;
1180 unsigned long offset = swp_offset(entry);
1182 ci = lock_cluster_or_swap_info(p, offset);
1183 usage = __swap_entry_free_locked(p, offset, usage);
1184 unlock_cluster_or_swap_info(p, ci);
1186 free_swap_slot(entry);
1191 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1193 struct swap_cluster_info *ci;
1194 unsigned long offset = swp_offset(entry);
1195 unsigned char count;
1197 ci = lock_cluster(p, offset);
1198 count = p->swap_map[offset];
1199 VM_BUG_ON(count != SWAP_HAS_CACHE);
1200 p->swap_map[offset] = 0;
1201 dec_cluster_info_page(p, p->cluster_info, offset);
1204 mem_cgroup_uncharge_swap(entry, 1);
1205 swap_range_free(p, offset, 1);
1209 * Caller has made sure that the swap device corresponding to entry
1210 * is still around or has not been recycled.
1212 void swap_free(swp_entry_t entry)
1214 struct swap_info_struct *p;
1216 p = _swap_info_get(entry);
1218 __swap_entry_free(p, entry, 1);
1222 * Called after dropping swapcache to decrease refcnt to swap entries.
1224 void put_swap_page(struct page *page, swp_entry_t entry)
1226 unsigned long offset = swp_offset(entry);
1227 unsigned long idx = offset / SWAPFILE_CLUSTER;
1228 struct swap_cluster_info *ci;
1229 struct swap_info_struct *si;
1231 unsigned int i, free_entries = 0;
1233 int size = swap_entry_size(hpage_nr_pages(page));
1235 si = _swap_info_get(entry);
1239 ci = lock_cluster_or_swap_info(si, offset);
1240 if (size == SWAPFILE_CLUSTER) {
1241 VM_BUG_ON(!cluster_is_huge(ci));
1242 map = si->swap_map + offset;
1243 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1245 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1246 if (val == SWAP_HAS_CACHE)
1249 cluster_clear_huge(ci);
1250 if (free_entries == SWAPFILE_CLUSTER) {
1251 unlock_cluster_or_swap_info(si, ci);
1252 spin_lock(&si->lock);
1253 ci = lock_cluster(si, offset);
1254 memset(map, 0, SWAPFILE_CLUSTER);
1256 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1257 swap_free_cluster(si, idx);
1258 spin_unlock(&si->lock);
1262 for (i = 0; i < size; i++, entry.val++) {
1263 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1264 unlock_cluster_or_swap_info(si, ci);
1265 free_swap_slot(entry);
1268 lock_cluster_or_swap_info(si, offset);
1271 unlock_cluster_or_swap_info(si, ci);
1274 #ifdef CONFIG_THP_SWAP
1275 int split_swap_cluster(swp_entry_t entry)
1277 struct swap_info_struct *si;
1278 struct swap_cluster_info *ci;
1279 unsigned long offset = swp_offset(entry);
1281 si = _swap_info_get(entry);
1284 ci = lock_cluster(si, offset);
1285 cluster_clear_huge(ci);
1291 static int swp_entry_cmp(const void *ent1, const void *ent2)
1293 const swp_entry_t *e1 = ent1, *e2 = ent2;
1295 return (int)swp_type(*e1) - (int)swp_type(*e2);
1298 void swapcache_free_entries(swp_entry_t *entries, int n)
1300 struct swap_info_struct *p, *prev;
1310 * Sort swap entries by swap device, so each lock is only taken once.
1311 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1312 * so low that it isn't necessary to optimize further.
1314 if (nr_swapfiles > 1)
1315 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1316 for (i = 0; i < n; ++i) {
1317 p = swap_info_get_cont(entries[i], prev);
1319 swap_entry_free(p, entries[i]);
1323 spin_unlock(&p->lock);
1327 * How many references to page are currently swapped out?
1328 * This does not give an exact answer when swap count is continued,
1329 * but does include the high COUNT_CONTINUED flag to allow for that.
1331 int page_swapcount(struct page *page)
1334 struct swap_info_struct *p;
1335 struct swap_cluster_info *ci;
1337 unsigned long offset;
1339 entry.val = page_private(page);
1340 p = _swap_info_get(entry);
1342 offset = swp_offset(entry);
1343 ci = lock_cluster_or_swap_info(p, offset);
1344 count = swap_count(p->swap_map[offset]);
1345 unlock_cluster_or_swap_info(p, ci);
1350 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1352 pgoff_t offset = swp_offset(entry);
1354 return swap_count(si->swap_map[offset]);
1357 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1360 pgoff_t offset = swp_offset(entry);
1361 struct swap_cluster_info *ci;
1363 ci = lock_cluster_or_swap_info(si, offset);
1364 count = swap_count(si->swap_map[offset]);
1365 unlock_cluster_or_swap_info(si, ci);
1370 * How many references to @entry are currently swapped out?
1371 * This does not give an exact answer when swap count is continued,
1372 * but does include the high COUNT_CONTINUED flag to allow for that.
1374 int __swp_swapcount(swp_entry_t entry)
1377 struct swap_info_struct *si;
1379 si = __swap_info_get(entry);
1381 count = swap_swapcount(si, entry);
1386 * How many references to @entry are currently swapped out?
1387 * This considers COUNT_CONTINUED so it returns exact answer.
1389 int swp_swapcount(swp_entry_t entry)
1391 int count, tmp_count, n;
1392 struct swap_info_struct *p;
1393 struct swap_cluster_info *ci;
1398 p = _swap_info_get(entry);
1402 offset = swp_offset(entry);
1404 ci = lock_cluster_or_swap_info(p, offset);
1406 count = swap_count(p->swap_map[offset]);
1407 if (!(count & COUNT_CONTINUED))
1410 count &= ~COUNT_CONTINUED;
1411 n = SWAP_MAP_MAX + 1;
1413 page = vmalloc_to_page(p->swap_map + offset);
1414 offset &= ~PAGE_MASK;
1415 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1418 page = list_next_entry(page, lru);
1419 map = kmap_atomic(page);
1420 tmp_count = map[offset];
1423 count += (tmp_count & ~COUNT_CONTINUED) * n;
1424 n *= (SWAP_CONT_MAX + 1);
1425 } while (tmp_count & COUNT_CONTINUED);
1427 unlock_cluster_or_swap_info(p, ci);
1431 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1434 struct swap_cluster_info *ci;
1435 unsigned char *map = si->swap_map;
1436 unsigned long roffset = swp_offset(entry);
1437 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1441 ci = lock_cluster_or_swap_info(si, offset);
1442 if (!ci || !cluster_is_huge(ci)) {
1443 if (swap_count(map[roffset]))
1447 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1448 if (swap_count(map[offset + i])) {
1454 unlock_cluster_or_swap_info(si, ci);
1458 static bool page_swapped(struct page *page)
1461 struct swap_info_struct *si;
1463 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1464 return page_swapcount(page) != 0;
1466 page = compound_head(page);
1467 entry.val = page_private(page);
1468 si = _swap_info_get(entry);
1470 return swap_page_trans_huge_swapped(si, entry);
1474 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1475 int *total_swapcount)
1477 int i, map_swapcount, _total_mapcount, _total_swapcount;
1478 unsigned long offset = 0;
1479 struct swap_info_struct *si;
1480 struct swap_cluster_info *ci = NULL;
1481 unsigned char *map = NULL;
1482 int mapcount, swapcount = 0;
1484 /* hugetlbfs shouldn't call it */
1485 VM_BUG_ON_PAGE(PageHuge(page), page);
1487 if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1488 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1489 if (PageSwapCache(page))
1490 swapcount = page_swapcount(page);
1491 if (total_swapcount)
1492 *total_swapcount = swapcount;
1493 return mapcount + swapcount;
1496 page = compound_head(page);
1498 _total_mapcount = _total_swapcount = map_swapcount = 0;
1499 if (PageSwapCache(page)) {
1502 entry.val = page_private(page);
1503 si = _swap_info_get(entry);
1506 offset = swp_offset(entry);
1510 ci = lock_cluster(si, offset);
1511 for (i = 0; i < HPAGE_PMD_NR; i++) {
1512 mapcount = atomic_read(&page[i]._mapcount) + 1;
1513 _total_mapcount += mapcount;
1515 swapcount = swap_count(map[offset + i]);
1516 _total_swapcount += swapcount;
1518 map_swapcount = max(map_swapcount, mapcount + swapcount);
1521 if (PageDoubleMap(page)) {
1523 _total_mapcount -= HPAGE_PMD_NR;
1525 mapcount = compound_mapcount(page);
1526 map_swapcount += mapcount;
1527 _total_mapcount += mapcount;
1529 *total_mapcount = _total_mapcount;
1530 if (total_swapcount)
1531 *total_swapcount = _total_swapcount;
1533 return map_swapcount;
1537 * We can write to an anon page without COW if there are no other references
1538 * to it. And as a side-effect, free up its swap: because the old content
1539 * on disk will never be read, and seeking back there to write new content
1540 * later would only waste time away from clustering.
1542 * NOTE: total_map_swapcount should not be relied upon by the caller if
1543 * reuse_swap_page() returns false, but it may be always overwritten
1544 * (see the other implementation for CONFIG_SWAP=n).
1546 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1548 int count, total_mapcount, total_swapcount;
1550 VM_BUG_ON_PAGE(!PageLocked(page), page);
1551 if (unlikely(PageKsm(page)))
1553 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1555 if (total_map_swapcount)
1556 *total_map_swapcount = total_mapcount + total_swapcount;
1557 if (count == 1 && PageSwapCache(page) &&
1558 (likely(!PageTransCompound(page)) ||
1559 /* The remaining swap count will be freed soon */
1560 total_swapcount == page_swapcount(page))) {
1561 if (!PageWriteback(page)) {
1562 page = compound_head(page);
1563 delete_from_swap_cache(page);
1567 struct swap_info_struct *p;
1569 entry.val = page_private(page);
1570 p = swap_info_get(entry);
1571 if (p->flags & SWP_STABLE_WRITES) {
1572 spin_unlock(&p->lock);
1575 spin_unlock(&p->lock);
1583 * If swap is getting full, or if there are no more mappings of this page,
1584 * then try_to_free_swap is called to free its swap space.
1586 int try_to_free_swap(struct page *page)
1588 VM_BUG_ON_PAGE(!PageLocked(page), page);
1590 if (!PageSwapCache(page))
1592 if (PageWriteback(page))
1594 if (page_swapped(page))
1598 * Once hibernation has begun to create its image of memory,
1599 * there's a danger that one of the calls to try_to_free_swap()
1600 * - most probably a call from __try_to_reclaim_swap() while
1601 * hibernation is allocating its own swap pages for the image,
1602 * but conceivably even a call from memory reclaim - will free
1603 * the swap from a page which has already been recorded in the
1604 * image as a clean swapcache page, and then reuse its swap for
1605 * another page of the image. On waking from hibernation, the
1606 * original page might be freed under memory pressure, then
1607 * later read back in from swap, now with the wrong data.
1609 * Hibernation suspends storage while it is writing the image
1610 * to disk so check that here.
1612 if (pm_suspended_storage())
1615 page = compound_head(page);
1616 delete_from_swap_cache(page);
1622 * Free the swap entry like above, but also try to
1623 * free the page cache entry if it is the last user.
1625 int free_swap_and_cache(swp_entry_t entry)
1627 struct swap_info_struct *p;
1628 unsigned char count;
1630 if (non_swap_entry(entry))
1633 p = _swap_info_get(entry);
1635 count = __swap_entry_free(p, entry, 1);
1636 if (count == SWAP_HAS_CACHE &&
1637 !swap_page_trans_huge_swapped(p, entry))
1638 __try_to_reclaim_swap(p, swp_offset(entry),
1639 TTRS_UNMAPPED | TTRS_FULL);
1644 #ifdef CONFIG_HIBERNATION
1646 * Find the swap type that corresponds to given device (if any).
1648 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1649 * from 0, in which the swap header is expected to be located.
1651 * This is needed for the suspend to disk (aka swsusp).
1653 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1655 struct block_device *bdev = NULL;
1659 bdev = bdget(device);
1661 spin_lock(&swap_lock);
1662 for (type = 0; type < nr_swapfiles; type++) {
1663 struct swap_info_struct *sis = swap_info[type];
1665 if (!(sis->flags & SWP_WRITEOK))
1670 *bdev_p = bdgrab(sis->bdev);
1672 spin_unlock(&swap_lock);
1675 if (bdev == sis->bdev) {
1676 struct swap_extent *se = &sis->first_swap_extent;
1678 if (se->start_block == offset) {
1680 *bdev_p = bdgrab(sis->bdev);
1682 spin_unlock(&swap_lock);
1688 spin_unlock(&swap_lock);
1696 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1697 * corresponding to given index in swap_info (swap type).
1699 sector_t swapdev_block(int type, pgoff_t offset)
1701 struct block_device *bdev;
1703 if ((unsigned int)type >= nr_swapfiles)
1705 if (!(swap_info[type]->flags & SWP_WRITEOK))
1707 return map_swap_entry(swp_entry(type, offset), &bdev);
1711 * Return either the total number of swap pages of given type, or the number
1712 * of free pages of that type (depending on @free)
1714 * This is needed for software suspend
1716 unsigned int count_swap_pages(int type, int free)
1720 spin_lock(&swap_lock);
1721 if ((unsigned int)type < nr_swapfiles) {
1722 struct swap_info_struct *sis = swap_info[type];
1724 spin_lock(&sis->lock);
1725 if (sis->flags & SWP_WRITEOK) {
1728 n -= sis->inuse_pages;
1730 spin_unlock(&sis->lock);
1732 spin_unlock(&swap_lock);
1735 #endif /* CONFIG_HIBERNATION */
1737 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1739 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1743 * No need to decide whether this PTE shares the swap entry with others,
1744 * just let do_wp_page work it out if a write is requested later - to
1745 * force COW, vm_page_prot omits write permission from any private vma.
1747 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1748 unsigned long addr, swp_entry_t entry, struct page *page)
1750 struct page *swapcache;
1751 struct mem_cgroup *memcg;
1757 page = ksm_might_need_to_copy(page, vma, addr);
1758 if (unlikely(!page))
1761 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1767 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1768 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1769 mem_cgroup_cancel_charge(page, memcg, false);
1774 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1775 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1777 set_pte_at(vma->vm_mm, addr, pte,
1778 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1779 if (page == swapcache) {
1780 page_add_anon_rmap(page, vma, addr, false);
1781 mem_cgroup_commit_charge(page, memcg, true, false);
1782 } else { /* ksm created a completely new copy */
1783 page_add_new_anon_rmap(page, vma, addr, false);
1784 mem_cgroup_commit_charge(page, memcg, false, false);
1785 lru_cache_add_active_or_unevictable(page, vma);
1789 * Move the page to the active list so it is not
1790 * immediately swapped out again after swapon.
1792 activate_page(page);
1794 pte_unmap_unlock(pte, ptl);
1796 if (page != swapcache) {
1803 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1804 unsigned long addr, unsigned long end,
1805 swp_entry_t entry, struct page *page)
1807 pte_t swp_pte = swp_entry_to_pte(entry);
1812 * We don't actually need pte lock while scanning for swp_pte: since
1813 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1814 * page table while we're scanning; though it could get zapped, and on
1815 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1816 * of unmatched parts which look like swp_pte, so unuse_pte must
1817 * recheck under pte lock. Scanning without pte lock lets it be
1818 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1820 pte = pte_offset_map(pmd, addr);
1823 * swapoff spends a _lot_ of time in this loop!
1824 * Test inline before going to call unuse_pte.
1826 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1828 ret = unuse_pte(vma, pmd, addr, entry, page);
1831 pte = pte_offset_map(pmd, addr);
1833 } while (pte++, addr += PAGE_SIZE, addr != end);
1839 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1840 unsigned long addr, unsigned long end,
1841 swp_entry_t entry, struct page *page)
1847 pmd = pmd_offset(pud, addr);
1850 next = pmd_addr_end(addr, end);
1851 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1853 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1856 } while (pmd++, addr = next, addr != end);
1860 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1861 unsigned long addr, unsigned long end,
1862 swp_entry_t entry, struct page *page)
1868 pud = pud_offset(p4d, addr);
1870 next = pud_addr_end(addr, end);
1871 if (pud_none_or_clear_bad(pud))
1873 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1876 } while (pud++, addr = next, addr != end);
1880 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1881 unsigned long addr, unsigned long end,
1882 swp_entry_t entry, struct page *page)
1888 p4d = p4d_offset(pgd, addr);
1890 next = p4d_addr_end(addr, end);
1891 if (p4d_none_or_clear_bad(p4d))
1893 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1896 } while (p4d++, addr = next, addr != end);
1900 static int unuse_vma(struct vm_area_struct *vma,
1901 swp_entry_t entry, struct page *page)
1904 unsigned long addr, end, next;
1907 if (page_anon_vma(page)) {
1908 addr = page_address_in_vma(page, vma);
1909 if (addr == -EFAULT)
1912 end = addr + PAGE_SIZE;
1914 addr = vma->vm_start;
1918 pgd = pgd_offset(vma->vm_mm, addr);
1920 next = pgd_addr_end(addr, end);
1921 if (pgd_none_or_clear_bad(pgd))
1923 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1926 } while (pgd++, addr = next, addr != end);
1930 static int unuse_mm(struct mm_struct *mm,
1931 swp_entry_t entry, struct page *page)
1933 struct vm_area_struct *vma;
1936 if (!down_read_trylock(&mm->mmap_sem)) {
1938 * Activate page so shrink_inactive_list is unlikely to unmap
1939 * its ptes while lock is dropped, so swapoff can make progress.
1941 activate_page(page);
1943 down_read(&mm->mmap_sem);
1946 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1947 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1951 up_read(&mm->mmap_sem);
1952 return (ret < 0)? ret: 0;
1956 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1957 * from current position to next entry still in use.
1958 * Recycle to start on reaching the end, returning 0 when empty.
1960 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1961 unsigned int prev, bool frontswap)
1963 unsigned int max = si->max;
1964 unsigned int i = prev;
1965 unsigned char count;
1968 * No need for swap_lock here: we're just looking
1969 * for whether an entry is in use, not modifying it; false
1970 * hits are okay, and sys_swapoff() has already prevented new
1971 * allocations from this area (while holding swap_lock).
1980 * No entries in use at top of swap_map,
1981 * loop back to start and recheck there.
1987 count = READ_ONCE(si->swap_map[i]);
1988 if (count && swap_count(count) != SWAP_MAP_BAD)
1989 if (!frontswap || frontswap_test(si, i))
1991 if ((i % LATENCY_LIMIT) == 0)
1998 * We completely avoid races by reading each swap page in advance,
1999 * and then search for the process using it. All the necessary
2000 * page table adjustments can then be made atomically.
2002 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2003 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2005 int try_to_unuse(unsigned int type, bool frontswap,
2006 unsigned long pages_to_unuse)
2008 struct swap_info_struct *si = swap_info[type];
2009 struct mm_struct *start_mm;
2010 volatile unsigned char *swap_map; /* swap_map is accessed without
2011 * locking. Mark it as volatile
2012 * to prevent compiler doing
2015 unsigned char swcount;
2022 * When searching mms for an entry, a good strategy is to
2023 * start at the first mm we freed the previous entry from
2024 * (though actually we don't notice whether we or coincidence
2025 * freed the entry). Initialize this start_mm with a hold.
2027 * A simpler strategy would be to start at the last mm we
2028 * freed the previous entry from; but that would take less
2029 * advantage of mmlist ordering, which clusters forked mms
2030 * together, child after parent. If we race with dup_mmap(), we
2031 * prefer to resolve parent before child, lest we miss entries
2032 * duplicated after we scanned child: using last mm would invert
2035 start_mm = &init_mm;
2039 * Keep on scanning until all entries have gone. Usually,
2040 * one pass through swap_map is enough, but not necessarily:
2041 * there are races when an instance of an entry might be missed.
2043 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2044 if (signal_pending(current)) {
2050 * Get a page for the entry, using the existing swap
2051 * cache page if there is one. Otherwise, get a clean
2052 * page and read the swap into it.
2054 swap_map = &si->swap_map[i];
2055 entry = swp_entry(type, i);
2056 page = read_swap_cache_async(entry,
2057 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2060 * Either swap_duplicate() failed because entry
2061 * has been freed independently, and will not be
2062 * reused since sys_swapoff() already disabled
2063 * allocation from here, or alloc_page() failed.
2065 swcount = *swap_map;
2067 * We don't hold lock here, so the swap entry could be
2068 * SWAP_MAP_BAD (when the cluster is discarding).
2069 * Instead of fail out, We can just skip the swap
2070 * entry because swapoff will wait for discarding
2073 if (!swcount || swcount == SWAP_MAP_BAD)
2080 * Don't hold on to start_mm if it looks like exiting.
2082 if (atomic_read(&start_mm->mm_users) == 1) {
2084 start_mm = &init_mm;
2089 * Wait for and lock page. When do_swap_page races with
2090 * try_to_unuse, do_swap_page can handle the fault much
2091 * faster than try_to_unuse can locate the entry. This
2092 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2093 * defer to do_swap_page in such a case - in some tests,
2094 * do_swap_page and try_to_unuse repeatedly compete.
2096 wait_on_page_locked(page);
2097 wait_on_page_writeback(page);
2099 wait_on_page_writeback(page);
2102 * Remove all references to entry.
2104 swcount = *swap_map;
2105 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2106 retval = shmem_unuse(entry, page);
2107 /* page has already been unlocked and released */
2112 if (swap_count(swcount) && start_mm != &init_mm)
2113 retval = unuse_mm(start_mm, entry, page);
2115 if (swap_count(*swap_map)) {
2116 int set_start_mm = (*swap_map >= swcount);
2117 struct list_head *p = &start_mm->mmlist;
2118 struct mm_struct *new_start_mm = start_mm;
2119 struct mm_struct *prev_mm = start_mm;
2120 struct mm_struct *mm;
2122 mmget(new_start_mm);
2124 spin_lock(&mmlist_lock);
2125 while (swap_count(*swap_map) && !retval &&
2126 (p = p->next) != &start_mm->mmlist) {
2127 mm = list_entry(p, struct mm_struct, mmlist);
2128 if (!mmget_not_zero(mm))
2130 spin_unlock(&mmlist_lock);
2136 swcount = *swap_map;
2137 if (!swap_count(swcount)) /* any usage ? */
2139 else if (mm == &init_mm)
2142 retval = unuse_mm(mm, entry, page);
2144 if (set_start_mm && *swap_map < swcount) {
2145 mmput(new_start_mm);
2150 spin_lock(&mmlist_lock);
2152 spin_unlock(&mmlist_lock);
2155 start_mm = new_start_mm;
2164 * If a reference remains (rare), we would like to leave
2165 * the page in the swap cache; but try_to_unmap could
2166 * then re-duplicate the entry once we drop page lock,
2167 * so we might loop indefinitely; also, that page could
2168 * not be swapped out to other storage meanwhile. So:
2169 * delete from cache even if there's another reference,
2170 * after ensuring that the data has been saved to disk -
2171 * since if the reference remains (rarer), it will be
2172 * read from disk into another page. Splitting into two
2173 * pages would be incorrect if swap supported "shared
2174 * private" pages, but they are handled by tmpfs files.
2176 * Given how unuse_vma() targets one particular offset
2177 * in an anon_vma, once the anon_vma has been determined,
2178 * this splitting happens to be just what is needed to
2179 * handle where KSM pages have been swapped out: re-reading
2180 * is unnecessarily slow, but we can fix that later on.
2182 if (swap_count(*swap_map) &&
2183 PageDirty(page) && PageSwapCache(page)) {
2184 struct writeback_control wbc = {
2185 .sync_mode = WB_SYNC_NONE,
2188 swap_writepage(compound_head(page), &wbc);
2190 wait_on_page_writeback(page);
2194 * It is conceivable that a racing task removed this page from
2195 * swap cache just before we acquired the page lock at the top,
2196 * or while we dropped it in unuse_mm(). The page might even
2197 * be back in swap cache on another swap area: that we must not
2198 * delete, since it may not have been written out to swap yet.
2200 if (PageSwapCache(page) &&
2201 likely(page_private(page) == entry.val) &&
2202 !page_swapped(page))
2203 delete_from_swap_cache(compound_head(page));
2206 * So we could skip searching mms once swap count went
2207 * to 1, we did not mark any present ptes as dirty: must
2208 * mark page dirty so shrink_page_list will preserve it.
2215 * Make sure that we aren't completely killing
2216 * interactive performance.
2219 if (frontswap && pages_to_unuse > 0) {
2220 if (!--pages_to_unuse)
2230 * After a successful try_to_unuse, if no swap is now in use, we know
2231 * we can empty the mmlist. swap_lock must be held on entry and exit.
2232 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2233 * added to the mmlist just after page_duplicate - before would be racy.
2235 static void drain_mmlist(void)
2237 struct list_head *p, *next;
2240 for (type = 0; type < nr_swapfiles; type++)
2241 if (swap_info[type]->inuse_pages)
2243 spin_lock(&mmlist_lock);
2244 list_for_each_safe(p, next, &init_mm.mmlist)
2246 spin_unlock(&mmlist_lock);
2250 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2251 * corresponds to page offset for the specified swap entry.
2252 * Note that the type of this function is sector_t, but it returns page offset
2253 * into the bdev, not sector offset.
2255 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2257 struct swap_info_struct *sis;
2258 struct swap_extent *start_se;
2259 struct swap_extent *se;
2262 sis = swap_info[swp_type(entry)];
2265 offset = swp_offset(entry);
2266 start_se = sis->curr_swap_extent;
2270 if (se->start_page <= offset &&
2271 offset < (se->start_page + se->nr_pages)) {
2272 return se->start_block + (offset - se->start_page);
2274 se = list_next_entry(se, list);
2275 sis->curr_swap_extent = se;
2276 BUG_ON(se == start_se); /* It *must* be present */
2281 * Returns the page offset into bdev for the specified page's swap entry.
2283 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2286 entry.val = page_private(page);
2287 return map_swap_entry(entry, bdev);
2291 * Free all of a swapdev's extent information
2293 static void destroy_swap_extents(struct swap_info_struct *sis)
2295 while (!list_empty(&sis->first_swap_extent.list)) {
2296 struct swap_extent *se;
2298 se = list_first_entry(&sis->first_swap_extent.list,
2299 struct swap_extent, list);
2300 list_del(&se->list);
2304 if (sis->flags & SWP_FILE) {
2305 struct file *swap_file = sis->swap_file;
2306 struct address_space *mapping = swap_file->f_mapping;
2308 sis->flags &= ~SWP_FILE;
2309 mapping->a_ops->swap_deactivate(swap_file);
2314 * Add a block range (and the corresponding page range) into this swapdev's
2315 * extent list. The extent list is kept sorted in page order.
2317 * This function rather assumes that it is called in ascending page order.
2320 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2321 unsigned long nr_pages, sector_t start_block)
2323 struct swap_extent *se;
2324 struct swap_extent *new_se;
2325 struct list_head *lh;
2327 if (start_page == 0) {
2328 se = &sis->first_swap_extent;
2329 sis->curr_swap_extent = se;
2331 se->nr_pages = nr_pages;
2332 se->start_block = start_block;
2335 lh = sis->first_swap_extent.list.prev; /* Highest extent */
2336 se = list_entry(lh, struct swap_extent, list);
2337 BUG_ON(se->start_page + se->nr_pages != start_page);
2338 if (se->start_block + se->nr_pages == start_block) {
2340 se->nr_pages += nr_pages;
2346 * No merge. Insert a new extent, preserving ordering.
2348 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2351 new_se->start_page = start_page;
2352 new_se->nr_pages = nr_pages;
2353 new_se->start_block = start_block;
2355 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2360 * A `swap extent' is a simple thing which maps a contiguous range of pages
2361 * onto a contiguous range of disk blocks. An ordered list of swap extents
2362 * is built at swapon time and is then used at swap_writepage/swap_readpage
2363 * time for locating where on disk a page belongs.
2365 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2366 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2367 * swap files identically.
2369 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2370 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2371 * swapfiles are handled *identically* after swapon time.
2373 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2374 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2375 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2376 * requirements, they are simply tossed out - we will never use those blocks
2379 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2380 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2381 * which will scribble on the fs.
2383 * The amount of disk space which a single swap extent represents varies.
2384 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2385 * extents in the list. To avoid much list walking, we cache the previous
2386 * search location in `curr_swap_extent', and start new searches from there.
2387 * This is extremely effective. The average number of iterations in
2388 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2390 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2392 struct file *swap_file = sis->swap_file;
2393 struct address_space *mapping = swap_file->f_mapping;
2394 struct inode *inode = mapping->host;
2397 if (S_ISBLK(inode->i_mode)) {
2398 ret = add_swap_extent(sis, 0, sis->max, 0);
2403 if (mapping->a_ops->swap_activate) {
2404 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2406 sis->flags |= SWP_FILE;
2407 ret = add_swap_extent(sis, 0, sis->max, 0);
2413 return generic_swapfile_activate(sis, swap_file, span);
2416 static int swap_node(struct swap_info_struct *p)
2418 struct block_device *bdev;
2423 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2425 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2428 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2429 unsigned char *swap_map,
2430 struct swap_cluster_info *cluster_info)
2437 p->prio = --least_priority;
2439 * the plist prio is negated because plist ordering is
2440 * low-to-high, while swap ordering is high-to-low
2442 p->list.prio = -p->prio;
2445 p->avail_lists[i].prio = -p->prio;
2447 if (swap_node(p) == i)
2448 p->avail_lists[i].prio = 1;
2450 p->avail_lists[i].prio = -p->prio;
2453 p->swap_map = swap_map;
2454 p->cluster_info = cluster_info;
2455 p->flags |= SWP_WRITEOK;
2456 atomic_long_add(p->pages, &nr_swap_pages);
2457 total_swap_pages += p->pages;
2459 assert_spin_locked(&swap_lock);
2461 * both lists are plists, and thus priority ordered.
2462 * swap_active_head needs to be priority ordered for swapoff(),
2463 * which on removal of any swap_info_struct with an auto-assigned
2464 * (i.e. negative) priority increments the auto-assigned priority
2465 * of any lower-priority swap_info_structs.
2466 * swap_avail_head needs to be priority ordered for get_swap_page(),
2467 * which allocates swap pages from the highest available priority
2470 plist_add(&p->list, &swap_active_head);
2471 add_to_avail_list(p);
2474 static void enable_swap_info(struct swap_info_struct *p, int prio,
2475 unsigned char *swap_map,
2476 struct swap_cluster_info *cluster_info,
2477 unsigned long *frontswap_map)
2479 frontswap_init(p->type, frontswap_map);
2480 spin_lock(&swap_lock);
2481 spin_lock(&p->lock);
2482 _enable_swap_info(p, prio, swap_map, cluster_info);
2483 spin_unlock(&p->lock);
2484 spin_unlock(&swap_lock);
2487 static void reinsert_swap_info(struct swap_info_struct *p)
2489 spin_lock(&swap_lock);
2490 spin_lock(&p->lock);
2491 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2492 spin_unlock(&p->lock);
2493 spin_unlock(&swap_lock);
2496 bool has_usable_swap(void)
2500 spin_lock(&swap_lock);
2501 if (plist_head_empty(&swap_active_head))
2503 spin_unlock(&swap_lock);
2507 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2509 struct swap_info_struct *p = NULL;
2510 unsigned char *swap_map;
2511 struct swap_cluster_info *cluster_info;
2512 unsigned long *frontswap_map;
2513 struct file *swap_file, *victim;
2514 struct address_space *mapping;
2515 struct inode *inode;
2516 struct filename *pathname;
2518 unsigned int old_block_size;
2520 if (!capable(CAP_SYS_ADMIN))
2523 BUG_ON(!current->mm);
2525 pathname = getname(specialfile);
2526 if (IS_ERR(pathname))
2527 return PTR_ERR(pathname);
2529 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2530 err = PTR_ERR(victim);
2534 mapping = victim->f_mapping;
2535 spin_lock(&swap_lock);
2536 plist_for_each_entry(p, &swap_active_head, list) {
2537 if (p->flags & SWP_WRITEOK) {
2538 if (p->swap_file->f_mapping == mapping) {
2546 spin_unlock(&swap_lock);
2549 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2550 vm_unacct_memory(p->pages);
2553 spin_unlock(&swap_lock);
2556 del_from_avail_list(p);
2557 spin_lock(&p->lock);
2559 struct swap_info_struct *si = p;
2562 plist_for_each_entry_continue(si, &swap_active_head, list) {
2565 for_each_node(nid) {
2566 if (si->avail_lists[nid].prio != 1)
2567 si->avail_lists[nid].prio--;
2572 plist_del(&p->list, &swap_active_head);
2573 atomic_long_sub(p->pages, &nr_swap_pages);
2574 total_swap_pages -= p->pages;
2575 p->flags &= ~SWP_WRITEOK;
2576 spin_unlock(&p->lock);
2577 spin_unlock(&swap_lock);
2579 disable_swap_slots_cache_lock();
2581 set_current_oom_origin();
2582 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2583 clear_current_oom_origin();
2586 /* re-insert swap space back into swap_list */
2587 reinsert_swap_info(p);
2588 reenable_swap_slots_cache_unlock();
2592 reenable_swap_slots_cache_unlock();
2594 flush_work(&p->discard_work);
2596 destroy_swap_extents(p);
2597 if (p->flags & SWP_CONTINUED)
2598 free_swap_count_continuations(p);
2600 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2601 atomic_dec(&nr_rotate_swap);
2603 mutex_lock(&swapon_mutex);
2604 spin_lock(&swap_lock);
2605 spin_lock(&p->lock);
2608 /* wait for anyone still in scan_swap_map */
2609 p->highest_bit = 0; /* cuts scans short */
2610 while (p->flags >= SWP_SCANNING) {
2611 spin_unlock(&p->lock);
2612 spin_unlock(&swap_lock);
2613 schedule_timeout_uninterruptible(1);
2614 spin_lock(&swap_lock);
2615 spin_lock(&p->lock);
2618 swap_file = p->swap_file;
2619 old_block_size = p->old_block_size;
2620 p->swap_file = NULL;
2622 swap_map = p->swap_map;
2624 cluster_info = p->cluster_info;
2625 p->cluster_info = NULL;
2626 frontswap_map = frontswap_map_get(p);
2627 spin_unlock(&p->lock);
2628 spin_unlock(&swap_lock);
2629 frontswap_invalidate_area(p->type);
2630 frontswap_map_set(p, NULL);
2631 mutex_unlock(&swapon_mutex);
2632 free_percpu(p->percpu_cluster);
2633 p->percpu_cluster = NULL;
2635 kvfree(cluster_info);
2636 kvfree(frontswap_map);
2637 /* Destroy swap account information */
2638 swap_cgroup_swapoff(p->type);
2639 exit_swap_address_space(p->type);
2641 inode = mapping->host;
2642 if (S_ISBLK(inode->i_mode)) {
2643 struct block_device *bdev = I_BDEV(inode);
2644 set_blocksize(bdev, old_block_size);
2645 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2648 inode->i_flags &= ~S_SWAPFILE;
2649 inode_unlock(inode);
2651 filp_close(swap_file, NULL);
2654 * Clear the SWP_USED flag after all resources are freed so that swapon
2655 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2656 * not hold p->lock after we cleared its SWP_WRITEOK.
2658 spin_lock(&swap_lock);
2660 spin_unlock(&swap_lock);
2663 atomic_inc(&proc_poll_event);
2664 wake_up_interruptible(&proc_poll_wait);
2667 filp_close(victim, NULL);
2673 #ifdef CONFIG_PROC_FS
2674 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2676 struct seq_file *seq = file->private_data;
2678 poll_wait(file, &proc_poll_wait, wait);
2680 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2681 seq->poll_event = atomic_read(&proc_poll_event);
2682 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2685 return EPOLLIN | EPOLLRDNORM;
2689 static void *swap_start(struct seq_file *swap, loff_t *pos)
2691 struct swap_info_struct *si;
2695 mutex_lock(&swapon_mutex);
2698 return SEQ_START_TOKEN;
2700 for (type = 0; type < nr_swapfiles; type++) {
2701 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2702 si = swap_info[type];
2703 if (!(si->flags & SWP_USED) || !si->swap_map)
2712 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2714 struct swap_info_struct *si = v;
2717 if (v == SEQ_START_TOKEN)
2720 type = si->type + 1;
2722 for (; type < nr_swapfiles; type++) {
2723 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2724 si = swap_info[type];
2725 if (!(si->flags & SWP_USED) || !si->swap_map)
2734 static void swap_stop(struct seq_file *swap, void *v)
2736 mutex_unlock(&swapon_mutex);
2739 static int swap_show(struct seq_file *swap, void *v)
2741 struct swap_info_struct *si = v;
2745 if (si == SEQ_START_TOKEN) {
2746 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2750 file = si->swap_file;
2751 len = seq_file_path(swap, file, " \t\n\\");
2752 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2753 len < 40 ? 40 - len : 1, " ",
2754 S_ISBLK(file_inode(file)->i_mode) ?
2755 "partition" : "file\t",
2756 si->pages << (PAGE_SHIFT - 10),
2757 si->inuse_pages << (PAGE_SHIFT - 10),
2762 static const struct seq_operations swaps_op = {
2763 .start = swap_start,
2769 static int swaps_open(struct inode *inode, struct file *file)
2771 struct seq_file *seq;
2774 ret = seq_open(file, &swaps_op);
2778 seq = file->private_data;
2779 seq->poll_event = atomic_read(&proc_poll_event);
2783 static const struct file_operations proc_swaps_operations = {
2786 .llseek = seq_lseek,
2787 .release = seq_release,
2791 static int __init procswaps_init(void)
2793 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2796 __initcall(procswaps_init);
2797 #endif /* CONFIG_PROC_FS */
2799 #ifdef MAX_SWAPFILES_CHECK
2800 static int __init max_swapfiles_check(void)
2802 MAX_SWAPFILES_CHECK();
2805 late_initcall(max_swapfiles_check);
2808 static struct swap_info_struct *alloc_swap_info(void)
2810 struct swap_info_struct *p;
2814 p = kzalloc(sizeof(*p), GFP_KERNEL);
2816 return ERR_PTR(-ENOMEM);
2818 spin_lock(&swap_lock);
2819 for (type = 0; type < nr_swapfiles; type++) {
2820 if (!(swap_info[type]->flags & SWP_USED))
2823 if (type >= MAX_SWAPFILES) {
2824 spin_unlock(&swap_lock);
2826 return ERR_PTR(-EPERM);
2828 if (type >= nr_swapfiles) {
2830 swap_info[type] = p;
2832 * Write swap_info[type] before nr_swapfiles, in case a
2833 * racing procfs swap_start() or swap_next() is reading them.
2834 * (We never shrink nr_swapfiles, we never free this entry.)
2840 p = swap_info[type];
2842 * Do not memset this entry: a racing procfs swap_next()
2843 * would be relying on p->type to remain valid.
2846 INIT_LIST_HEAD(&p->first_swap_extent.list);
2847 plist_node_init(&p->list, 0);
2849 plist_node_init(&p->avail_lists[i], 0);
2850 p->flags = SWP_USED;
2851 spin_unlock(&swap_lock);
2852 spin_lock_init(&p->lock);
2853 spin_lock_init(&p->cont_lock);
2858 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2862 if (S_ISBLK(inode->i_mode)) {
2863 p->bdev = bdgrab(I_BDEV(inode));
2864 error = blkdev_get(p->bdev,
2865 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2870 p->old_block_size = block_size(p->bdev);
2871 error = set_blocksize(p->bdev, PAGE_SIZE);
2874 p->flags |= SWP_BLKDEV;
2875 } else if (S_ISREG(inode->i_mode)) {
2876 p->bdev = inode->i_sb->s_bdev;
2878 if (IS_SWAPFILE(inode))
2888 * Find out how many pages are allowed for a single swap device. There
2889 * are two limiting factors:
2890 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2891 * 2) the number of bits in the swap pte, as defined by the different
2894 * In order to find the largest possible bit mask, a swap entry with
2895 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2896 * decoded to a swp_entry_t again, and finally the swap offset is
2899 * This will mask all the bits from the initial ~0UL mask that can't
2900 * be encoded in either the swp_entry_t or the architecture definition
2903 unsigned long generic_max_swapfile_size(void)
2905 return swp_offset(pte_to_swp_entry(
2906 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2909 /* Can be overridden by an architecture for additional checks. */
2910 __weak unsigned long max_swapfile_size(void)
2912 return generic_max_swapfile_size();
2915 static unsigned long read_swap_header(struct swap_info_struct *p,
2916 union swap_header *swap_header,
2917 struct inode *inode)
2920 unsigned long maxpages;
2921 unsigned long swapfilepages;
2922 unsigned long last_page;
2924 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2925 pr_err("Unable to find swap-space signature\n");
2929 /* swap partition endianess hack... */
2930 if (swab32(swap_header->info.version) == 1) {
2931 swab32s(&swap_header->info.version);
2932 swab32s(&swap_header->info.last_page);
2933 swab32s(&swap_header->info.nr_badpages);
2934 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2936 for (i = 0; i < swap_header->info.nr_badpages; i++)
2937 swab32s(&swap_header->info.badpages[i]);
2939 /* Check the swap header's sub-version */
2940 if (swap_header->info.version != 1) {
2941 pr_warn("Unable to handle swap header version %d\n",
2942 swap_header->info.version);
2947 p->cluster_next = 1;
2950 maxpages = max_swapfile_size();
2951 last_page = swap_header->info.last_page;
2953 pr_warn("Empty swap-file\n");
2956 if (last_page > maxpages) {
2957 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2958 maxpages << (PAGE_SHIFT - 10),
2959 last_page << (PAGE_SHIFT - 10));
2961 if (maxpages > last_page) {
2962 maxpages = last_page + 1;
2963 /* p->max is an unsigned int: don't overflow it */
2964 if ((unsigned int)maxpages == 0)
2965 maxpages = UINT_MAX;
2967 p->highest_bit = maxpages - 1;
2971 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2972 if (swapfilepages && maxpages > swapfilepages) {
2973 pr_warn("Swap area shorter than signature indicates\n");
2976 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2978 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2984 #define SWAP_CLUSTER_INFO_COLS \
2985 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2986 #define SWAP_CLUSTER_SPACE_COLS \
2987 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2988 #define SWAP_CLUSTER_COLS \
2989 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2991 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2992 union swap_header *swap_header,
2993 unsigned char *swap_map,
2994 struct swap_cluster_info *cluster_info,
2995 unsigned long maxpages,
2999 unsigned int nr_good_pages;
3001 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3002 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3003 unsigned long i, idx;
3005 nr_good_pages = maxpages - 1; /* omit header page */
3007 cluster_list_init(&p->free_clusters);
3008 cluster_list_init(&p->discard_clusters);
3010 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3011 unsigned int page_nr = swap_header->info.badpages[i];
3012 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3014 if (page_nr < maxpages) {
3015 swap_map[page_nr] = SWAP_MAP_BAD;
3018 * Haven't marked the cluster free yet, no list
3019 * operation involved
3021 inc_cluster_info_page(p, cluster_info, page_nr);
3025 /* Haven't marked the cluster free yet, no list operation involved */
3026 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3027 inc_cluster_info_page(p, cluster_info, i);
3029 if (nr_good_pages) {
3030 swap_map[0] = SWAP_MAP_BAD;
3032 * Not mark the cluster free yet, no list
3033 * operation involved
3035 inc_cluster_info_page(p, cluster_info, 0);
3037 p->pages = nr_good_pages;
3038 nr_extents = setup_swap_extents(p, span);
3041 nr_good_pages = p->pages;
3043 if (!nr_good_pages) {
3044 pr_warn("Empty swap-file\n");
3053 * Reduce false cache line sharing between cluster_info and
3054 * sharing same address space.
3056 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3057 j = (k + col) % SWAP_CLUSTER_COLS;
3058 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3059 idx = i * SWAP_CLUSTER_COLS + j;
3060 if (idx >= nr_clusters)
3062 if (cluster_count(&cluster_info[idx]))
3064 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3065 cluster_list_add_tail(&p->free_clusters, cluster_info,
3073 * Helper to sys_swapon determining if a given swap
3074 * backing device queue supports DISCARD operations.
3076 static bool swap_discardable(struct swap_info_struct *si)
3078 struct request_queue *q = bdev_get_queue(si->bdev);
3080 if (!q || !blk_queue_discard(q))
3086 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3088 struct swap_info_struct *p;
3089 struct filename *name;
3090 struct file *swap_file = NULL;
3091 struct address_space *mapping;
3094 union swap_header *swap_header;
3097 unsigned long maxpages;
3098 unsigned char *swap_map = NULL;
3099 struct swap_cluster_info *cluster_info = NULL;
3100 unsigned long *frontswap_map = NULL;
3101 struct page *page = NULL;
3102 struct inode *inode = NULL;
3103 bool inced_nr_rotate_swap = false;
3105 if (swap_flags & ~SWAP_FLAGS_VALID)
3108 if (!capable(CAP_SYS_ADMIN))
3111 if (!swap_avail_heads)
3114 p = alloc_swap_info();
3118 INIT_WORK(&p->discard_work, swap_discard_work);
3120 name = getname(specialfile);
3122 error = PTR_ERR(name);
3126 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3127 if (IS_ERR(swap_file)) {
3128 error = PTR_ERR(swap_file);
3133 p->swap_file = swap_file;
3134 mapping = swap_file->f_mapping;
3135 inode = mapping->host;
3137 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3138 error = claim_swapfile(p, inode);
3139 if (unlikely(error))
3143 * Read the swap header.
3145 if (!mapping->a_ops->readpage) {
3149 page = read_mapping_page(mapping, 0, swap_file);
3151 error = PTR_ERR(page);
3154 swap_header = kmap(page);
3156 maxpages = read_swap_header(p, swap_header, inode);
3157 if (unlikely(!maxpages)) {
3162 /* OK, set up the swap map and apply the bad block list */
3163 swap_map = vzalloc(maxpages);
3169 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3170 p->flags |= SWP_STABLE_WRITES;
3172 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3173 p->flags |= SWP_SYNCHRONOUS_IO;
3175 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3177 unsigned long ci, nr_cluster;
3179 p->flags |= SWP_SOLIDSTATE;
3181 * select a random position to start with to help wear leveling
3184 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3185 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3187 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3189 if (!cluster_info) {
3194 for (ci = 0; ci < nr_cluster; ci++)
3195 spin_lock_init(&((cluster_info + ci)->lock));
3197 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3198 if (!p->percpu_cluster) {
3202 for_each_possible_cpu(cpu) {
3203 struct percpu_cluster *cluster;
3204 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3205 cluster_set_null(&cluster->index);
3208 atomic_inc(&nr_rotate_swap);
3209 inced_nr_rotate_swap = true;
3212 error = swap_cgroup_swapon(p->type, maxpages);
3216 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3217 cluster_info, maxpages, &span);
3218 if (unlikely(nr_extents < 0)) {
3222 /* frontswap enabled? set up bit-per-page map for frontswap */
3223 if (IS_ENABLED(CONFIG_FRONTSWAP))
3224 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3228 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3230 * When discard is enabled for swap with no particular
3231 * policy flagged, we set all swap discard flags here in
3232 * order to sustain backward compatibility with older
3233 * swapon(8) releases.
3235 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3239 * By flagging sys_swapon, a sysadmin can tell us to
3240 * either do single-time area discards only, or to just
3241 * perform discards for released swap page-clusters.
3242 * Now it's time to adjust the p->flags accordingly.
3244 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3245 p->flags &= ~SWP_PAGE_DISCARD;
3246 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3247 p->flags &= ~SWP_AREA_DISCARD;
3249 /* issue a swapon-time discard if it's still required */
3250 if (p->flags & SWP_AREA_DISCARD) {
3251 int err = discard_swap(p);
3253 pr_err("swapon: discard_swap(%p): %d\n",
3258 error = init_swap_address_space(p->type, maxpages);
3262 mutex_lock(&swapon_mutex);
3264 if (swap_flags & SWAP_FLAG_PREFER)
3266 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3267 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3269 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3270 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3271 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3272 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3273 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3274 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3275 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3276 (frontswap_map) ? "FS" : "");
3278 mutex_unlock(&swapon_mutex);
3279 atomic_inc(&proc_poll_event);
3280 wake_up_interruptible(&proc_poll_wait);
3282 if (S_ISREG(inode->i_mode))
3283 inode->i_flags |= S_SWAPFILE;
3287 free_percpu(p->percpu_cluster);
3288 p->percpu_cluster = NULL;
3289 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3290 set_blocksize(p->bdev, p->old_block_size);
3291 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3293 destroy_swap_extents(p);
3294 swap_cgroup_swapoff(p->type);
3295 spin_lock(&swap_lock);
3296 p->swap_file = NULL;
3298 spin_unlock(&swap_lock);
3300 kvfree(cluster_info);
3301 kvfree(frontswap_map);
3302 if (inced_nr_rotate_swap)
3303 atomic_dec(&nr_rotate_swap);
3305 if (inode && S_ISREG(inode->i_mode)) {
3306 inode_unlock(inode);
3309 filp_close(swap_file, NULL);
3312 if (page && !IS_ERR(page)) {
3318 if (inode && S_ISREG(inode->i_mode))
3319 inode_unlock(inode);
3321 enable_swap_slots_cache();
3325 void si_swapinfo(struct sysinfo *val)
3328 unsigned long nr_to_be_unused = 0;
3330 spin_lock(&swap_lock);
3331 for (type = 0; type < nr_swapfiles; type++) {
3332 struct swap_info_struct *si = swap_info[type];
3334 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3335 nr_to_be_unused += si->inuse_pages;
3337 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3338 val->totalswap = total_swap_pages + nr_to_be_unused;
3339 spin_unlock(&swap_lock);
3343 * Verify that a swap entry is valid and increment its swap map count.
3345 * Returns error code in following case.
3347 * - swp_entry is invalid -> EINVAL
3348 * - swp_entry is migration entry -> EINVAL
3349 * - swap-cache reference is requested but there is already one. -> EEXIST
3350 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3351 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3353 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3355 struct swap_info_struct *p;
3356 struct swap_cluster_info *ci;
3357 unsigned long offset, type;
3358 unsigned char count;
3359 unsigned char has_cache;
3362 if (non_swap_entry(entry))
3365 type = swp_type(entry);
3366 if (type >= nr_swapfiles)
3368 p = swap_info[type];
3369 offset = swp_offset(entry);
3370 if (unlikely(offset >= p->max))
3373 ci = lock_cluster_or_swap_info(p, offset);
3375 count = p->swap_map[offset];
3378 * swapin_readahead() doesn't check if a swap entry is valid, so the
3379 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3381 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3386 has_cache = count & SWAP_HAS_CACHE;
3387 count &= ~SWAP_HAS_CACHE;
3390 if (usage == SWAP_HAS_CACHE) {
3392 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3393 if (!has_cache && count)
3394 has_cache = SWAP_HAS_CACHE;
3395 else if (has_cache) /* someone else added cache */
3397 else /* no users remaining */
3400 } else if (count || has_cache) {
3402 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3404 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3406 else if (swap_count_continued(p, offset, count))
3407 count = COUNT_CONTINUED;
3411 err = -ENOENT; /* unused swap entry */
3413 p->swap_map[offset] = count | has_cache;
3416 unlock_cluster_or_swap_info(p, ci);
3421 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3426 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3427 * (in which case its reference count is never incremented).
3429 void swap_shmem_alloc(swp_entry_t entry)
3431 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3435 * Increase reference count of swap entry by 1.
3436 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3437 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3438 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3439 * might occur if a page table entry has got corrupted.
3441 int swap_duplicate(swp_entry_t entry)
3445 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3446 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3451 * @entry: swap entry for which we allocate swap cache.
3453 * Called when allocating swap cache for existing swap entry,
3454 * This can return error codes. Returns 0 at success.
3455 * -EBUSY means there is a swap cache.
3456 * Note: return code is different from swap_duplicate().
3458 int swapcache_prepare(swp_entry_t entry)
3460 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3463 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3465 return swap_info[swp_type(entry)];
3468 struct swap_info_struct *page_swap_info(struct page *page)
3470 swp_entry_t entry = { .val = page_private(page) };
3471 return swp_swap_info(entry);
3475 * out-of-line __page_file_ methods to avoid include hell.
3477 struct address_space *__page_file_mapping(struct page *page)
3479 return page_swap_info(page)->swap_file->f_mapping;
3481 EXPORT_SYMBOL_GPL(__page_file_mapping);
3483 pgoff_t __page_file_index(struct page *page)
3485 swp_entry_t swap = { .val = page_private(page) };
3486 return swp_offset(swap);
3488 EXPORT_SYMBOL_GPL(__page_file_index);
3491 * add_swap_count_continuation - called when a swap count is duplicated
3492 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3493 * page of the original vmalloc'ed swap_map, to hold the continuation count
3494 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3495 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3497 * These continuation pages are seldom referenced: the common paths all work
3498 * on the original swap_map, only referring to a continuation page when the
3499 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3501 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3502 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3503 * can be called after dropping locks.
3505 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3507 struct swap_info_struct *si;
3508 struct swap_cluster_info *ci;
3511 struct page *list_page;
3513 unsigned char count;
3516 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3517 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3519 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3521 si = swap_info_get(entry);
3524 * An acceptable race has occurred since the failing
3525 * __swap_duplicate(): the swap entry has been freed,
3526 * perhaps even the whole swap_map cleared for swapoff.
3531 offset = swp_offset(entry);
3533 ci = lock_cluster(si, offset);
3535 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3537 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3539 * The higher the swap count, the more likely it is that tasks
3540 * will race to add swap count continuation: we need to avoid
3541 * over-provisioning.
3548 spin_unlock(&si->lock);
3553 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3554 * no architecture is using highmem pages for kernel page tables: so it
3555 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3557 head = vmalloc_to_page(si->swap_map + offset);
3558 offset &= ~PAGE_MASK;
3560 spin_lock(&si->cont_lock);
3562 * Page allocation does not initialize the page's lru field,
3563 * but it does always reset its private field.
3565 if (!page_private(head)) {
3566 BUG_ON(count & COUNT_CONTINUED);
3567 INIT_LIST_HEAD(&head->lru);
3568 set_page_private(head, SWP_CONTINUED);
3569 si->flags |= SWP_CONTINUED;
3572 list_for_each_entry(list_page, &head->lru, lru) {
3576 * If the previous map said no continuation, but we've found
3577 * a continuation page, free our allocation and use this one.
3579 if (!(count & COUNT_CONTINUED))
3580 goto out_unlock_cont;
3582 map = kmap_atomic(list_page) + offset;
3587 * If this continuation count now has some space in it,
3588 * free our allocation and use this one.
3590 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3591 goto out_unlock_cont;
3594 list_add_tail(&page->lru, &head->lru);
3595 page = NULL; /* now it's attached, don't free it */
3597 spin_unlock(&si->cont_lock);
3600 spin_unlock(&si->lock);
3608 * swap_count_continued - when the original swap_map count is incremented
3609 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3610 * into, carry if so, or else fail until a new continuation page is allocated;
3611 * when the original swap_map count is decremented from 0 with continuation,
3612 * borrow from the continuation and report whether it still holds more.
3613 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3616 static bool swap_count_continued(struct swap_info_struct *si,
3617 pgoff_t offset, unsigned char count)
3624 head = vmalloc_to_page(si->swap_map + offset);
3625 if (page_private(head) != SWP_CONTINUED) {
3626 BUG_ON(count & COUNT_CONTINUED);
3627 return false; /* need to add count continuation */
3630 spin_lock(&si->cont_lock);
3631 offset &= ~PAGE_MASK;
3632 page = list_entry(head->lru.next, struct page, lru);
3633 map = kmap_atomic(page) + offset;
3635 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3636 goto init_map; /* jump over SWAP_CONT_MAX checks */
3638 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3640 * Think of how you add 1 to 999
3642 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3644 page = list_entry(page->lru.next, struct page, lru);
3645 BUG_ON(page == head);
3646 map = kmap_atomic(page) + offset;
3648 if (*map == SWAP_CONT_MAX) {
3650 page = list_entry(page->lru.next, struct page, lru);
3652 ret = false; /* add count continuation */
3655 map = kmap_atomic(page) + offset;
3656 init_map: *map = 0; /* we didn't zero the page */
3660 page = list_entry(page->lru.prev, struct page, lru);
3661 while (page != head) {
3662 map = kmap_atomic(page) + offset;
3663 *map = COUNT_CONTINUED;
3665 page = list_entry(page->lru.prev, struct page, lru);
3667 ret = true; /* incremented */
3669 } else { /* decrementing */
3671 * Think of how you subtract 1 from 1000
3673 BUG_ON(count != COUNT_CONTINUED);
3674 while (*map == COUNT_CONTINUED) {
3676 page = list_entry(page->lru.next, struct page, lru);
3677 BUG_ON(page == head);
3678 map = kmap_atomic(page) + offset;
3685 page = list_entry(page->lru.prev, struct page, lru);
3686 while (page != head) {
3687 map = kmap_atomic(page) + offset;
3688 *map = SWAP_CONT_MAX | count;
3689 count = COUNT_CONTINUED;
3691 page = list_entry(page->lru.prev, struct page, lru);
3693 ret = count == COUNT_CONTINUED;
3696 spin_unlock(&si->cont_lock);
3701 * free_swap_count_continuations - swapoff free all the continuation pages
3702 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3704 static void free_swap_count_continuations(struct swap_info_struct *si)
3708 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3710 head = vmalloc_to_page(si->swap_map + offset);
3711 if (page_private(head)) {
3712 struct page *page, *next;
3714 list_for_each_entry_safe(page, next, &head->lru, lru) {
3715 list_del(&page->lru);
3722 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3723 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3726 struct swap_info_struct *si, *next;
3727 if (!(gfp_mask & __GFP_IO) || !memcg)
3730 if (!blk_cgroup_congested())
3734 * We've already scheduled a throttle, avoid taking the global swap
3737 if (current->throttle_queue)
3740 spin_lock(&swap_avail_lock);
3741 plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3742 avail_lists[node]) {
3744 blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3749 spin_unlock(&swap_avail_lock);
3753 static int __init swapfile_init(void)
3757 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3759 if (!swap_avail_heads) {
3760 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3765 plist_head_init(&swap_avail_heads[nid]);
3769 subsys_initcall(swapfile_init);