1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
69 * Nodemask of nodes allowed by the caller. If NULL, all nodes
75 * The memory cgroup that hit its limit and as a result is the
76 * primary target of this reclaim invocation.
78 struct mem_cgroup *target_mem_cgroup;
80 /* Writepage batching in laptop mode; RECLAIM_WRITE */
81 unsigned int may_writepage:1;
83 /* Can mapped pages be reclaimed? */
84 unsigned int may_unmap:1;
86 /* Can pages be swapped as part of reclaim? */
87 unsigned int may_swap:1;
90 * Cgroups are not reclaimed below their configured memory.low,
91 * unless we threaten to OOM. If any cgroups are skipped due to
92 * memory.low and nothing was reclaimed, go back for memory.low.
94 unsigned int memcg_low_reclaim:1;
95 unsigned int memcg_low_skipped:1;
97 unsigned int hibernation_mode:1;
99 /* One of the zones is ready for compaction */
100 unsigned int compaction_ready:1;
102 /* Allocation order */
105 /* Scan (total_size >> priority) pages at once */
108 /* The highest zone to isolate pages for reclaim from */
111 /* This context's GFP mask */
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
122 unsigned int unqueued_dirty;
123 unsigned int congested;
124 unsigned int writeback;
125 unsigned int immediate;
126 unsigned int file_taken;
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field) \
134 if ((_page)->lru.prev != _base) { \
137 prev = lru_to_page(&(_page->lru)); \
138 prefetch(&prev->_field); \
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field) \
148 if ((_page)->lru.prev != _base) { \
151 prev = lru_to_page(&(_page->lru)); \
152 prefetchw(&prev->_field); \
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
160 * From 0 .. 100. Higher means more swappy.
162 int vm_swappiness = 60;
164 * The total number of pages which are beyond the high watermark within all
167 unsigned long vm_total_pages;
169 static LIST_HEAD(shrinker_list);
170 static DECLARE_RWSEM(shrinker_rwsem);
172 #ifdef CONFIG_MEMCG_KMEM
175 * We allow subsystems to populate their shrinker-related
176 * LRU lists before register_shrinker_prepared() is called
177 * for the shrinker, since we don't want to impose
178 * restrictions on their internal registration order.
179 * In this case shrink_slab_memcg() may find corresponding
180 * bit is set in the shrinkers map.
182 * This value is used by the function to detect registering
183 * shrinkers and to skip do_shrink_slab() calls for them.
185 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
187 static DEFINE_IDR(shrinker_idr);
188 static int shrinker_nr_max;
190 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
192 int id, ret = -ENOMEM;
194 down_write(&shrinker_rwsem);
195 /* This may call shrinker, so it must use down_read_trylock() */
196 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
200 if (id >= shrinker_nr_max) {
201 if (memcg_expand_shrinker_maps(id)) {
202 idr_remove(&shrinker_idr, id);
206 shrinker_nr_max = id + 1;
211 up_write(&shrinker_rwsem);
215 static void unregister_memcg_shrinker(struct shrinker *shrinker)
217 int id = shrinker->id;
221 down_write(&shrinker_rwsem);
222 idr_remove(&shrinker_idr, id);
223 up_write(&shrinker_rwsem);
225 #else /* CONFIG_MEMCG_KMEM */
226 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
234 #endif /* CONFIG_MEMCG_KMEM */
237 static bool global_reclaim(struct scan_control *sc)
239 return !sc->target_mem_cgroup;
243 * sane_reclaim - is the usual dirty throttling mechanism operational?
244 * @sc: scan_control in question
246 * The normal page dirty throttling mechanism in balance_dirty_pages() is
247 * completely broken with the legacy memcg and direct stalling in
248 * shrink_page_list() is used for throttling instead, which lacks all the
249 * niceties such as fairness, adaptive pausing, bandwidth proportional
250 * allocation and configurability.
252 * This function tests whether the vmscan currently in progress can assume
253 * that the normal dirty throttling mechanism is operational.
255 static bool sane_reclaim(struct scan_control *sc)
257 struct mem_cgroup *memcg = sc->target_mem_cgroup;
261 #ifdef CONFIG_CGROUP_WRITEBACK
262 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
268 static void set_memcg_congestion(pg_data_t *pgdat,
269 struct mem_cgroup *memcg,
272 struct mem_cgroup_per_node *mn;
277 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
278 WRITE_ONCE(mn->congested, congested);
281 static bool memcg_congested(pg_data_t *pgdat,
282 struct mem_cgroup *memcg)
284 struct mem_cgroup_per_node *mn;
286 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
287 return READ_ONCE(mn->congested);
291 static bool global_reclaim(struct scan_control *sc)
296 static bool sane_reclaim(struct scan_control *sc)
301 static inline void set_memcg_congestion(struct pglist_data *pgdat,
302 struct mem_cgroup *memcg, bool congested)
306 static inline bool memcg_congested(struct pglist_data *pgdat,
307 struct mem_cgroup *memcg)
315 * This misses isolated pages which are not accounted for to save counters.
316 * As the data only determines if reclaim or compaction continues, it is
317 * not expected that isolated pages will be a dominating factor.
319 unsigned long zone_reclaimable_pages(struct zone *zone)
323 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
324 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
325 if (get_nr_swap_pages() > 0)
326 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
327 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
333 * lruvec_lru_size - Returns the number of pages on the given LRU list.
334 * @lruvec: lru vector
336 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
338 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
340 unsigned long lru_size;
343 if (!mem_cgroup_disabled())
344 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
346 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
348 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
349 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
352 if (!managed_zone(zone))
355 if (!mem_cgroup_disabled())
356 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
358 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
359 NR_ZONE_LRU_BASE + lru);
360 lru_size -= min(size, lru_size);
368 * Add a shrinker callback to be called from the vm.
370 int prealloc_shrinker(struct shrinker *shrinker)
372 size_t size = sizeof(*shrinker->nr_deferred);
374 if (shrinker->flags & SHRINKER_NUMA_AWARE)
377 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
378 if (!shrinker->nr_deferred)
381 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
382 if (prealloc_memcg_shrinker(shrinker))
389 kfree(shrinker->nr_deferred);
390 shrinker->nr_deferred = NULL;
394 void free_prealloced_shrinker(struct shrinker *shrinker)
396 if (!shrinker->nr_deferred)
399 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
400 unregister_memcg_shrinker(shrinker);
402 kfree(shrinker->nr_deferred);
403 shrinker->nr_deferred = NULL;
406 void register_shrinker_prepared(struct shrinker *shrinker)
408 down_write(&shrinker_rwsem);
409 list_add_tail(&shrinker->list, &shrinker_list);
410 #ifdef CONFIG_MEMCG_KMEM
411 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
412 idr_replace(&shrinker_idr, shrinker, shrinker->id);
414 up_write(&shrinker_rwsem);
417 int register_shrinker(struct shrinker *shrinker)
419 int err = prealloc_shrinker(shrinker);
423 register_shrinker_prepared(shrinker);
426 EXPORT_SYMBOL(register_shrinker);
431 void unregister_shrinker(struct shrinker *shrinker)
433 if (!shrinker->nr_deferred)
435 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
436 unregister_memcg_shrinker(shrinker);
437 down_write(&shrinker_rwsem);
438 list_del(&shrinker->list);
439 up_write(&shrinker_rwsem);
440 kfree(shrinker->nr_deferred);
441 shrinker->nr_deferred = NULL;
443 EXPORT_SYMBOL(unregister_shrinker);
445 #define SHRINK_BATCH 128
447 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
448 struct shrinker *shrinker, int priority)
450 unsigned long freed = 0;
451 unsigned long long delta;
456 int nid = shrinkctl->nid;
457 long batch_size = shrinker->batch ? shrinker->batch
459 long scanned = 0, next_deferred;
461 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
464 freeable = shrinker->count_objects(shrinker, shrinkctl);
465 if (freeable == 0 || freeable == SHRINK_EMPTY)
469 * copy the current shrinker scan count into a local variable
470 * and zero it so that other concurrent shrinker invocations
471 * don't also do this scanning work.
473 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
476 delta = freeable >> priority;
478 do_div(delta, shrinker->seeks);
481 * Make sure we apply some minimal pressure on default priority
482 * even on small cgroups. Stale objects are not only consuming memory
483 * by themselves, but can also hold a reference to a dying cgroup,
484 * preventing it from being reclaimed. A dying cgroup with all
485 * corresponding structures like per-cpu stats and kmem caches
486 * can be really big, so it may lead to a significant waste of memory.
488 delta = max_t(unsigned long long, delta, min(freeable, batch_size));
491 if (total_scan < 0) {
492 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
493 shrinker->scan_objects, total_scan);
494 total_scan = freeable;
497 next_deferred = total_scan;
500 * We need to avoid excessive windup on filesystem shrinkers
501 * due to large numbers of GFP_NOFS allocations causing the
502 * shrinkers to return -1 all the time. This results in a large
503 * nr being built up so when a shrink that can do some work
504 * comes along it empties the entire cache due to nr >>>
505 * freeable. This is bad for sustaining a working set in
508 * Hence only allow the shrinker to scan the entire cache when
509 * a large delta change is calculated directly.
511 if (delta < freeable / 4)
512 total_scan = min(total_scan, freeable / 2);
515 * Avoid risking looping forever due to too large nr value:
516 * never try to free more than twice the estimate number of
519 if (total_scan > freeable * 2)
520 total_scan = freeable * 2;
522 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
523 freeable, delta, total_scan, priority);
526 * Normally, we should not scan less than batch_size objects in one
527 * pass to avoid too frequent shrinker calls, but if the slab has less
528 * than batch_size objects in total and we are really tight on memory,
529 * we will try to reclaim all available objects, otherwise we can end
530 * up failing allocations although there are plenty of reclaimable
531 * objects spread over several slabs with usage less than the
534 * We detect the "tight on memory" situations by looking at the total
535 * number of objects we want to scan (total_scan). If it is greater
536 * than the total number of objects on slab (freeable), we must be
537 * scanning at high prio and therefore should try to reclaim as much as
540 while (total_scan >= batch_size ||
541 total_scan >= freeable) {
543 unsigned long nr_to_scan = min(batch_size, total_scan);
545 shrinkctl->nr_to_scan = nr_to_scan;
546 shrinkctl->nr_scanned = nr_to_scan;
547 ret = shrinker->scan_objects(shrinker, shrinkctl);
548 if (ret == SHRINK_STOP)
552 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
553 total_scan -= shrinkctl->nr_scanned;
554 scanned += shrinkctl->nr_scanned;
559 if (next_deferred >= scanned)
560 next_deferred -= scanned;
564 * move the unused scan count back into the shrinker in a
565 * manner that handles concurrent updates. If we exhausted the
566 * scan, there is no need to do an update.
568 if (next_deferred > 0)
569 new_nr = atomic_long_add_return(next_deferred,
570 &shrinker->nr_deferred[nid]);
572 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
574 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
578 #ifdef CONFIG_MEMCG_KMEM
579 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
580 struct mem_cgroup *memcg, int priority)
582 struct memcg_shrinker_map *map;
583 unsigned long ret, freed = 0;
586 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
589 if (!down_read_trylock(&shrinker_rwsem))
592 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
597 for_each_set_bit(i, map->map, shrinker_nr_max) {
598 struct shrink_control sc = {
599 .gfp_mask = gfp_mask,
603 struct shrinker *shrinker;
605 shrinker = idr_find(&shrinker_idr, i);
606 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
608 clear_bit(i, map->map);
612 ret = do_shrink_slab(&sc, shrinker, priority);
613 if (ret == SHRINK_EMPTY) {
614 clear_bit(i, map->map);
616 * After the shrinker reported that it had no objects to
617 * free, but before we cleared the corresponding bit in
618 * the memcg shrinker map, a new object might have been
619 * added. To make sure, we have the bit set in this
620 * case, we invoke the shrinker one more time and reset
621 * the bit if it reports that it is not empty anymore.
622 * The memory barrier here pairs with the barrier in
623 * memcg_set_shrinker_bit():
625 * list_lru_add() shrink_slab_memcg()
626 * list_add_tail() clear_bit()
628 * set_bit() do_shrink_slab()
630 smp_mb__after_atomic();
631 ret = do_shrink_slab(&sc, shrinker, priority);
632 if (ret == SHRINK_EMPTY)
635 memcg_set_shrinker_bit(memcg, nid, i);
639 if (rwsem_is_contended(&shrinker_rwsem)) {
645 up_read(&shrinker_rwsem);
648 #else /* CONFIG_MEMCG_KMEM */
649 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
650 struct mem_cgroup *memcg, int priority)
654 #endif /* CONFIG_MEMCG_KMEM */
657 * shrink_slab - shrink slab caches
658 * @gfp_mask: allocation context
659 * @nid: node whose slab caches to target
660 * @memcg: memory cgroup whose slab caches to target
661 * @priority: the reclaim priority
663 * Call the shrink functions to age shrinkable caches.
665 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
666 * unaware shrinkers will receive a node id of 0 instead.
668 * @memcg specifies the memory cgroup to target. Unaware shrinkers
669 * are called only if it is the root cgroup.
671 * @priority is sc->priority, we take the number of objects and >> by priority
672 * in order to get the scan target.
674 * Returns the number of reclaimed slab objects.
676 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
677 struct mem_cgroup *memcg,
680 unsigned long ret, freed = 0;
681 struct shrinker *shrinker;
683 if (!mem_cgroup_is_root(memcg))
684 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
686 if (!down_read_trylock(&shrinker_rwsem))
689 list_for_each_entry(shrinker, &shrinker_list, list) {
690 struct shrink_control sc = {
691 .gfp_mask = gfp_mask,
696 ret = do_shrink_slab(&sc, shrinker, priority);
697 if (ret == SHRINK_EMPTY)
701 * Bail out if someone want to register a new shrinker to
702 * prevent the regsitration from being stalled for long periods
703 * by parallel ongoing shrinking.
705 if (rwsem_is_contended(&shrinker_rwsem)) {
711 up_read(&shrinker_rwsem);
717 void drop_slab_node(int nid)
722 struct mem_cgroup *memcg = NULL;
725 memcg = mem_cgroup_iter(NULL, NULL, NULL);
727 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
728 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
729 } while (freed > 10);
736 for_each_online_node(nid)
740 static inline int is_page_cache_freeable(struct page *page)
743 * A freeable page cache page is referenced only by the caller
744 * that isolated the page, the page cache radix tree and
745 * optional buffer heads at page->private.
747 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
749 return page_count(page) - page_has_private(page) == 1 + radix_pins;
752 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
754 if (current->flags & PF_SWAPWRITE)
756 if (!inode_write_congested(inode))
758 if (inode_to_bdi(inode) == current->backing_dev_info)
764 * We detected a synchronous write error writing a page out. Probably
765 * -ENOSPC. We need to propagate that into the address_space for a subsequent
766 * fsync(), msync() or close().
768 * The tricky part is that after writepage we cannot touch the mapping: nothing
769 * prevents it from being freed up. But we have a ref on the page and once
770 * that page is locked, the mapping is pinned.
772 * We're allowed to run sleeping lock_page() here because we know the caller has
775 static void handle_write_error(struct address_space *mapping,
776 struct page *page, int error)
779 if (page_mapping(page) == mapping)
780 mapping_set_error(mapping, error);
784 /* possible outcome of pageout() */
786 /* failed to write page out, page is locked */
788 /* move page to the active list, page is locked */
790 /* page has been sent to the disk successfully, page is unlocked */
792 /* page is clean and locked */
797 * pageout is called by shrink_page_list() for each dirty page.
798 * Calls ->writepage().
800 static pageout_t pageout(struct page *page, struct address_space *mapping,
801 struct scan_control *sc)
804 * If the page is dirty, only perform writeback if that write
805 * will be non-blocking. To prevent this allocation from being
806 * stalled by pagecache activity. But note that there may be
807 * stalls if we need to run get_block(). We could test
808 * PagePrivate for that.
810 * If this process is currently in __generic_file_write_iter() against
811 * this page's queue, we can perform writeback even if that
814 * If the page is swapcache, write it back even if that would
815 * block, for some throttling. This happens by accident, because
816 * swap_backing_dev_info is bust: it doesn't reflect the
817 * congestion state of the swapdevs. Easy to fix, if needed.
819 if (!is_page_cache_freeable(page))
823 * Some data journaling orphaned pages can have
824 * page->mapping == NULL while being dirty with clean buffers.
826 if (page_has_private(page)) {
827 if (try_to_free_buffers(page)) {
828 ClearPageDirty(page);
829 pr_info("%s: orphaned page\n", __func__);
835 if (mapping->a_ops->writepage == NULL)
836 return PAGE_ACTIVATE;
837 if (!may_write_to_inode(mapping->host, sc))
840 if (clear_page_dirty_for_io(page)) {
842 struct writeback_control wbc = {
843 .sync_mode = WB_SYNC_NONE,
844 .nr_to_write = SWAP_CLUSTER_MAX,
846 .range_end = LLONG_MAX,
850 SetPageReclaim(page);
851 res = mapping->a_ops->writepage(page, &wbc);
853 handle_write_error(mapping, page, res);
854 if (res == AOP_WRITEPAGE_ACTIVATE) {
855 ClearPageReclaim(page);
856 return PAGE_ACTIVATE;
859 if (!PageWriteback(page)) {
860 /* synchronous write or broken a_ops? */
861 ClearPageReclaim(page);
863 trace_mm_vmscan_writepage(page);
864 inc_node_page_state(page, NR_VMSCAN_WRITE);
872 * Same as remove_mapping, but if the page is removed from the mapping, it
873 * gets returned with a refcount of 0.
875 static int __remove_mapping(struct address_space *mapping, struct page *page,
881 BUG_ON(!PageLocked(page));
882 BUG_ON(mapping != page_mapping(page));
884 xa_lock_irqsave(&mapping->i_pages, flags);
886 * The non racy check for a busy page.
888 * Must be careful with the order of the tests. When someone has
889 * a ref to the page, it may be possible that they dirty it then
890 * drop the reference. So if PageDirty is tested before page_count
891 * here, then the following race may occur:
893 * get_user_pages(&page);
894 * [user mapping goes away]
896 * !PageDirty(page) [good]
897 * SetPageDirty(page);
899 * !page_count(page) [good, discard it]
901 * [oops, our write_to data is lost]
903 * Reversing the order of the tests ensures such a situation cannot
904 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
905 * load is not satisfied before that of page->_refcount.
907 * Note that if SetPageDirty is always performed via set_page_dirty,
908 * and thus under the i_pages lock, then this ordering is not required.
910 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
911 refcount = 1 + HPAGE_PMD_NR;
914 if (!page_ref_freeze(page, refcount))
916 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
917 if (unlikely(PageDirty(page))) {
918 page_ref_unfreeze(page, refcount);
922 if (PageSwapCache(page)) {
923 swp_entry_t swap = { .val = page_private(page) };
924 mem_cgroup_swapout(page, swap);
925 __delete_from_swap_cache(page);
926 xa_unlock_irqrestore(&mapping->i_pages, flags);
927 put_swap_page(page, swap);
929 void (*freepage)(struct page *);
932 freepage = mapping->a_ops->freepage;
934 * Remember a shadow entry for reclaimed file cache in
935 * order to detect refaults, thus thrashing, later on.
937 * But don't store shadows in an address space that is
938 * already exiting. This is not just an optizimation,
939 * inode reclaim needs to empty out the radix tree or
940 * the nodes are lost. Don't plant shadows behind its
943 * We also don't store shadows for DAX mappings because the
944 * only page cache pages found in these are zero pages
945 * covering holes, and because we don't want to mix DAX
946 * exceptional entries and shadow exceptional entries in the
947 * same address_space.
949 if (reclaimed && page_is_file_cache(page) &&
950 !mapping_exiting(mapping) && !dax_mapping(mapping))
951 shadow = workingset_eviction(mapping, page);
952 __delete_from_page_cache(page, shadow);
953 xa_unlock_irqrestore(&mapping->i_pages, flags);
955 if (freepage != NULL)
962 xa_unlock_irqrestore(&mapping->i_pages, flags);
967 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
968 * someone else has a ref on the page, abort and return 0. If it was
969 * successfully detached, return 1. Assumes the caller has a single ref on
972 int remove_mapping(struct address_space *mapping, struct page *page)
974 if (__remove_mapping(mapping, page, false)) {
976 * Unfreezing the refcount with 1 rather than 2 effectively
977 * drops the pagecache ref for us without requiring another
980 page_ref_unfreeze(page, 1);
987 * putback_lru_page - put previously isolated page onto appropriate LRU list
988 * @page: page to be put back to appropriate lru list
990 * Add previously isolated @page to appropriate LRU list.
991 * Page may still be unevictable for other reasons.
993 * lru_lock must not be held, interrupts must be enabled.
995 void putback_lru_page(struct page *page)
998 put_page(page); /* drop ref from isolate */
1001 enum page_references {
1003 PAGEREF_RECLAIM_CLEAN,
1008 static enum page_references page_check_references(struct page *page,
1009 struct scan_control *sc)
1011 int referenced_ptes, referenced_page;
1012 unsigned long vm_flags;
1014 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1016 referenced_page = TestClearPageReferenced(page);
1019 * Mlock lost the isolation race with us. Let try_to_unmap()
1020 * move the page to the unevictable list.
1022 if (vm_flags & VM_LOCKED)
1023 return PAGEREF_RECLAIM;
1025 if (referenced_ptes) {
1026 if (PageSwapBacked(page))
1027 return PAGEREF_ACTIVATE;
1029 * All mapped pages start out with page table
1030 * references from the instantiating fault, so we need
1031 * to look twice if a mapped file page is used more
1034 * Mark it and spare it for another trip around the
1035 * inactive list. Another page table reference will
1036 * lead to its activation.
1038 * Note: the mark is set for activated pages as well
1039 * so that recently deactivated but used pages are
1040 * quickly recovered.
1042 SetPageReferenced(page);
1044 if (referenced_page || referenced_ptes > 1)
1045 return PAGEREF_ACTIVATE;
1048 * Activate file-backed executable pages after first usage.
1050 if (vm_flags & VM_EXEC)
1051 return PAGEREF_ACTIVATE;
1053 return PAGEREF_KEEP;
1056 /* Reclaim if clean, defer dirty pages to writeback */
1057 if (referenced_page && !PageSwapBacked(page))
1058 return PAGEREF_RECLAIM_CLEAN;
1060 return PAGEREF_RECLAIM;
1063 /* Check if a page is dirty or under writeback */
1064 static void page_check_dirty_writeback(struct page *page,
1065 bool *dirty, bool *writeback)
1067 struct address_space *mapping;
1070 * Anonymous pages are not handled by flushers and must be written
1071 * from reclaim context. Do not stall reclaim based on them
1073 if (!page_is_file_cache(page) ||
1074 (PageAnon(page) && !PageSwapBacked(page))) {
1080 /* By default assume that the page flags are accurate */
1081 *dirty = PageDirty(page);
1082 *writeback = PageWriteback(page);
1084 /* Verify dirty/writeback state if the filesystem supports it */
1085 if (!page_has_private(page))
1088 mapping = page_mapping(page);
1089 if (mapping && mapping->a_ops->is_dirty_writeback)
1090 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1094 * shrink_page_list() returns the number of reclaimed pages
1096 static unsigned long shrink_page_list(struct list_head *page_list,
1097 struct pglist_data *pgdat,
1098 struct scan_control *sc,
1099 enum ttu_flags ttu_flags,
1100 struct reclaim_stat *stat,
1103 LIST_HEAD(ret_pages);
1104 LIST_HEAD(free_pages);
1106 unsigned nr_unqueued_dirty = 0;
1107 unsigned nr_dirty = 0;
1108 unsigned nr_congested = 0;
1109 unsigned nr_reclaimed = 0;
1110 unsigned nr_writeback = 0;
1111 unsigned nr_immediate = 0;
1112 unsigned nr_ref_keep = 0;
1113 unsigned nr_unmap_fail = 0;
1117 while (!list_empty(page_list)) {
1118 struct address_space *mapping;
1121 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1122 bool dirty, writeback;
1126 page = lru_to_page(page_list);
1127 list_del(&page->lru);
1129 if (!trylock_page(page))
1132 VM_BUG_ON_PAGE(PageActive(page), page);
1136 if (unlikely(!page_evictable(page)))
1137 goto activate_locked;
1139 if (!sc->may_unmap && page_mapped(page))
1142 /* Double the slab pressure for mapped and swapcache pages */
1143 if ((page_mapped(page) || PageSwapCache(page)) &&
1144 !(PageAnon(page) && !PageSwapBacked(page)))
1147 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1148 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1151 * The number of dirty pages determines if a node is marked
1152 * reclaim_congested which affects wait_iff_congested. kswapd
1153 * will stall and start writing pages if the tail of the LRU
1154 * is all dirty unqueued pages.
1156 page_check_dirty_writeback(page, &dirty, &writeback);
1157 if (dirty || writeback)
1160 if (dirty && !writeback)
1161 nr_unqueued_dirty++;
1164 * Treat this page as congested if the underlying BDI is or if
1165 * pages are cycling through the LRU so quickly that the
1166 * pages marked for immediate reclaim are making it to the
1167 * end of the LRU a second time.
1169 mapping = page_mapping(page);
1170 if (((dirty || writeback) && mapping &&
1171 inode_write_congested(mapping->host)) ||
1172 (writeback && PageReclaim(page)))
1176 * If a page at the tail of the LRU is under writeback, there
1177 * are three cases to consider.
1179 * 1) If reclaim is encountering an excessive number of pages
1180 * under writeback and this page is both under writeback and
1181 * PageReclaim then it indicates that pages are being queued
1182 * for IO but are being recycled through the LRU before the
1183 * IO can complete. Waiting on the page itself risks an
1184 * indefinite stall if it is impossible to writeback the
1185 * page due to IO error or disconnected storage so instead
1186 * note that the LRU is being scanned too quickly and the
1187 * caller can stall after page list has been processed.
1189 * 2) Global or new memcg reclaim encounters a page that is
1190 * not marked for immediate reclaim, or the caller does not
1191 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1192 * not to fs). In this case mark the page for immediate
1193 * reclaim and continue scanning.
1195 * Require may_enter_fs because we would wait on fs, which
1196 * may not have submitted IO yet. And the loop driver might
1197 * enter reclaim, and deadlock if it waits on a page for
1198 * which it is needed to do the write (loop masks off
1199 * __GFP_IO|__GFP_FS for this reason); but more thought
1200 * would probably show more reasons.
1202 * 3) Legacy memcg encounters a page that is already marked
1203 * PageReclaim. memcg does not have any dirty pages
1204 * throttling so we could easily OOM just because too many
1205 * pages are in writeback and there is nothing else to
1206 * reclaim. Wait for the writeback to complete.
1208 * In cases 1) and 2) we activate the pages to get them out of
1209 * the way while we continue scanning for clean pages on the
1210 * inactive list and refilling from the active list. The
1211 * observation here is that waiting for disk writes is more
1212 * expensive than potentially causing reloads down the line.
1213 * Since they're marked for immediate reclaim, they won't put
1214 * memory pressure on the cache working set any longer than it
1215 * takes to write them to disk.
1217 if (PageWriteback(page)) {
1219 if (current_is_kswapd() &&
1220 PageReclaim(page) &&
1221 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1223 goto activate_locked;
1226 } else if (sane_reclaim(sc) ||
1227 !PageReclaim(page) || !may_enter_fs) {
1229 * This is slightly racy - end_page_writeback()
1230 * might have just cleared PageReclaim, then
1231 * setting PageReclaim here end up interpreted
1232 * as PageReadahead - but that does not matter
1233 * enough to care. What we do want is for this
1234 * page to have PageReclaim set next time memcg
1235 * reclaim reaches the tests above, so it will
1236 * then wait_on_page_writeback() to avoid OOM;
1237 * and it's also appropriate in global reclaim.
1239 SetPageReclaim(page);
1241 goto activate_locked;
1246 wait_on_page_writeback(page);
1247 /* then go back and try same page again */
1248 list_add_tail(&page->lru, page_list);
1254 references = page_check_references(page, sc);
1256 switch (references) {
1257 case PAGEREF_ACTIVATE:
1258 goto activate_locked;
1262 case PAGEREF_RECLAIM:
1263 case PAGEREF_RECLAIM_CLEAN:
1264 ; /* try to reclaim the page below */
1268 * Anonymous process memory has backing store?
1269 * Try to allocate it some swap space here.
1270 * Lazyfree page could be freed directly
1272 if (PageAnon(page) && PageSwapBacked(page)) {
1273 if (!PageSwapCache(page)) {
1274 if (!(sc->gfp_mask & __GFP_IO))
1276 if (PageTransHuge(page)) {
1277 /* cannot split THP, skip it */
1278 if (!can_split_huge_page(page, NULL))
1279 goto activate_locked;
1281 * Split pages without a PMD map right
1282 * away. Chances are some or all of the
1283 * tail pages can be freed without IO.
1285 if (!compound_mapcount(page) &&
1286 split_huge_page_to_list(page,
1288 goto activate_locked;
1290 if (!add_to_swap(page)) {
1291 if (!PageTransHuge(page))
1292 goto activate_locked;
1293 /* Fallback to swap normal pages */
1294 if (split_huge_page_to_list(page,
1296 goto activate_locked;
1297 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1298 count_vm_event(THP_SWPOUT_FALLBACK);
1300 if (!add_to_swap(page))
1301 goto activate_locked;
1306 /* Adding to swap updated mapping */
1307 mapping = page_mapping(page);
1309 } else if (unlikely(PageTransHuge(page))) {
1310 /* Split file THP */
1311 if (split_huge_page_to_list(page, page_list))
1316 * The page is mapped into the page tables of one or more
1317 * processes. Try to unmap it here.
1319 if (page_mapped(page)) {
1320 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1322 if (unlikely(PageTransHuge(page)))
1323 flags |= TTU_SPLIT_HUGE_PMD;
1324 if (!try_to_unmap(page, flags)) {
1326 goto activate_locked;
1330 if (PageDirty(page)) {
1332 * Only kswapd can writeback filesystem pages
1333 * to avoid risk of stack overflow. But avoid
1334 * injecting inefficient single-page IO into
1335 * flusher writeback as much as possible: only
1336 * write pages when we've encountered many
1337 * dirty pages, and when we've already scanned
1338 * the rest of the LRU for clean pages and see
1339 * the same dirty pages again (PageReclaim).
1341 if (page_is_file_cache(page) &&
1342 (!current_is_kswapd() || !PageReclaim(page) ||
1343 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1345 * Immediately reclaim when written back.
1346 * Similar in principal to deactivate_page()
1347 * except we already have the page isolated
1348 * and know it's dirty
1350 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1351 SetPageReclaim(page);
1353 goto activate_locked;
1356 if (references == PAGEREF_RECLAIM_CLEAN)
1360 if (!sc->may_writepage)
1364 * Page is dirty. Flush the TLB if a writable entry
1365 * potentially exists to avoid CPU writes after IO
1366 * starts and then write it out here.
1368 try_to_unmap_flush_dirty();
1369 switch (pageout(page, mapping, sc)) {
1373 goto activate_locked;
1375 if (PageWriteback(page))
1377 if (PageDirty(page))
1381 * A synchronous write - probably a ramdisk. Go
1382 * ahead and try to reclaim the page.
1384 if (!trylock_page(page))
1386 if (PageDirty(page) || PageWriteback(page))
1388 mapping = page_mapping(page);
1390 ; /* try to free the page below */
1395 * If the page has buffers, try to free the buffer mappings
1396 * associated with this page. If we succeed we try to free
1399 * We do this even if the page is PageDirty().
1400 * try_to_release_page() does not perform I/O, but it is
1401 * possible for a page to have PageDirty set, but it is actually
1402 * clean (all its buffers are clean). This happens if the
1403 * buffers were written out directly, with submit_bh(). ext3
1404 * will do this, as well as the blockdev mapping.
1405 * try_to_release_page() will discover that cleanness and will
1406 * drop the buffers and mark the page clean - it can be freed.
1408 * Rarely, pages can have buffers and no ->mapping. These are
1409 * the pages which were not successfully invalidated in
1410 * truncate_complete_page(). We try to drop those buffers here
1411 * and if that worked, and the page is no longer mapped into
1412 * process address space (page_count == 1) it can be freed.
1413 * Otherwise, leave the page on the LRU so it is swappable.
1415 if (page_has_private(page)) {
1416 if (!try_to_release_page(page, sc->gfp_mask))
1417 goto activate_locked;
1418 if (!mapping && page_count(page) == 1) {
1420 if (put_page_testzero(page))
1424 * rare race with speculative reference.
1425 * the speculative reference will free
1426 * this page shortly, so we may
1427 * increment nr_reclaimed here (and
1428 * leave it off the LRU).
1436 if (PageAnon(page) && !PageSwapBacked(page)) {
1437 /* follow __remove_mapping for reference */
1438 if (!page_ref_freeze(page, 1))
1440 if (PageDirty(page)) {
1441 page_ref_unfreeze(page, 1);
1445 count_vm_event(PGLAZYFREED);
1446 count_memcg_page_event(page, PGLAZYFREED);
1447 } else if (!mapping || !__remove_mapping(mapping, page, true))
1450 * At this point, we have no other references and there is
1451 * no way to pick any more up (removed from LRU, removed
1452 * from pagecache). Can use non-atomic bitops now (and
1453 * we obviously don't have to worry about waking up a process
1454 * waiting on the page lock, because there are no references.
1456 __ClearPageLocked(page);
1461 * Is there need to periodically free_page_list? It would
1462 * appear not as the counts should be low
1464 if (unlikely(PageTransHuge(page))) {
1465 mem_cgroup_uncharge(page);
1466 (*get_compound_page_dtor(page))(page);
1468 list_add(&page->lru, &free_pages);
1472 /* Not a candidate for swapping, so reclaim swap space. */
1473 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1475 try_to_free_swap(page);
1476 VM_BUG_ON_PAGE(PageActive(page), page);
1477 if (!PageMlocked(page)) {
1478 SetPageActive(page);
1480 count_memcg_page_event(page, PGACTIVATE);
1485 list_add(&page->lru, &ret_pages);
1486 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1489 mem_cgroup_uncharge_list(&free_pages);
1490 try_to_unmap_flush();
1491 free_unref_page_list(&free_pages);
1493 list_splice(&ret_pages, page_list);
1494 count_vm_events(PGACTIVATE, pgactivate);
1497 stat->nr_dirty = nr_dirty;
1498 stat->nr_congested = nr_congested;
1499 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1500 stat->nr_writeback = nr_writeback;
1501 stat->nr_immediate = nr_immediate;
1502 stat->nr_activate = pgactivate;
1503 stat->nr_ref_keep = nr_ref_keep;
1504 stat->nr_unmap_fail = nr_unmap_fail;
1506 return nr_reclaimed;
1509 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1510 struct list_head *page_list)
1512 struct scan_control sc = {
1513 .gfp_mask = GFP_KERNEL,
1514 .priority = DEF_PRIORITY,
1518 struct page *page, *next;
1519 LIST_HEAD(clean_pages);
1521 list_for_each_entry_safe(page, next, page_list, lru) {
1522 if (page_is_file_cache(page) && !PageDirty(page) &&
1523 !__PageMovable(page)) {
1524 ClearPageActive(page);
1525 list_move(&page->lru, &clean_pages);
1529 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1530 TTU_IGNORE_ACCESS, NULL, true);
1531 list_splice(&clean_pages, page_list);
1532 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1537 * Attempt to remove the specified page from its LRU. Only take this page
1538 * if it is of the appropriate PageActive status. Pages which are being
1539 * freed elsewhere are also ignored.
1541 * page: page to consider
1542 * mode: one of the LRU isolation modes defined above
1544 * returns 0 on success, -ve errno on failure.
1546 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1550 /* Only take pages on the LRU. */
1554 /* Compaction should not handle unevictable pages but CMA can do so */
1555 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1561 * To minimise LRU disruption, the caller can indicate that it only
1562 * wants to isolate pages it will be able to operate on without
1563 * blocking - clean pages for the most part.
1565 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1566 * that it is possible to migrate without blocking
1568 if (mode & ISOLATE_ASYNC_MIGRATE) {
1569 /* All the caller can do on PageWriteback is block */
1570 if (PageWriteback(page))
1573 if (PageDirty(page)) {
1574 struct address_space *mapping;
1578 * Only pages without mappings or that have a
1579 * ->migratepage callback are possible to migrate
1580 * without blocking. However, we can be racing with
1581 * truncation so it's necessary to lock the page
1582 * to stabilise the mapping as truncation holds
1583 * the page lock until after the page is removed
1584 * from the page cache.
1586 if (!trylock_page(page))
1589 mapping = page_mapping(page);
1590 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1597 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1600 if (likely(get_page_unless_zero(page))) {
1602 * Be careful not to clear PageLRU until after we're
1603 * sure the page is not being freed elsewhere -- the
1604 * page release code relies on it.
1615 * Update LRU sizes after isolating pages. The LRU size updates must
1616 * be complete before mem_cgroup_update_lru_size due to a santity check.
1618 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1619 enum lru_list lru, unsigned long *nr_zone_taken)
1623 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1624 if (!nr_zone_taken[zid])
1627 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1629 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1636 * zone_lru_lock is heavily contended. Some of the functions that
1637 * shrink the lists perform better by taking out a batch of pages
1638 * and working on them outside the LRU lock.
1640 * For pagecache intensive workloads, this function is the hottest
1641 * spot in the kernel (apart from copy_*_user functions).
1643 * Appropriate locks must be held before calling this function.
1645 * @nr_to_scan: The number of eligible pages to look through on the list.
1646 * @lruvec: The LRU vector to pull pages from.
1647 * @dst: The temp list to put pages on to.
1648 * @nr_scanned: The number of pages that were scanned.
1649 * @sc: The scan_control struct for this reclaim session
1650 * @mode: One of the LRU isolation modes
1651 * @lru: LRU list id for isolating
1653 * returns how many pages were moved onto *@dst.
1655 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1656 struct lruvec *lruvec, struct list_head *dst,
1657 unsigned long *nr_scanned, struct scan_control *sc,
1658 isolate_mode_t mode, enum lru_list lru)
1660 struct list_head *src = &lruvec->lists[lru];
1661 unsigned long nr_taken = 0;
1662 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1663 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1664 unsigned long skipped = 0;
1665 unsigned long scan, total_scan, nr_pages;
1666 LIST_HEAD(pages_skipped);
1669 for (total_scan = 0;
1670 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1674 page = lru_to_page(src);
1675 prefetchw_prev_lru_page(page, src, flags);
1677 VM_BUG_ON_PAGE(!PageLRU(page), page);
1679 if (page_zonenum(page) > sc->reclaim_idx) {
1680 list_move(&page->lru, &pages_skipped);
1681 nr_skipped[page_zonenum(page)]++;
1686 * Do not count skipped pages because that makes the function
1687 * return with no isolated pages if the LRU mostly contains
1688 * ineligible pages. This causes the VM to not reclaim any
1689 * pages, triggering a premature OOM.
1692 switch (__isolate_lru_page(page, mode)) {
1694 nr_pages = hpage_nr_pages(page);
1695 nr_taken += nr_pages;
1696 nr_zone_taken[page_zonenum(page)] += nr_pages;
1697 list_move(&page->lru, dst);
1701 /* else it is being freed elsewhere */
1702 list_move(&page->lru, src);
1711 * Splice any skipped pages to the start of the LRU list. Note that
1712 * this disrupts the LRU order when reclaiming for lower zones but
1713 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1714 * scanning would soon rescan the same pages to skip and put the
1715 * system at risk of premature OOM.
1717 if (!list_empty(&pages_skipped)) {
1720 list_splice(&pages_skipped, src);
1721 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1722 if (!nr_skipped[zid])
1725 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1726 skipped += nr_skipped[zid];
1729 *nr_scanned = total_scan;
1730 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1731 total_scan, skipped, nr_taken, mode, lru);
1732 update_lru_sizes(lruvec, lru, nr_zone_taken);
1737 * isolate_lru_page - tries to isolate a page from its LRU list
1738 * @page: page to isolate from its LRU list
1740 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1741 * vmstat statistic corresponding to whatever LRU list the page was on.
1743 * Returns 0 if the page was removed from an LRU list.
1744 * Returns -EBUSY if the page was not on an LRU list.
1746 * The returned page will have PageLRU() cleared. If it was found on
1747 * the active list, it will have PageActive set. If it was found on
1748 * the unevictable list, it will have the PageUnevictable bit set. That flag
1749 * may need to be cleared by the caller before letting the page go.
1751 * The vmstat statistic corresponding to the list on which the page was
1752 * found will be decremented.
1756 * (1) Must be called with an elevated refcount on the page. This is a
1757 * fundamentnal difference from isolate_lru_pages (which is called
1758 * without a stable reference).
1759 * (2) the lru_lock must not be held.
1760 * (3) interrupts must be enabled.
1762 int isolate_lru_page(struct page *page)
1766 VM_BUG_ON_PAGE(!page_count(page), page);
1767 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1769 if (PageLRU(page)) {
1770 struct zone *zone = page_zone(page);
1771 struct lruvec *lruvec;
1773 spin_lock_irq(zone_lru_lock(zone));
1774 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1775 if (PageLRU(page)) {
1776 int lru = page_lru(page);
1779 del_page_from_lru_list(page, lruvec, lru);
1782 spin_unlock_irq(zone_lru_lock(zone));
1788 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1789 * then get resheduled. When there are massive number of tasks doing page
1790 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1791 * the LRU list will go small and be scanned faster than necessary, leading to
1792 * unnecessary swapping, thrashing and OOM.
1794 static int too_many_isolated(struct pglist_data *pgdat, int file,
1795 struct scan_control *sc)
1797 unsigned long inactive, isolated;
1799 if (current_is_kswapd())
1802 if (!sane_reclaim(sc))
1806 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1807 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1809 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1810 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1814 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1815 * won't get blocked by normal direct-reclaimers, forming a circular
1818 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1821 return isolated > inactive;
1824 static noinline_for_stack void
1825 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1827 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1828 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1829 LIST_HEAD(pages_to_free);
1832 * Put back any unfreeable pages.
1834 while (!list_empty(page_list)) {
1835 struct page *page = lru_to_page(page_list);
1838 VM_BUG_ON_PAGE(PageLRU(page), page);
1839 list_del(&page->lru);
1840 if (unlikely(!page_evictable(page))) {
1841 spin_unlock_irq(&pgdat->lru_lock);
1842 putback_lru_page(page);
1843 spin_lock_irq(&pgdat->lru_lock);
1847 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1850 lru = page_lru(page);
1851 add_page_to_lru_list(page, lruvec, lru);
1853 if (is_active_lru(lru)) {
1854 int file = is_file_lru(lru);
1855 int numpages = hpage_nr_pages(page);
1856 reclaim_stat->recent_rotated[file] += numpages;
1858 if (put_page_testzero(page)) {
1859 __ClearPageLRU(page);
1860 __ClearPageActive(page);
1861 del_page_from_lru_list(page, lruvec, lru);
1863 if (unlikely(PageCompound(page))) {
1864 spin_unlock_irq(&pgdat->lru_lock);
1865 mem_cgroup_uncharge(page);
1866 (*get_compound_page_dtor(page))(page);
1867 spin_lock_irq(&pgdat->lru_lock);
1869 list_add(&page->lru, &pages_to_free);
1874 * To save our caller's stack, now use input list for pages to free.
1876 list_splice(&pages_to_free, page_list);
1880 * If a kernel thread (such as nfsd for loop-back mounts) services
1881 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1882 * In that case we should only throttle if the backing device it is
1883 * writing to is congested. In other cases it is safe to throttle.
1885 static int current_may_throttle(void)
1887 return !(current->flags & PF_LESS_THROTTLE) ||
1888 current->backing_dev_info == NULL ||
1889 bdi_write_congested(current->backing_dev_info);
1893 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1894 * of reclaimed pages
1896 static noinline_for_stack unsigned long
1897 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1898 struct scan_control *sc, enum lru_list lru)
1900 LIST_HEAD(page_list);
1901 unsigned long nr_scanned;
1902 unsigned long nr_reclaimed = 0;
1903 unsigned long nr_taken;
1904 struct reclaim_stat stat = {};
1905 isolate_mode_t isolate_mode = 0;
1906 int file = is_file_lru(lru);
1907 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1908 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1909 bool stalled = false;
1911 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1915 /* wait a bit for the reclaimer. */
1919 /* We are about to die and free our memory. Return now. */
1920 if (fatal_signal_pending(current))
1921 return SWAP_CLUSTER_MAX;
1927 isolate_mode |= ISOLATE_UNMAPPED;
1929 spin_lock_irq(&pgdat->lru_lock);
1931 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1932 &nr_scanned, sc, isolate_mode, lru);
1934 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1935 reclaim_stat->recent_scanned[file] += nr_taken;
1937 if (current_is_kswapd()) {
1938 if (global_reclaim(sc))
1939 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1940 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1943 if (global_reclaim(sc))
1944 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1945 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1948 spin_unlock_irq(&pgdat->lru_lock);
1953 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1956 spin_lock_irq(&pgdat->lru_lock);
1958 if (current_is_kswapd()) {
1959 if (global_reclaim(sc))
1960 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1961 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1964 if (global_reclaim(sc))
1965 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1966 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1970 putback_inactive_pages(lruvec, &page_list);
1972 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1974 spin_unlock_irq(&pgdat->lru_lock);
1976 mem_cgroup_uncharge_list(&page_list);
1977 free_unref_page_list(&page_list);
1980 * If dirty pages are scanned that are not queued for IO, it
1981 * implies that flushers are not doing their job. This can
1982 * happen when memory pressure pushes dirty pages to the end of
1983 * the LRU before the dirty limits are breached and the dirty
1984 * data has expired. It can also happen when the proportion of
1985 * dirty pages grows not through writes but through memory
1986 * pressure reclaiming all the clean cache. And in some cases,
1987 * the flushers simply cannot keep up with the allocation
1988 * rate. Nudge the flusher threads in case they are asleep.
1990 if (stat.nr_unqueued_dirty == nr_taken)
1991 wakeup_flusher_threads(WB_REASON_VMSCAN);
1993 sc->nr.dirty += stat.nr_dirty;
1994 sc->nr.congested += stat.nr_congested;
1995 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1996 sc->nr.writeback += stat.nr_writeback;
1997 sc->nr.immediate += stat.nr_immediate;
1998 sc->nr.taken += nr_taken;
2000 sc->nr.file_taken += nr_taken;
2002 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2003 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2004 return nr_reclaimed;
2008 * This moves pages from the active list to the inactive list.
2010 * We move them the other way if the page is referenced by one or more
2011 * processes, from rmap.
2013 * If the pages are mostly unmapped, the processing is fast and it is
2014 * appropriate to hold zone_lru_lock across the whole operation. But if
2015 * the pages are mapped, the processing is slow (page_referenced()) so we
2016 * should drop zone_lru_lock around each page. It's impossible to balance
2017 * this, so instead we remove the pages from the LRU while processing them.
2018 * It is safe to rely on PG_active against the non-LRU pages in here because
2019 * nobody will play with that bit on a non-LRU page.
2021 * The downside is that we have to touch page->_refcount against each page.
2022 * But we had to alter page->flags anyway.
2024 * Returns the number of pages moved to the given lru.
2027 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2028 struct list_head *list,
2029 struct list_head *pages_to_free,
2032 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2037 while (!list_empty(list)) {
2038 page = lru_to_page(list);
2039 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2041 VM_BUG_ON_PAGE(PageLRU(page), page);
2044 nr_pages = hpage_nr_pages(page);
2045 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2046 list_move(&page->lru, &lruvec->lists[lru]);
2048 if (put_page_testzero(page)) {
2049 __ClearPageLRU(page);
2050 __ClearPageActive(page);
2051 del_page_from_lru_list(page, lruvec, lru);
2053 if (unlikely(PageCompound(page))) {
2054 spin_unlock_irq(&pgdat->lru_lock);
2055 mem_cgroup_uncharge(page);
2056 (*get_compound_page_dtor(page))(page);
2057 spin_lock_irq(&pgdat->lru_lock);
2059 list_add(&page->lru, pages_to_free);
2061 nr_moved += nr_pages;
2065 if (!is_active_lru(lru)) {
2066 __count_vm_events(PGDEACTIVATE, nr_moved);
2067 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2074 static void shrink_active_list(unsigned long nr_to_scan,
2075 struct lruvec *lruvec,
2076 struct scan_control *sc,
2079 unsigned long nr_taken;
2080 unsigned long nr_scanned;
2081 unsigned long vm_flags;
2082 LIST_HEAD(l_hold); /* The pages which were snipped off */
2083 LIST_HEAD(l_active);
2084 LIST_HEAD(l_inactive);
2086 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2087 unsigned nr_deactivate, nr_activate;
2088 unsigned nr_rotated = 0;
2089 isolate_mode_t isolate_mode = 0;
2090 int file = is_file_lru(lru);
2091 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2096 isolate_mode |= ISOLATE_UNMAPPED;
2098 spin_lock_irq(&pgdat->lru_lock);
2100 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2101 &nr_scanned, sc, isolate_mode, lru);
2103 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2104 reclaim_stat->recent_scanned[file] += nr_taken;
2106 __count_vm_events(PGREFILL, nr_scanned);
2107 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2109 spin_unlock_irq(&pgdat->lru_lock);
2111 while (!list_empty(&l_hold)) {
2113 page = lru_to_page(&l_hold);
2114 list_del(&page->lru);
2116 if (unlikely(!page_evictable(page))) {
2117 putback_lru_page(page);
2121 if (unlikely(buffer_heads_over_limit)) {
2122 if (page_has_private(page) && trylock_page(page)) {
2123 if (page_has_private(page))
2124 try_to_release_page(page, 0);
2129 if (page_referenced(page, 0, sc->target_mem_cgroup,
2131 nr_rotated += hpage_nr_pages(page);
2133 * Identify referenced, file-backed active pages and
2134 * give them one more trip around the active list. So
2135 * that executable code get better chances to stay in
2136 * memory under moderate memory pressure. Anon pages
2137 * are not likely to be evicted by use-once streaming
2138 * IO, plus JVM can create lots of anon VM_EXEC pages,
2139 * so we ignore them here.
2141 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2142 list_add(&page->lru, &l_active);
2147 ClearPageActive(page); /* we are de-activating */
2148 SetPageWorkingset(page);
2149 list_add(&page->lru, &l_inactive);
2153 * Move pages back to the lru list.
2155 spin_lock_irq(&pgdat->lru_lock);
2157 * Count referenced pages from currently used mappings as rotated,
2158 * even though only some of them are actually re-activated. This
2159 * helps balance scan pressure between file and anonymous pages in
2162 reclaim_stat->recent_rotated[file] += nr_rotated;
2164 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2165 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2166 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2167 spin_unlock_irq(&pgdat->lru_lock);
2169 mem_cgroup_uncharge_list(&l_hold);
2170 free_unref_page_list(&l_hold);
2171 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2172 nr_deactivate, nr_rotated, sc->priority, file);
2176 * The inactive anon list should be small enough that the VM never has
2177 * to do too much work.
2179 * The inactive file list should be small enough to leave most memory
2180 * to the established workingset on the scan-resistant active list,
2181 * but large enough to avoid thrashing the aggregate readahead window.
2183 * Both inactive lists should also be large enough that each inactive
2184 * page has a chance to be referenced again before it is reclaimed.
2186 * If that fails and refaulting is observed, the inactive list grows.
2188 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2189 * on this LRU, maintained by the pageout code. An inactive_ratio
2190 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2193 * memory ratio inactive
2194 * -------------------------------------
2203 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2204 struct mem_cgroup *memcg,
2205 struct scan_control *sc, bool actual_reclaim)
2207 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2208 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2209 enum lru_list inactive_lru = file * LRU_FILE;
2210 unsigned long inactive, active;
2211 unsigned long inactive_ratio;
2212 unsigned long refaults;
2216 * If we don't have swap space, anonymous page deactivation
2219 if (!file && !total_swap_pages)
2222 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2223 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2226 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2228 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2231 * When refaults are being observed, it means a new workingset
2232 * is being established. Disable active list protection to get
2233 * rid of the stale workingset quickly.
2235 if (file && actual_reclaim && lruvec->refaults != refaults) {
2238 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2240 inactive_ratio = int_sqrt(10 * gb);
2246 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2247 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2248 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2249 inactive_ratio, file);
2251 return inactive * inactive_ratio < active;
2254 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2255 struct lruvec *lruvec, struct mem_cgroup *memcg,
2256 struct scan_control *sc)
2258 if (is_active_lru(lru)) {
2259 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2261 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2265 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2276 * Determine how aggressively the anon and file LRU lists should be
2277 * scanned. The relative value of each set of LRU lists is determined
2278 * by looking at the fraction of the pages scanned we did rotate back
2279 * onto the active list instead of evict.
2281 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2282 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2284 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2285 struct scan_control *sc, unsigned long *nr,
2286 unsigned long *lru_pages)
2288 int swappiness = mem_cgroup_swappiness(memcg);
2289 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2291 u64 denominator = 0; /* gcc */
2292 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2293 unsigned long anon_prio, file_prio;
2294 enum scan_balance scan_balance;
2295 unsigned long anon, file;
2296 unsigned long ap, fp;
2299 /* If we have no swap space, do not bother scanning anon pages. */
2300 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2301 scan_balance = SCAN_FILE;
2306 * Global reclaim will swap to prevent OOM even with no
2307 * swappiness, but memcg users want to use this knob to
2308 * disable swapping for individual groups completely when
2309 * using the memory controller's swap limit feature would be
2312 if (!global_reclaim(sc) && !swappiness) {
2313 scan_balance = SCAN_FILE;
2318 * Do not apply any pressure balancing cleverness when the
2319 * system is close to OOM, scan both anon and file equally
2320 * (unless the swappiness setting disagrees with swapping).
2322 if (!sc->priority && swappiness) {
2323 scan_balance = SCAN_EQUAL;
2328 * Prevent the reclaimer from falling into the cache trap: as
2329 * cache pages start out inactive, every cache fault will tip
2330 * the scan balance towards the file LRU. And as the file LRU
2331 * shrinks, so does the window for rotation from references.
2332 * This means we have a runaway feedback loop where a tiny
2333 * thrashing file LRU becomes infinitely more attractive than
2334 * anon pages. Try to detect this based on file LRU size.
2336 if (global_reclaim(sc)) {
2337 unsigned long pgdatfile;
2338 unsigned long pgdatfree;
2340 unsigned long total_high_wmark = 0;
2342 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2343 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2344 node_page_state(pgdat, NR_INACTIVE_FILE);
2346 for (z = 0; z < MAX_NR_ZONES; z++) {
2347 struct zone *zone = &pgdat->node_zones[z];
2348 if (!managed_zone(zone))
2351 total_high_wmark += high_wmark_pages(zone);
2354 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2356 * Force SCAN_ANON if there are enough inactive
2357 * anonymous pages on the LRU in eligible zones.
2358 * Otherwise, the small LRU gets thrashed.
2360 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2361 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2363 scan_balance = SCAN_ANON;
2370 * If there is enough inactive page cache, i.e. if the size of the
2371 * inactive list is greater than that of the active list *and* the
2372 * inactive list actually has some pages to scan on this priority, we
2373 * do not reclaim anything from the anonymous working set right now.
2374 * Without the second condition we could end up never scanning an
2375 * lruvec even if it has plenty of old anonymous pages unless the
2376 * system is under heavy pressure.
2378 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2379 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2380 scan_balance = SCAN_FILE;
2384 scan_balance = SCAN_FRACT;
2387 * With swappiness at 100, anonymous and file have the same priority.
2388 * This scanning priority is essentially the inverse of IO cost.
2390 anon_prio = swappiness;
2391 file_prio = 200 - anon_prio;
2394 * OK, so we have swap space and a fair amount of page cache
2395 * pages. We use the recently rotated / recently scanned
2396 * ratios to determine how valuable each cache is.
2398 * Because workloads change over time (and to avoid overflow)
2399 * we keep these statistics as a floating average, which ends
2400 * up weighing recent references more than old ones.
2402 * anon in [0], file in [1]
2405 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2406 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2407 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2408 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2410 spin_lock_irq(&pgdat->lru_lock);
2411 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2412 reclaim_stat->recent_scanned[0] /= 2;
2413 reclaim_stat->recent_rotated[0] /= 2;
2416 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2417 reclaim_stat->recent_scanned[1] /= 2;
2418 reclaim_stat->recent_rotated[1] /= 2;
2422 * The amount of pressure on anon vs file pages is inversely
2423 * proportional to the fraction of recently scanned pages on
2424 * each list that were recently referenced and in active use.
2426 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2427 ap /= reclaim_stat->recent_rotated[0] + 1;
2429 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2430 fp /= reclaim_stat->recent_rotated[1] + 1;
2431 spin_unlock_irq(&pgdat->lru_lock);
2435 denominator = ap + fp + 1;
2438 for_each_evictable_lru(lru) {
2439 int file = is_file_lru(lru);
2443 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2444 scan = size >> sc->priority;
2446 * If the cgroup's already been deleted, make sure to
2447 * scrape out the remaining cache.
2449 if (!scan && !mem_cgroup_online(memcg))
2450 scan = min(size, SWAP_CLUSTER_MAX);
2452 switch (scan_balance) {
2454 /* Scan lists relative to size */
2458 * Scan types proportional to swappiness and
2459 * their relative recent reclaim efficiency.
2460 * Make sure we don't miss the last page
2461 * because of a round-off error.
2463 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2468 /* Scan one type exclusively */
2469 if ((scan_balance == SCAN_FILE) != file) {
2475 /* Look ma, no brain */
2485 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2487 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2488 struct scan_control *sc, unsigned long *lru_pages)
2490 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2491 unsigned long nr[NR_LRU_LISTS];
2492 unsigned long targets[NR_LRU_LISTS];
2493 unsigned long nr_to_scan;
2495 unsigned long nr_reclaimed = 0;
2496 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2497 struct blk_plug plug;
2500 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2502 /* Record the original scan target for proportional adjustments later */
2503 memcpy(targets, nr, sizeof(nr));
2506 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2507 * event that can occur when there is little memory pressure e.g.
2508 * multiple streaming readers/writers. Hence, we do not abort scanning
2509 * when the requested number of pages are reclaimed when scanning at
2510 * DEF_PRIORITY on the assumption that the fact we are direct
2511 * reclaiming implies that kswapd is not keeping up and it is best to
2512 * do a batch of work at once. For memcg reclaim one check is made to
2513 * abort proportional reclaim if either the file or anon lru has already
2514 * dropped to zero at the first pass.
2516 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2517 sc->priority == DEF_PRIORITY);
2519 blk_start_plug(&plug);
2520 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2521 nr[LRU_INACTIVE_FILE]) {
2522 unsigned long nr_anon, nr_file, percentage;
2523 unsigned long nr_scanned;
2525 for_each_evictable_lru(lru) {
2527 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2528 nr[lru] -= nr_to_scan;
2530 nr_reclaimed += shrink_list(lru, nr_to_scan,
2537 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2541 * For kswapd and memcg, reclaim at least the number of pages
2542 * requested. Ensure that the anon and file LRUs are scanned
2543 * proportionally what was requested by get_scan_count(). We
2544 * stop reclaiming one LRU and reduce the amount scanning
2545 * proportional to the original scan target.
2547 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2548 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2551 * It's just vindictive to attack the larger once the smaller
2552 * has gone to zero. And given the way we stop scanning the
2553 * smaller below, this makes sure that we only make one nudge
2554 * towards proportionality once we've got nr_to_reclaim.
2556 if (!nr_file || !nr_anon)
2559 if (nr_file > nr_anon) {
2560 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2561 targets[LRU_ACTIVE_ANON] + 1;
2563 percentage = nr_anon * 100 / scan_target;
2565 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2566 targets[LRU_ACTIVE_FILE] + 1;
2568 percentage = nr_file * 100 / scan_target;
2571 /* Stop scanning the smaller of the LRU */
2573 nr[lru + LRU_ACTIVE] = 0;
2576 * Recalculate the other LRU scan count based on its original
2577 * scan target and the percentage scanning already complete
2579 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2580 nr_scanned = targets[lru] - nr[lru];
2581 nr[lru] = targets[lru] * (100 - percentage) / 100;
2582 nr[lru] -= min(nr[lru], nr_scanned);
2585 nr_scanned = targets[lru] - nr[lru];
2586 nr[lru] = targets[lru] * (100 - percentage) / 100;
2587 nr[lru] -= min(nr[lru], nr_scanned);
2589 scan_adjusted = true;
2591 blk_finish_plug(&plug);
2592 sc->nr_reclaimed += nr_reclaimed;
2595 * Even if we did not try to evict anon pages at all, we want to
2596 * rebalance the anon lru active/inactive ratio.
2598 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2599 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2600 sc, LRU_ACTIVE_ANON);
2603 /* Use reclaim/compaction for costly allocs or under memory pressure */
2604 static bool in_reclaim_compaction(struct scan_control *sc)
2606 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2607 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2608 sc->priority < DEF_PRIORITY - 2))
2615 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2616 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2617 * true if more pages should be reclaimed such that when the page allocator
2618 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2619 * It will give up earlier than that if there is difficulty reclaiming pages.
2621 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2622 unsigned long nr_reclaimed,
2623 unsigned long nr_scanned,
2624 struct scan_control *sc)
2626 unsigned long pages_for_compaction;
2627 unsigned long inactive_lru_pages;
2630 /* If not in reclaim/compaction mode, stop */
2631 if (!in_reclaim_compaction(sc))
2634 /* Consider stopping depending on scan and reclaim activity */
2635 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2637 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2638 * full LRU list has been scanned and we are still failing
2639 * to reclaim pages. This full LRU scan is potentially
2640 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2642 if (!nr_reclaimed && !nr_scanned)
2646 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2647 * fail without consequence, stop if we failed to reclaim
2648 * any pages from the last SWAP_CLUSTER_MAX number of
2649 * pages that were scanned. This will return to the
2650 * caller faster at the risk reclaim/compaction and
2651 * the resulting allocation attempt fails
2658 * If we have not reclaimed enough pages for compaction and the
2659 * inactive lists are large enough, continue reclaiming
2661 pages_for_compaction = compact_gap(sc->order);
2662 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2663 if (get_nr_swap_pages() > 0)
2664 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2665 if (sc->nr_reclaimed < pages_for_compaction &&
2666 inactive_lru_pages > pages_for_compaction)
2669 /* If compaction would go ahead or the allocation would succeed, stop */
2670 for (z = 0; z <= sc->reclaim_idx; z++) {
2671 struct zone *zone = &pgdat->node_zones[z];
2672 if (!managed_zone(zone))
2675 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2676 case COMPACT_SUCCESS:
2677 case COMPACT_CONTINUE:
2680 /* check next zone */
2687 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2689 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2690 (memcg && memcg_congested(pgdat, memcg));
2693 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2695 struct reclaim_state *reclaim_state = current->reclaim_state;
2696 unsigned long nr_reclaimed, nr_scanned;
2697 bool reclaimable = false;
2700 struct mem_cgroup *root = sc->target_mem_cgroup;
2701 struct mem_cgroup_reclaim_cookie reclaim = {
2703 .priority = sc->priority,
2705 unsigned long node_lru_pages = 0;
2706 struct mem_cgroup *memcg;
2708 memset(&sc->nr, 0, sizeof(sc->nr));
2710 nr_reclaimed = sc->nr_reclaimed;
2711 nr_scanned = sc->nr_scanned;
2713 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2715 unsigned long lru_pages;
2716 unsigned long reclaimed;
2717 unsigned long scanned;
2719 switch (mem_cgroup_protected(root, memcg)) {
2720 case MEMCG_PROT_MIN:
2723 * If there is no reclaimable memory, OOM.
2726 case MEMCG_PROT_LOW:
2729 * Respect the protection only as long as
2730 * there is an unprotected supply
2731 * of reclaimable memory from other cgroups.
2733 if (!sc->memcg_low_reclaim) {
2734 sc->memcg_low_skipped = 1;
2737 memcg_memory_event(memcg, MEMCG_LOW);
2739 case MEMCG_PROT_NONE:
2743 reclaimed = sc->nr_reclaimed;
2744 scanned = sc->nr_scanned;
2745 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2746 node_lru_pages += lru_pages;
2748 shrink_slab(sc->gfp_mask, pgdat->node_id,
2749 memcg, sc->priority);
2751 /* Record the group's reclaim efficiency */
2752 vmpressure(sc->gfp_mask, memcg, false,
2753 sc->nr_scanned - scanned,
2754 sc->nr_reclaimed - reclaimed);
2757 * Direct reclaim and kswapd have to scan all memory
2758 * cgroups to fulfill the overall scan target for the
2761 * Limit reclaim, on the other hand, only cares about
2762 * nr_to_reclaim pages to be reclaimed and it will
2763 * retry with decreasing priority if one round over the
2764 * whole hierarchy is not sufficient.
2766 if (!global_reclaim(sc) &&
2767 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2768 mem_cgroup_iter_break(root, memcg);
2771 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2773 if (reclaim_state) {
2774 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2775 reclaim_state->reclaimed_slab = 0;
2778 /* Record the subtree's reclaim efficiency */
2779 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2780 sc->nr_scanned - nr_scanned,
2781 sc->nr_reclaimed - nr_reclaimed);
2783 if (sc->nr_reclaimed - nr_reclaimed)
2786 if (current_is_kswapd()) {
2788 * If reclaim is isolating dirty pages under writeback,
2789 * it implies that the long-lived page allocation rate
2790 * is exceeding the page laundering rate. Either the
2791 * global limits are not being effective at throttling
2792 * processes due to the page distribution throughout
2793 * zones or there is heavy usage of a slow backing
2794 * device. The only option is to throttle from reclaim
2795 * context which is not ideal as there is no guarantee
2796 * the dirtying process is throttled in the same way
2797 * balance_dirty_pages() manages.
2799 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2800 * count the number of pages under pages flagged for
2801 * immediate reclaim and stall if any are encountered
2802 * in the nr_immediate check below.
2804 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2805 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2808 * Tag a node as congested if all the dirty pages
2809 * scanned were backed by a congested BDI and
2810 * wait_iff_congested will stall.
2812 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2813 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2815 /* Allow kswapd to start writing pages during reclaim.*/
2816 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2817 set_bit(PGDAT_DIRTY, &pgdat->flags);
2820 * If kswapd scans pages marked marked for immediate
2821 * reclaim and under writeback (nr_immediate), it
2822 * implies that pages are cycling through the LRU
2823 * faster than they are written so also forcibly stall.
2825 if (sc->nr.immediate)
2826 congestion_wait(BLK_RW_ASYNC, HZ/10);
2830 * Legacy memcg will stall in page writeback so avoid forcibly
2831 * stalling in wait_iff_congested().
2833 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2834 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2835 set_memcg_congestion(pgdat, root, true);
2838 * Stall direct reclaim for IO completions if underlying BDIs
2839 * and node is congested. Allow kswapd to continue until it
2840 * starts encountering unqueued dirty pages or cycling through
2841 * the LRU too quickly.
2843 if (!sc->hibernation_mode && !current_is_kswapd() &&
2844 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2845 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2847 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2848 sc->nr_scanned - nr_scanned, sc));
2851 * Kswapd gives up on balancing particular nodes after too
2852 * many failures to reclaim anything from them and goes to
2853 * sleep. On reclaim progress, reset the failure counter. A
2854 * successful direct reclaim run will revive a dormant kswapd.
2857 pgdat->kswapd_failures = 0;
2863 * Returns true if compaction should go ahead for a costly-order request, or
2864 * the allocation would already succeed without compaction. Return false if we
2865 * should reclaim first.
2867 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2869 unsigned long watermark;
2870 enum compact_result suitable;
2872 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2873 if (suitable == COMPACT_SUCCESS)
2874 /* Allocation should succeed already. Don't reclaim. */
2876 if (suitable == COMPACT_SKIPPED)
2877 /* Compaction cannot yet proceed. Do reclaim. */
2881 * Compaction is already possible, but it takes time to run and there
2882 * are potentially other callers using the pages just freed. So proceed
2883 * with reclaim to make a buffer of free pages available to give
2884 * compaction a reasonable chance of completing and allocating the page.
2885 * Note that we won't actually reclaim the whole buffer in one attempt
2886 * as the target watermark in should_continue_reclaim() is lower. But if
2887 * we are already above the high+gap watermark, don't reclaim at all.
2889 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2891 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2895 * This is the direct reclaim path, for page-allocating processes. We only
2896 * try to reclaim pages from zones which will satisfy the caller's allocation
2899 * If a zone is deemed to be full of pinned pages then just give it a light
2900 * scan then give up on it.
2902 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2906 unsigned long nr_soft_reclaimed;
2907 unsigned long nr_soft_scanned;
2909 pg_data_t *last_pgdat = NULL;
2912 * If the number of buffer_heads in the machine exceeds the maximum
2913 * allowed level, force direct reclaim to scan the highmem zone as
2914 * highmem pages could be pinning lowmem pages storing buffer_heads
2916 orig_mask = sc->gfp_mask;
2917 if (buffer_heads_over_limit) {
2918 sc->gfp_mask |= __GFP_HIGHMEM;
2919 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2922 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2923 sc->reclaim_idx, sc->nodemask) {
2925 * Take care memory controller reclaiming has small influence
2928 if (global_reclaim(sc)) {
2929 if (!cpuset_zone_allowed(zone,
2930 GFP_KERNEL | __GFP_HARDWALL))
2934 * If we already have plenty of memory free for
2935 * compaction in this zone, don't free any more.
2936 * Even though compaction is invoked for any
2937 * non-zero order, only frequent costly order
2938 * reclamation is disruptive enough to become a
2939 * noticeable problem, like transparent huge
2942 if (IS_ENABLED(CONFIG_COMPACTION) &&
2943 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2944 compaction_ready(zone, sc)) {
2945 sc->compaction_ready = true;
2950 * Shrink each node in the zonelist once. If the
2951 * zonelist is ordered by zone (not the default) then a
2952 * node may be shrunk multiple times but in that case
2953 * the user prefers lower zones being preserved.
2955 if (zone->zone_pgdat == last_pgdat)
2959 * This steals pages from memory cgroups over softlimit
2960 * and returns the number of reclaimed pages and
2961 * scanned pages. This works for global memory pressure
2962 * and balancing, not for a memcg's limit.
2964 nr_soft_scanned = 0;
2965 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2966 sc->order, sc->gfp_mask,
2968 sc->nr_reclaimed += nr_soft_reclaimed;
2969 sc->nr_scanned += nr_soft_scanned;
2970 /* need some check for avoid more shrink_zone() */
2973 /* See comment about same check for global reclaim above */
2974 if (zone->zone_pgdat == last_pgdat)
2976 last_pgdat = zone->zone_pgdat;
2977 shrink_node(zone->zone_pgdat, sc);
2981 * Restore to original mask to avoid the impact on the caller if we
2982 * promoted it to __GFP_HIGHMEM.
2984 sc->gfp_mask = orig_mask;
2987 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2989 struct mem_cgroup *memcg;
2991 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2993 unsigned long refaults;
2994 struct lruvec *lruvec;
2997 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2999 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
3001 lruvec = mem_cgroup_lruvec(pgdat, memcg);
3002 lruvec->refaults = refaults;
3003 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3007 * This is the main entry point to direct page reclaim.
3009 * If a full scan of the inactive list fails to free enough memory then we
3010 * are "out of memory" and something needs to be killed.
3012 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3013 * high - the zone may be full of dirty or under-writeback pages, which this
3014 * caller can't do much about. We kick the writeback threads and take explicit
3015 * naps in the hope that some of these pages can be written. But if the
3016 * allocating task holds filesystem locks which prevent writeout this might not
3017 * work, and the allocation attempt will fail.
3019 * returns: 0, if no pages reclaimed
3020 * else, the number of pages reclaimed
3022 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3023 struct scan_control *sc)
3025 int initial_priority = sc->priority;
3026 pg_data_t *last_pgdat;
3030 delayacct_freepages_start();
3032 if (global_reclaim(sc))
3033 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3036 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3039 shrink_zones(zonelist, sc);
3041 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3044 if (sc->compaction_ready)
3048 * If we're getting trouble reclaiming, start doing
3049 * writepage even in laptop mode.
3051 if (sc->priority < DEF_PRIORITY - 2)
3052 sc->may_writepage = 1;
3053 } while (--sc->priority >= 0);
3056 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3058 if (zone->zone_pgdat == last_pgdat)
3060 last_pgdat = zone->zone_pgdat;
3061 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3062 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3065 delayacct_freepages_end();
3067 if (sc->nr_reclaimed)
3068 return sc->nr_reclaimed;
3070 /* Aborted reclaim to try compaction? don't OOM, then */
3071 if (sc->compaction_ready)
3074 /* Untapped cgroup reserves? Don't OOM, retry. */
3075 if (sc->memcg_low_skipped) {
3076 sc->priority = initial_priority;
3077 sc->memcg_low_reclaim = 1;
3078 sc->memcg_low_skipped = 0;
3085 static bool allow_direct_reclaim(pg_data_t *pgdat)
3088 unsigned long pfmemalloc_reserve = 0;
3089 unsigned long free_pages = 0;
3093 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3096 for (i = 0; i <= ZONE_NORMAL; i++) {
3097 zone = &pgdat->node_zones[i];
3098 if (!managed_zone(zone))
3101 if (!zone_reclaimable_pages(zone))
3104 pfmemalloc_reserve += min_wmark_pages(zone);
3105 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3108 /* If there are no reserves (unexpected config) then do not throttle */
3109 if (!pfmemalloc_reserve)
3112 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3114 /* kswapd must be awake if processes are being throttled */
3115 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3116 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3117 (enum zone_type)ZONE_NORMAL);
3118 wake_up_interruptible(&pgdat->kswapd_wait);
3125 * Throttle direct reclaimers if backing storage is backed by the network
3126 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3127 * depleted. kswapd will continue to make progress and wake the processes
3128 * when the low watermark is reached.
3130 * Returns true if a fatal signal was delivered during throttling. If this
3131 * happens, the page allocator should not consider triggering the OOM killer.
3133 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3134 nodemask_t *nodemask)
3138 pg_data_t *pgdat = NULL;
3141 * Kernel threads should not be throttled as they may be indirectly
3142 * responsible for cleaning pages necessary for reclaim to make forward
3143 * progress. kjournald for example may enter direct reclaim while
3144 * committing a transaction where throttling it could forcing other
3145 * processes to block on log_wait_commit().
3147 if (current->flags & PF_KTHREAD)
3151 * If a fatal signal is pending, this process should not throttle.
3152 * It should return quickly so it can exit and free its memory
3154 if (fatal_signal_pending(current))
3158 * Check if the pfmemalloc reserves are ok by finding the first node
3159 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3160 * GFP_KERNEL will be required for allocating network buffers when
3161 * swapping over the network so ZONE_HIGHMEM is unusable.
3163 * Throttling is based on the first usable node and throttled processes
3164 * wait on a queue until kswapd makes progress and wakes them. There
3165 * is an affinity then between processes waking up and where reclaim
3166 * progress has been made assuming the process wakes on the same node.
3167 * More importantly, processes running on remote nodes will not compete
3168 * for remote pfmemalloc reserves and processes on different nodes
3169 * should make reasonable progress.
3171 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3172 gfp_zone(gfp_mask), nodemask) {
3173 if (zone_idx(zone) > ZONE_NORMAL)
3176 /* Throttle based on the first usable node */
3177 pgdat = zone->zone_pgdat;
3178 if (allow_direct_reclaim(pgdat))
3183 /* If no zone was usable by the allocation flags then do not throttle */
3187 /* Account for the throttling */
3188 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3191 * If the caller cannot enter the filesystem, it's possible that it
3192 * is due to the caller holding an FS lock or performing a journal
3193 * transaction in the case of a filesystem like ext[3|4]. In this case,
3194 * it is not safe to block on pfmemalloc_wait as kswapd could be
3195 * blocked waiting on the same lock. Instead, throttle for up to a
3196 * second before continuing.
3198 if (!(gfp_mask & __GFP_FS)) {
3199 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3200 allow_direct_reclaim(pgdat), HZ);
3205 /* Throttle until kswapd wakes the process */
3206 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3207 allow_direct_reclaim(pgdat));
3210 if (fatal_signal_pending(current))
3217 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3218 gfp_t gfp_mask, nodemask_t *nodemask)
3220 unsigned long nr_reclaimed;
3221 struct scan_control sc = {
3222 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3223 .gfp_mask = current_gfp_context(gfp_mask),
3224 .reclaim_idx = gfp_zone(gfp_mask),
3226 .nodemask = nodemask,
3227 .priority = DEF_PRIORITY,
3228 .may_writepage = !laptop_mode,
3234 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3235 * Confirm they are large enough for max values.
3237 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3238 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3239 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3242 * Do not enter reclaim if fatal signal was delivered while throttled.
3243 * 1 is returned so that the page allocator does not OOM kill at this
3246 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3249 trace_mm_vmscan_direct_reclaim_begin(order,
3254 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3256 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3258 return nr_reclaimed;
3263 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3264 gfp_t gfp_mask, bool noswap,
3266 unsigned long *nr_scanned)
3268 struct scan_control sc = {
3269 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3270 .target_mem_cgroup = memcg,
3271 .may_writepage = !laptop_mode,
3273 .reclaim_idx = MAX_NR_ZONES - 1,
3274 .may_swap = !noswap,
3276 unsigned long lru_pages;
3278 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3279 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3281 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3287 * NOTE: Although we can get the priority field, using it
3288 * here is not a good idea, since it limits the pages we can scan.
3289 * if we don't reclaim here, the shrink_node from balance_pgdat
3290 * will pick up pages from other mem cgroup's as well. We hack
3291 * the priority and make it zero.
3293 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3295 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3297 *nr_scanned = sc.nr_scanned;
3298 return sc.nr_reclaimed;
3301 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3302 unsigned long nr_pages,
3306 struct zonelist *zonelist;
3307 unsigned long nr_reclaimed;
3309 unsigned int noreclaim_flag;
3310 struct scan_control sc = {
3311 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3312 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3313 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3314 .reclaim_idx = MAX_NR_ZONES - 1,
3315 .target_mem_cgroup = memcg,
3316 .priority = DEF_PRIORITY,
3317 .may_writepage = !laptop_mode,
3319 .may_swap = may_swap,
3323 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3324 * take care of from where we get pages. So the node where we&