2 * Linux Socket Filter - Kernel level socket filtering
4 * Based on the design of the Berkeley Packet Filter. The new
5 * internal format has been designed by PLUMgrid:
7 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
11 * Jay Schulist <jschlst@samba.org>
12 * Alexei Starovoitov <ast@plumgrid.com>
13 * Daniel Borkmann <dborkman@redhat.com>
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
20 * Andi Kleen - Fix a few bad bugs and races.
21 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
24 #include <linux/module.h>
25 #include <linux/types.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
37 #include <net/protocol.h>
38 #include <net/netlink.h>
39 #include <linux/skbuff.h>
41 #include <net/flow_dissector.h>
42 #include <linux/errno.h>
43 #include <linux/timer.h>
44 #include <linux/uaccess.h>
45 #include <asm/unaligned.h>
46 #include <asm/cmpxchg.h>
47 #include <linux/filter.h>
48 #include <linux/ratelimit.h>
49 #include <linux/seccomp.h>
50 #include <linux/if_vlan.h>
51 #include <linux/bpf.h>
52 #include <net/sch_generic.h>
53 #include <net/cls_cgroup.h>
54 #include <net/dst_metadata.h>
56 #include <net/sock_reuseport.h>
57 #include <net/busy_poll.h>
59 #include <linux/bpf_trace.h>
62 * sk_filter_trim_cap - run a packet through a socket filter
63 * @sk: sock associated with &sk_buff
64 * @skb: buffer to filter
65 * @cap: limit on how short the eBPF program may trim the packet
67 * Run the eBPF program and then cut skb->data to correct size returned by
68 * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
69 * than pkt_len we keep whole skb->data. This is the socket level
70 * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
71 * be accepted or -EPERM if the packet should be tossed.
74 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
77 struct sk_filter *filter;
80 * If the skb was allocated from pfmemalloc reserves, only
81 * allow SOCK_MEMALLOC sockets to use it as this socket is
84 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
85 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
88 err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
92 err = security_sock_rcv_skb(sk, skb);
97 filter = rcu_dereference(sk->sk_filter);
99 struct sock *save_sk = skb->sk;
100 unsigned int pkt_len;
103 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
105 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
111 EXPORT_SYMBOL(sk_filter_trim_cap);
113 BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
115 return skb_get_poff(skb);
118 BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
122 if (skb_is_nonlinear(skb))
125 if (skb->len < sizeof(struct nlattr))
128 if (a > skb->len - sizeof(struct nlattr))
131 nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
133 return (void *) nla - (void *) skb->data;
138 BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
142 if (skb_is_nonlinear(skb))
145 if (skb->len < sizeof(struct nlattr))
148 if (a > skb->len - sizeof(struct nlattr))
151 nla = (struct nlattr *) &skb->data[a];
152 if (nla->nla_len > skb->len - a)
155 nla = nla_find_nested(nla, x);
157 return (void *) nla - (void *) skb->data;
162 BPF_CALL_0(__get_raw_cpu_id)
164 return raw_smp_processor_id();
167 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
168 .func = __get_raw_cpu_id,
170 .ret_type = RET_INTEGER,
173 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
174 struct bpf_insn *insn_buf)
176 struct bpf_insn *insn = insn_buf;
180 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
182 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
183 offsetof(struct sk_buff, mark));
187 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
188 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
189 #ifdef __BIG_ENDIAN_BITFIELD
190 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
195 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
197 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
198 offsetof(struct sk_buff, queue_mapping));
201 case SKF_AD_VLAN_TAG:
202 case SKF_AD_VLAN_TAG_PRESENT:
203 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
204 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
206 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
207 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
208 offsetof(struct sk_buff, vlan_tci));
209 if (skb_field == SKF_AD_VLAN_TAG) {
210 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
214 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
216 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
221 return insn - insn_buf;
224 static bool convert_bpf_extensions(struct sock_filter *fp,
225 struct bpf_insn **insnp)
227 struct bpf_insn *insn = *insnp;
231 case SKF_AD_OFF + SKF_AD_PROTOCOL:
232 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
234 /* A = *(u16 *) (CTX + offsetof(protocol)) */
235 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
236 offsetof(struct sk_buff, protocol));
237 /* A = ntohs(A) [emitting a nop or swap16] */
238 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
241 case SKF_AD_OFF + SKF_AD_PKTTYPE:
242 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
246 case SKF_AD_OFF + SKF_AD_IFINDEX:
247 case SKF_AD_OFF + SKF_AD_HATYPE:
248 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
249 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
251 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
252 BPF_REG_TMP, BPF_REG_CTX,
253 offsetof(struct sk_buff, dev));
254 /* if (tmp != 0) goto pc + 1 */
255 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
256 *insn++ = BPF_EXIT_INSN();
257 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
258 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
259 offsetof(struct net_device, ifindex));
261 *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
262 offsetof(struct net_device, type));
265 case SKF_AD_OFF + SKF_AD_MARK:
266 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
270 case SKF_AD_OFF + SKF_AD_RXHASH:
271 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
273 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
274 offsetof(struct sk_buff, hash));
277 case SKF_AD_OFF + SKF_AD_QUEUE:
278 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
282 case SKF_AD_OFF + SKF_AD_VLAN_TAG:
283 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
284 BPF_REG_A, BPF_REG_CTX, insn);
288 case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
289 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
290 BPF_REG_A, BPF_REG_CTX, insn);
294 case SKF_AD_OFF + SKF_AD_VLAN_TPID:
295 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
297 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
298 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
299 offsetof(struct sk_buff, vlan_proto));
300 /* A = ntohs(A) [emitting a nop or swap16] */
301 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
304 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
305 case SKF_AD_OFF + SKF_AD_NLATTR:
306 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
307 case SKF_AD_OFF + SKF_AD_CPU:
308 case SKF_AD_OFF + SKF_AD_RANDOM:
310 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
312 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
314 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
315 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
317 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
318 *insn = BPF_EMIT_CALL(__skb_get_pay_offset);
320 case SKF_AD_OFF + SKF_AD_NLATTR:
321 *insn = BPF_EMIT_CALL(__skb_get_nlattr);
323 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
324 *insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
326 case SKF_AD_OFF + SKF_AD_CPU:
327 *insn = BPF_EMIT_CALL(__get_raw_cpu_id);
329 case SKF_AD_OFF + SKF_AD_RANDOM:
330 *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
331 bpf_user_rnd_init_once();
336 case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
338 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
342 /* This is just a dummy call to avoid letting the compiler
343 * evict __bpf_call_base() as an optimization. Placed here
344 * where no-one bothers.
346 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
355 * bpf_convert_filter - convert filter program
356 * @prog: the user passed filter program
357 * @len: the length of the user passed filter program
358 * @new_prog: allocated 'struct bpf_prog' or NULL
359 * @new_len: pointer to store length of converted program
361 * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
362 * style extended BPF (eBPF).
363 * Conversion workflow:
365 * 1) First pass for calculating the new program length:
366 * bpf_convert_filter(old_prog, old_len, NULL, &new_len)
368 * 2) 2nd pass to remap in two passes: 1st pass finds new
369 * jump offsets, 2nd pass remapping:
370 * bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
372 static int bpf_convert_filter(struct sock_filter *prog, int len,
373 struct bpf_prog *new_prog, int *new_len)
375 int new_flen = 0, pass = 0, target, i, stack_off;
376 struct bpf_insn *new_insn, *first_insn = NULL;
377 struct sock_filter *fp;
381 BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
382 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
384 if (len <= 0 || len > BPF_MAXINSNS)
388 first_insn = new_prog->insnsi;
389 addrs = kcalloc(len, sizeof(*addrs),
390 GFP_KERNEL | __GFP_NOWARN);
396 new_insn = first_insn;
399 /* Classic BPF related prologue emission. */
401 /* Classic BPF expects A and X to be reset first. These need
402 * to be guaranteed to be the first two instructions.
404 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
405 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
407 /* All programs must keep CTX in callee saved BPF_REG_CTX.
408 * In eBPF case it's done by the compiler, here we need to
409 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
411 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
416 for (i = 0; i < len; fp++, i++) {
417 struct bpf_insn tmp_insns[6] = { };
418 struct bpf_insn *insn = tmp_insns;
421 addrs[i] = new_insn - first_insn;
424 /* All arithmetic insns and skb loads map as-is. */
425 case BPF_ALU | BPF_ADD | BPF_X:
426 case BPF_ALU | BPF_ADD | BPF_K:
427 case BPF_ALU | BPF_SUB | BPF_X:
428 case BPF_ALU | BPF_SUB | BPF_K:
429 case BPF_ALU | BPF_AND | BPF_X:
430 case BPF_ALU | BPF_AND | BPF_K:
431 case BPF_ALU | BPF_OR | BPF_X:
432 case BPF_ALU | BPF_OR | BPF_K:
433 case BPF_ALU | BPF_LSH | BPF_X:
434 case BPF_ALU | BPF_LSH | BPF_K:
435 case BPF_ALU | BPF_RSH | BPF_X:
436 case BPF_ALU | BPF_RSH | BPF_K:
437 case BPF_ALU | BPF_XOR | BPF_X:
438 case BPF_ALU | BPF_XOR | BPF_K:
439 case BPF_ALU | BPF_MUL | BPF_X:
440 case BPF_ALU | BPF_MUL | BPF_K:
441 case BPF_ALU | BPF_DIV | BPF_X:
442 case BPF_ALU | BPF_DIV | BPF_K:
443 case BPF_ALU | BPF_MOD | BPF_X:
444 case BPF_ALU | BPF_MOD | BPF_K:
445 case BPF_ALU | BPF_NEG:
446 case BPF_LD | BPF_ABS | BPF_W:
447 case BPF_LD | BPF_ABS | BPF_H:
448 case BPF_LD | BPF_ABS | BPF_B:
449 case BPF_LD | BPF_IND | BPF_W:
450 case BPF_LD | BPF_IND | BPF_H:
451 case BPF_LD | BPF_IND | BPF_B:
452 /* Check for overloaded BPF extension and
453 * directly convert it if found, otherwise
454 * just move on with mapping.
456 if (BPF_CLASS(fp->code) == BPF_LD &&
457 BPF_MODE(fp->code) == BPF_ABS &&
458 convert_bpf_extensions(fp, &insn))
461 if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
462 fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
463 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
464 /* Error with exception code on div/mod by 0.
465 * For cBPF programs, this was always return 0.
467 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
468 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
469 *insn++ = BPF_EXIT_INSN();
472 *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
475 /* Jump transformation cannot use BPF block macros
476 * everywhere as offset calculation and target updates
477 * require a bit more work than the rest, i.e. jump
478 * opcodes map as-is, but offsets need adjustment.
481 #define BPF_EMIT_JMP \
483 if (target >= len || target < 0) \
485 insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0; \
486 /* Adjust pc relative offset for 2nd or 3rd insn. */ \
487 insn->off -= insn - tmp_insns; \
490 case BPF_JMP | BPF_JA:
491 target = i + fp->k + 1;
492 insn->code = fp->code;
496 case BPF_JMP | BPF_JEQ | BPF_K:
497 case BPF_JMP | BPF_JEQ | BPF_X:
498 case BPF_JMP | BPF_JSET | BPF_K:
499 case BPF_JMP | BPF_JSET | BPF_X:
500 case BPF_JMP | BPF_JGT | BPF_K:
501 case BPF_JMP | BPF_JGT | BPF_X:
502 case BPF_JMP | BPF_JGE | BPF_K:
503 case BPF_JMP | BPF_JGE | BPF_X:
504 if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
505 /* BPF immediates are signed, zero extend
506 * immediate into tmp register and use it
509 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
511 insn->dst_reg = BPF_REG_A;
512 insn->src_reg = BPF_REG_TMP;
515 insn->dst_reg = BPF_REG_A;
517 bpf_src = BPF_SRC(fp->code);
518 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
521 /* Common case where 'jump_false' is next insn. */
523 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
524 target = i + fp->jt + 1;
529 /* Convert some jumps when 'jump_true' is next insn. */
531 switch (BPF_OP(fp->code)) {
533 insn->code = BPF_JMP | BPF_JNE | bpf_src;
536 insn->code = BPF_JMP | BPF_JLE | bpf_src;
539 insn->code = BPF_JMP | BPF_JLT | bpf_src;
545 target = i + fp->jf + 1;
550 /* Other jumps are mapped into two insns: Jxx and JA. */
551 target = i + fp->jt + 1;
552 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
556 insn->code = BPF_JMP | BPF_JA;
557 target = i + fp->jf + 1;
561 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
562 case BPF_LDX | BPF_MSH | BPF_B:
564 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
565 /* A = BPF_R0 = *(u8 *) (skb->data + K) */
566 *insn++ = BPF_LD_ABS(BPF_B, fp->k);
568 *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
570 *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
572 *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
574 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
577 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
578 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
580 case BPF_RET | BPF_A:
581 case BPF_RET | BPF_K:
582 if (BPF_RVAL(fp->code) == BPF_K)
583 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
585 *insn = BPF_EXIT_INSN();
588 /* Store to stack. */
591 stack_off = fp->k * 4 + 4;
592 *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
593 BPF_ST ? BPF_REG_A : BPF_REG_X,
595 /* check_load_and_stores() verifies that classic BPF can
596 * load from stack only after write, so tracking
597 * stack_depth for ST|STX insns is enough
599 if (new_prog && new_prog->aux->stack_depth < stack_off)
600 new_prog->aux->stack_depth = stack_off;
603 /* Load from stack. */
604 case BPF_LD | BPF_MEM:
605 case BPF_LDX | BPF_MEM:
606 stack_off = fp->k * 4 + 4;
607 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
608 BPF_REG_A : BPF_REG_X, BPF_REG_FP,
613 case BPF_LD | BPF_IMM:
614 case BPF_LDX | BPF_IMM:
615 *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
616 BPF_REG_A : BPF_REG_X, fp->k);
620 case BPF_MISC | BPF_TAX:
621 *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
625 case BPF_MISC | BPF_TXA:
626 *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
629 /* A = skb->len or X = skb->len */
630 case BPF_LD | BPF_W | BPF_LEN:
631 case BPF_LDX | BPF_W | BPF_LEN:
632 *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
633 BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
634 offsetof(struct sk_buff, len));
637 /* Access seccomp_data fields. */
638 case BPF_LDX | BPF_ABS | BPF_W:
639 /* A = *(u32 *) (ctx + K) */
640 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
643 /* Unknown instruction. */
650 memcpy(new_insn, tmp_insns,
651 sizeof(*insn) * (insn - tmp_insns));
652 new_insn += insn - tmp_insns;
656 /* Only calculating new length. */
657 *new_len = new_insn - first_insn;
662 if (new_flen != new_insn - first_insn) {
663 new_flen = new_insn - first_insn;
670 BUG_ON(*new_len != new_flen);
679 * As we dont want to clear mem[] array for each packet going through
680 * __bpf_prog_run(), we check that filter loaded by user never try to read
681 * a cell if not previously written, and we check all branches to be sure
682 * a malicious user doesn't try to abuse us.
684 static int check_load_and_stores(const struct sock_filter *filter, int flen)
686 u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
689 BUILD_BUG_ON(BPF_MEMWORDS > 16);
691 masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
695 memset(masks, 0xff, flen * sizeof(*masks));
697 for (pc = 0; pc < flen; pc++) {
698 memvalid &= masks[pc];
700 switch (filter[pc].code) {
703 memvalid |= (1 << filter[pc].k);
705 case BPF_LD | BPF_MEM:
706 case BPF_LDX | BPF_MEM:
707 if (!(memvalid & (1 << filter[pc].k))) {
712 case BPF_JMP | BPF_JA:
713 /* A jump must set masks on target */
714 masks[pc + 1 + filter[pc].k] &= memvalid;
717 case BPF_JMP | BPF_JEQ | BPF_K:
718 case BPF_JMP | BPF_JEQ | BPF_X:
719 case BPF_JMP | BPF_JGE | BPF_K:
720 case BPF_JMP | BPF_JGE | BPF_X:
721 case BPF_JMP | BPF_JGT | BPF_K:
722 case BPF_JMP | BPF_JGT | BPF_X:
723 case BPF_JMP | BPF_JSET | BPF_K:
724 case BPF_JMP | BPF_JSET | BPF_X:
725 /* A jump must set masks on targets */
726 masks[pc + 1 + filter[pc].jt] &= memvalid;
727 masks[pc + 1 + filter[pc].jf] &= memvalid;
737 static bool chk_code_allowed(u16 code_to_probe)
739 static const bool codes[] = {
740 /* 32 bit ALU operations */
741 [BPF_ALU | BPF_ADD | BPF_K] = true,
742 [BPF_ALU | BPF_ADD | BPF_X] = true,
743 [BPF_ALU | BPF_SUB | BPF_K] = true,
744 [BPF_ALU | BPF_SUB | BPF_X] = true,
745 [BPF_ALU | BPF_MUL | BPF_K] = true,
746 [BPF_ALU | BPF_MUL | BPF_X] = true,
747 [BPF_ALU | BPF_DIV | BPF_K] = true,
748 [BPF_ALU | BPF_DIV | BPF_X] = true,
749 [BPF_ALU | BPF_MOD | BPF_K] = true,
750 [BPF_ALU | BPF_MOD | BPF_X] = true,
751 [BPF_ALU | BPF_AND | BPF_K] = true,
752 [BPF_ALU | BPF_AND | BPF_X] = true,
753 [BPF_ALU | BPF_OR | BPF_K] = true,
754 [BPF_ALU | BPF_OR | BPF_X] = true,
755 [BPF_ALU | BPF_XOR | BPF_K] = true,
756 [BPF_ALU | BPF_XOR | BPF_X] = true,
757 [BPF_ALU | BPF_LSH | BPF_K] = true,
758 [BPF_ALU | BPF_LSH | BPF_X] = true,
759 [BPF_ALU | BPF_RSH | BPF_K] = true,
760 [BPF_ALU | BPF_RSH | BPF_X] = true,
761 [BPF_ALU | BPF_NEG] = true,
762 /* Load instructions */
763 [BPF_LD | BPF_W | BPF_ABS] = true,
764 [BPF_LD | BPF_H | BPF_ABS] = true,
765 [BPF_LD | BPF_B | BPF_ABS] = true,
766 [BPF_LD | BPF_W | BPF_LEN] = true,
767 [BPF_LD | BPF_W | BPF_IND] = true,
768 [BPF_LD | BPF_H | BPF_IND] = true,
769 [BPF_LD | BPF_B | BPF_IND] = true,
770 [BPF_LD | BPF_IMM] = true,
771 [BPF_LD | BPF_MEM] = true,
772 [BPF_LDX | BPF_W | BPF_LEN] = true,
773 [BPF_LDX | BPF_B | BPF_MSH] = true,
774 [BPF_LDX | BPF_IMM] = true,
775 [BPF_LDX | BPF_MEM] = true,
776 /* Store instructions */
779 /* Misc instructions */
780 [BPF_MISC | BPF_TAX] = true,
781 [BPF_MISC | BPF_TXA] = true,
782 /* Return instructions */
783 [BPF_RET | BPF_K] = true,
784 [BPF_RET | BPF_A] = true,
785 /* Jump instructions */
786 [BPF_JMP | BPF_JA] = true,
787 [BPF_JMP | BPF_JEQ | BPF_K] = true,
788 [BPF_JMP | BPF_JEQ | BPF_X] = true,
789 [BPF_JMP | BPF_JGE | BPF_K] = true,
790 [BPF_JMP | BPF_JGE | BPF_X] = true,
791 [BPF_JMP | BPF_JGT | BPF_K] = true,
792 [BPF_JMP | BPF_JGT | BPF_X] = true,
793 [BPF_JMP | BPF_JSET | BPF_K] = true,
794 [BPF_JMP | BPF_JSET | BPF_X] = true,
797 if (code_to_probe >= ARRAY_SIZE(codes))
800 return codes[code_to_probe];
803 static bool bpf_check_basics_ok(const struct sock_filter *filter,
808 if (flen == 0 || flen > BPF_MAXINSNS)
815 * bpf_check_classic - verify socket filter code
816 * @filter: filter to verify
817 * @flen: length of filter
819 * Check the user's filter code. If we let some ugly
820 * filter code slip through kaboom! The filter must contain
821 * no references or jumps that are out of range, no illegal
822 * instructions, and must end with a RET instruction.
824 * All jumps are forward as they are not signed.
826 * Returns 0 if the rule set is legal or -EINVAL if not.
828 static int bpf_check_classic(const struct sock_filter *filter,
834 /* Check the filter code now */
835 for (pc = 0; pc < flen; pc++) {
836 const struct sock_filter *ftest = &filter[pc];
838 /* May we actually operate on this code? */
839 if (!chk_code_allowed(ftest->code))
842 /* Some instructions need special checks */
843 switch (ftest->code) {
844 case BPF_ALU | BPF_DIV | BPF_K:
845 case BPF_ALU | BPF_MOD | BPF_K:
846 /* Check for division by zero */
850 case BPF_ALU | BPF_LSH | BPF_K:
851 case BPF_ALU | BPF_RSH | BPF_K:
855 case BPF_LD | BPF_MEM:
856 case BPF_LDX | BPF_MEM:
859 /* Check for invalid memory addresses */
860 if (ftest->k >= BPF_MEMWORDS)
863 case BPF_JMP | BPF_JA:
864 /* Note, the large ftest->k might cause loops.
865 * Compare this with conditional jumps below,
866 * where offsets are limited. --ANK (981016)
868 if (ftest->k >= (unsigned int)(flen - pc - 1))
871 case BPF_JMP | BPF_JEQ | BPF_K:
872 case BPF_JMP | BPF_JEQ | BPF_X:
873 case BPF_JMP | BPF_JGE | BPF_K:
874 case BPF_JMP | BPF_JGE | BPF_X:
875 case BPF_JMP | BPF_JGT | BPF_K:
876 case BPF_JMP | BPF_JGT | BPF_X:
877 case BPF_JMP | BPF_JSET | BPF_K:
878 case BPF_JMP | BPF_JSET | BPF_X:
879 /* Both conditionals must be safe */
880 if (pc + ftest->jt + 1 >= flen ||
881 pc + ftest->jf + 1 >= flen)
884 case BPF_LD | BPF_W | BPF_ABS:
885 case BPF_LD | BPF_H | BPF_ABS:
886 case BPF_LD | BPF_B | BPF_ABS:
888 if (bpf_anc_helper(ftest) & BPF_ANC)
890 /* Ancillary operation unknown or unsupported */
891 if (anc_found == false && ftest->k >= SKF_AD_OFF)
896 /* Last instruction must be a RET code */
897 switch (filter[flen - 1].code) {
898 case BPF_RET | BPF_K:
899 case BPF_RET | BPF_A:
900 return check_load_and_stores(filter, flen);
906 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
907 const struct sock_fprog *fprog)
909 unsigned int fsize = bpf_classic_proglen(fprog);
910 struct sock_fprog_kern *fkprog;
912 fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
916 fkprog = fp->orig_prog;
917 fkprog->len = fprog->len;
919 fkprog->filter = kmemdup(fp->insns, fsize,
920 GFP_KERNEL | __GFP_NOWARN);
921 if (!fkprog->filter) {
922 kfree(fp->orig_prog);
929 static void bpf_release_orig_filter(struct bpf_prog *fp)
931 struct sock_fprog_kern *fprog = fp->orig_prog;
934 kfree(fprog->filter);
939 static void __bpf_prog_release(struct bpf_prog *prog)
941 if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
944 bpf_release_orig_filter(prog);
949 static void __sk_filter_release(struct sk_filter *fp)
951 __bpf_prog_release(fp->prog);
956 * sk_filter_release_rcu - Release a socket filter by rcu_head
957 * @rcu: rcu_head that contains the sk_filter to free
959 static void sk_filter_release_rcu(struct rcu_head *rcu)
961 struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
963 __sk_filter_release(fp);
967 * sk_filter_release - release a socket filter
968 * @fp: filter to remove
970 * Remove a filter from a socket and release its resources.
972 static void sk_filter_release(struct sk_filter *fp)
974 if (refcount_dec_and_test(&fp->refcnt))
975 call_rcu(&fp->rcu, sk_filter_release_rcu);
978 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
980 u32 filter_size = bpf_prog_size(fp->prog->len);
982 atomic_sub(filter_size, &sk->sk_omem_alloc);
983 sk_filter_release(fp);
986 /* try to charge the socket memory if there is space available
987 * return true on success
989 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
991 u32 filter_size = bpf_prog_size(fp->prog->len);
993 /* same check as in sock_kmalloc() */
994 if (filter_size <= sysctl_optmem_max &&
995 atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
996 atomic_add(filter_size, &sk->sk_omem_alloc);
1002 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1004 if (!refcount_inc_not_zero(&fp->refcnt))
1007 if (!__sk_filter_charge(sk, fp)) {
1008 sk_filter_release(fp);
1014 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1016 struct sock_filter *old_prog;
1017 struct bpf_prog *old_fp;
1018 int err, new_len, old_len = fp->len;
1020 /* We are free to overwrite insns et al right here as it
1021 * won't be used at this point in time anymore internally
1022 * after the migration to the internal BPF instruction
1025 BUILD_BUG_ON(sizeof(struct sock_filter) !=
1026 sizeof(struct bpf_insn));
1028 /* Conversion cannot happen on overlapping memory areas,
1029 * so we need to keep the user BPF around until the 2nd
1030 * pass. At this time, the user BPF is stored in fp->insns.
1032 old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1033 GFP_KERNEL | __GFP_NOWARN);
1039 /* 1st pass: calculate the new program length. */
1040 err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
1044 /* Expand fp for appending the new filter representation. */
1046 fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1048 /* The old_fp is still around in case we couldn't
1049 * allocate new memory, so uncharge on that one.
1058 /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1059 err = bpf_convert_filter(old_prog, old_len, fp, &new_len);
1061 /* 2nd bpf_convert_filter() can fail only if it fails
1062 * to allocate memory, remapping must succeed. Note,
1063 * that at this time old_fp has already been released
1068 fp = bpf_prog_select_runtime(fp, &err);
1078 __bpf_prog_release(fp);
1079 return ERR_PTR(err);
1082 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1083 bpf_aux_classic_check_t trans)
1087 fp->bpf_func = NULL;
1090 err = bpf_check_classic(fp->insns, fp->len);
1092 __bpf_prog_release(fp);
1093 return ERR_PTR(err);
1096 /* There might be additional checks and transformations
1097 * needed on classic filters, f.e. in case of seccomp.
1100 err = trans(fp->insns, fp->len);
1102 __bpf_prog_release(fp);
1103 return ERR_PTR(err);
1107 /* Probe if we can JIT compile the filter and if so, do
1108 * the compilation of the filter.
1110 bpf_jit_compile(fp);
1112 /* JIT compiler couldn't process this filter, so do the
1113 * internal BPF translation for the optimized interpreter.
1116 fp = bpf_migrate_filter(fp);
1122 * bpf_prog_create - create an unattached filter
1123 * @pfp: the unattached filter that is created
1124 * @fprog: the filter program
1126 * Create a filter independent of any socket. We first run some
1127 * sanity checks on it to make sure it does not explode on us later.
1128 * If an error occurs or there is insufficient memory for the filter
1129 * a negative errno code is returned. On success the return is zero.
1131 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1133 unsigned int fsize = bpf_classic_proglen(fprog);
1134 struct bpf_prog *fp;
1136 /* Make sure new filter is there and in the right amounts. */
1137 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1140 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1144 memcpy(fp->insns, fprog->filter, fsize);
1146 fp->len = fprog->len;
1147 /* Since unattached filters are not copied back to user
1148 * space through sk_get_filter(), we do not need to hold
1149 * a copy here, and can spare us the work.
1151 fp->orig_prog = NULL;
1153 /* bpf_prepare_filter() already takes care of freeing
1154 * memory in case something goes wrong.
1156 fp = bpf_prepare_filter(fp, NULL);
1163 EXPORT_SYMBOL_GPL(bpf_prog_create);
1166 * bpf_prog_create_from_user - create an unattached filter from user buffer
1167 * @pfp: the unattached filter that is created
1168 * @fprog: the filter program
1169 * @trans: post-classic verifier transformation handler
1170 * @save_orig: save classic BPF program
1172 * This function effectively does the same as bpf_prog_create(), only
1173 * that it builds up its insns buffer from user space provided buffer.
1174 * It also allows for passing a bpf_aux_classic_check_t handler.
1176 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1177 bpf_aux_classic_check_t trans, bool save_orig)
1179 unsigned int fsize = bpf_classic_proglen(fprog);
1180 struct bpf_prog *fp;
1183 /* Make sure new filter is there and in the right amounts. */
1184 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1187 fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1191 if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1192 __bpf_prog_free(fp);
1196 fp->len = fprog->len;
1197 fp->orig_prog = NULL;
1200 err = bpf_prog_store_orig_filter(fp, fprog);
1202 __bpf_prog_free(fp);
1207 /* bpf_prepare_filter() already takes care of freeing
1208 * memory in case something goes wrong.
1210 fp = bpf_prepare_filter(fp, trans);
1217 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1219 void bpf_prog_destroy(struct bpf_prog *fp)
1221 __bpf_prog_release(fp);
1223 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1225 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1227 struct sk_filter *fp, *old_fp;
1229 fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1235 if (!__sk_filter_charge(sk, fp)) {
1239 refcount_set(&fp->refcnt, 1);
1241 old_fp = rcu_dereference_protected(sk->sk_filter,
1242 lockdep_sock_is_held(sk));
1243 rcu_assign_pointer(sk->sk_filter, fp);
1246 sk_filter_uncharge(sk, old_fp);
1251 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1253 struct bpf_prog *old_prog;
1256 if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1259 if (sk_unhashed(sk) && sk->sk_reuseport) {
1260 err = reuseport_alloc(sk);
1263 } else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1264 /* The socket wasn't bound with SO_REUSEPORT */
1268 old_prog = reuseport_attach_prog(sk, prog);
1270 bpf_prog_destroy(old_prog);
1276 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1278 unsigned int fsize = bpf_classic_proglen(fprog);
1279 struct bpf_prog *prog;
1282 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1283 return ERR_PTR(-EPERM);
1285 /* Make sure new filter is there and in the right amounts. */
1286 if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1287 return ERR_PTR(-EINVAL);
1289 prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1291 return ERR_PTR(-ENOMEM);
1293 if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1294 __bpf_prog_free(prog);
1295 return ERR_PTR(-EFAULT);
1298 prog->len = fprog->len;
1300 err = bpf_prog_store_orig_filter(prog, fprog);
1302 __bpf_prog_free(prog);
1303 return ERR_PTR(-ENOMEM);
1306 /* bpf_prepare_filter() already takes care of freeing
1307 * memory in case something goes wrong.
1309 return bpf_prepare_filter(prog, NULL);
1313 * sk_attach_filter - attach a socket filter
1314 * @fprog: the filter program
1315 * @sk: the socket to use
1317 * Attach the user's filter code. We first run some sanity checks on
1318 * it to make sure it does not explode on us later. If an error
1319 * occurs or there is insufficient memory for the filter a negative
1320 * errno code is returned. On success the return is zero.
1322 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1324 struct bpf_prog *prog = __get_filter(fprog, sk);
1328 return PTR_ERR(prog);
1330 err = __sk_attach_prog(prog, sk);
1332 __bpf_prog_release(prog);
1338 EXPORT_SYMBOL_GPL(sk_attach_filter);
1340 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1342 struct bpf_prog *prog = __get_filter(fprog, sk);
1346 return PTR_ERR(prog);
1348 err = __reuseport_attach_prog(prog, sk);
1350 __bpf_prog_release(prog);
1357 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1359 if (sock_flag(sk, SOCK_FILTER_LOCKED))
1360 return ERR_PTR(-EPERM);
1362 return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1365 int sk_attach_bpf(u32 ufd, struct sock *sk)
1367 struct bpf_prog *prog = __get_bpf(ufd, sk);
1371 return PTR_ERR(prog);
1373 err = __sk_attach_prog(prog, sk);
1382 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1384 struct bpf_prog *prog = __get_bpf(ufd, sk);
1388 return PTR_ERR(prog);
1390 err = __reuseport_attach_prog(prog, sk);
1399 struct bpf_scratchpad {
1401 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1402 u8 buff[MAX_BPF_STACK];
1406 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1408 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1409 unsigned int write_len)
1411 return skb_ensure_writable(skb, write_len);
1414 static inline int bpf_try_make_writable(struct sk_buff *skb,
1415 unsigned int write_len)
1417 int err = __bpf_try_make_writable(skb, write_len);
1419 bpf_compute_data_pointers(skb);
1423 static int bpf_try_make_head_writable(struct sk_buff *skb)
1425 return bpf_try_make_writable(skb, skb_headlen(skb));
1428 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1430 if (skb_at_tc_ingress(skb))
1431 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1434 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1436 if (skb_at_tc_ingress(skb))
1437 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1440 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1441 const void *, from, u32, len, u64, flags)
1445 if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1447 if (unlikely(offset > 0xffff))
1449 if (unlikely(bpf_try_make_writable(skb, offset + len)))
1452 ptr = skb->data + offset;
1453 if (flags & BPF_F_RECOMPUTE_CSUM)
1454 __skb_postpull_rcsum(skb, ptr, len, offset);
1456 memcpy(ptr, from, len);
1458 if (flags & BPF_F_RECOMPUTE_CSUM)
1459 __skb_postpush_rcsum(skb, ptr, len, offset);
1460 if (flags & BPF_F_INVALIDATE_HASH)
1461 skb_clear_hash(skb);
1466 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1467 .func = bpf_skb_store_bytes,
1469 .ret_type = RET_INTEGER,
1470 .arg1_type = ARG_PTR_TO_CTX,
1471 .arg2_type = ARG_ANYTHING,
1472 .arg3_type = ARG_PTR_TO_MEM,
1473 .arg4_type = ARG_CONST_SIZE,
1474 .arg5_type = ARG_ANYTHING,
1477 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1478 void *, to, u32, len)
1482 if (unlikely(offset > 0xffff))
1485 ptr = skb_header_pointer(skb, offset, len, to);
1489 memcpy(to, ptr, len);
1497 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1498 .func = bpf_skb_load_bytes,
1500 .ret_type = RET_INTEGER,
1501 .arg1_type = ARG_PTR_TO_CTX,
1502 .arg2_type = ARG_ANYTHING,
1503 .arg3_type = ARG_PTR_TO_UNINIT_MEM,
1504 .arg4_type = ARG_CONST_SIZE,
1507 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1509 /* Idea is the following: should the needed direct read/write
1510 * test fail during runtime, we can pull in more data and redo
1511 * again, since implicitly, we invalidate previous checks here.
1513 * Or, since we know how much we need to make read/writeable,
1514 * this can be done once at the program beginning for direct
1515 * access case. By this we overcome limitations of only current
1516 * headroom being accessible.
1518 return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1521 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1522 .func = bpf_skb_pull_data,
1524 .ret_type = RET_INTEGER,
1525 .arg1_type = ARG_PTR_TO_CTX,
1526 .arg2_type = ARG_ANYTHING,
1529 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1530 u64, from, u64, to, u64, flags)
1534 if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1536 if (unlikely(offset > 0xffff || offset & 1))
1538 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1541 ptr = (__sum16 *)(skb->data + offset);
1542 switch (flags & BPF_F_HDR_FIELD_MASK) {
1544 if (unlikely(from != 0))
1547 csum_replace_by_diff(ptr, to);
1550 csum_replace2(ptr, from, to);
1553 csum_replace4(ptr, from, to);
1562 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1563 .func = bpf_l3_csum_replace,
1565 .ret_type = RET_INTEGER,
1566 .arg1_type = ARG_PTR_TO_CTX,
1567 .arg2_type = ARG_ANYTHING,
1568 .arg3_type = ARG_ANYTHING,
1569 .arg4_type = ARG_ANYTHING,
1570 .arg5_type = ARG_ANYTHING,
1573 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1574 u64, from, u64, to, u64, flags)
1576 bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1577 bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1578 bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1581 if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1582 BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1584 if (unlikely(offset > 0xffff || offset & 1))
1586 if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1589 ptr = (__sum16 *)(skb->data + offset);
1590 if (is_mmzero && !do_mforce && !*ptr)
1593 switch (flags & BPF_F_HDR_FIELD_MASK) {
1595 if (unlikely(from != 0))
1598 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1601 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1604 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1610 if (is_mmzero && !*ptr)
1611 *ptr = CSUM_MANGLED_0;
1615 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1616 .func = bpf_l4_csum_replace,
1618 .ret_type = RET_INTEGER,
1619 .arg1_type = ARG_PTR_TO_CTX,
1620 .arg2_type = ARG_ANYTHING,
1621 .arg3_type = ARG_ANYTHING,
1622 .arg4_type = ARG_ANYTHING,
1623 .arg5_type = ARG_ANYTHING,
1626 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1627 __be32 *, to, u32, to_size, __wsum, seed)
1629 struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1630 u32 diff_size = from_size + to_size;
1633 /* This is quite flexible, some examples:
1635 * from_size == 0, to_size > 0, seed := csum --> pushing data
1636 * from_size > 0, to_size == 0, seed := csum --> pulling data
1637 * from_size > 0, to_size > 0, seed := 0 --> diffing data
1639 * Even for diffing, from_size and to_size don't need to be equal.
1641 if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1642 diff_size > sizeof(sp->diff)))
1645 for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1646 sp->diff[j] = ~from[i];
1647 for (i = 0; i < to_size / sizeof(__be32); i++, j++)
1648 sp->diff[j] = to[i];
1650 return csum_partial(sp->diff, diff_size, seed);
1653 static const struct bpf_func_proto bpf_csum_diff_proto = {
1654 .func = bpf_csum_diff,
1657 .ret_type = RET_INTEGER,
1658 .arg1_type = ARG_PTR_TO_MEM_OR_NULL,
1659 .arg2_type = ARG_CONST_SIZE_OR_ZERO,
1660 .arg3_type = ARG_PTR_TO_MEM_OR_NULL,
1661 .arg4_type = ARG_CONST_SIZE_OR_ZERO,
1662 .arg5_type = ARG_ANYTHING,
1665 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1667 /* The interface is to be used in combination with bpf_csum_diff()
1668 * for direct packet writes. csum rotation for alignment as well
1669 * as emulating csum_sub() can be done from the eBPF program.
1671 if (skb->ip_summed == CHECKSUM_COMPLETE)
1672 return (skb->csum = csum_add(skb->csum, csum));
1677 static const struct bpf_func_proto bpf_csum_update_proto = {
1678 .func = bpf_csum_update,
1680 .ret_type = RET_INTEGER,
1681 .arg1_type = ARG_PTR_TO_CTX,
1682 .arg2_type = ARG_ANYTHING,
1685 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1687 return dev_forward_skb(dev, skb);
1690 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1691 struct sk_buff *skb)
1693 int ret = ____dev_forward_skb(dev, skb);
1697 ret = netif_rx(skb);
1703 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1707 if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1708 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1715 __this_cpu_inc(xmit_recursion);
1716 ret = dev_queue_xmit(skb);
1717 __this_cpu_dec(xmit_recursion);
1722 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
1725 /* skb->mac_len is not set on normal egress */
1726 unsigned int mlen = skb->network_header - skb->mac_header;
1728 __skb_pull(skb, mlen);
1730 /* At ingress, the mac header has already been pulled once.
1731 * At egress, skb_pospull_rcsum has to be done in case that
1732 * the skb is originated from ingress (i.e. a forwarded skb)
1733 * to ensure that rcsum starts at net header.
1735 if (!skb_at_tc_ingress(skb))
1736 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
1737 skb_pop_mac_header(skb);
1738 skb_reset_mac_len(skb);
1739 return flags & BPF_F_INGRESS ?
1740 __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
1743 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
1746 /* Verify that a link layer header is carried */
1747 if (unlikely(skb->mac_header >= skb->network_header)) {
1752 bpf_push_mac_rcsum(skb);
1753 return flags & BPF_F_INGRESS ?
1754 __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1757 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
1760 if (dev_is_mac_header_xmit(dev))
1761 return __bpf_redirect_common(skb, dev, flags);
1763 return __bpf_redirect_no_mac(skb, dev, flags);
1766 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1768 struct net_device *dev;
1769 struct sk_buff *clone;
1772 if (unlikely(flags & ~(BPF_F_INGRESS)))
1775 dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1779 clone = skb_clone(skb, GFP_ATOMIC);
1780 if (unlikely(!clone))
1783 /* For direct write, we need to keep the invariant that the skbs
1784 * we're dealing with need to be uncloned. Should uncloning fail
1785 * here, we need to free the just generated clone to unclone once
1788 ret = bpf_try_make_head_writable(skb);
1789 if (unlikely(ret)) {
1794 return __bpf_redirect(clone, dev, flags);
1797 static const struct bpf_func_proto bpf_clone_redirect_proto = {
1798 .func = bpf_clone_redirect,
1800 .ret_type = RET_INTEGER,
1801 .arg1_type = ARG_PTR_TO_CTX,
1802 .arg2_type = ARG_ANYTHING,
1803 .arg3_type = ARG_ANYTHING,
1806 struct redirect_info {
1809 struct bpf_map *map;
1810 struct bpf_map *map_to_flush;
1811 unsigned long map_owner;
1814 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1816 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1818 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1820 if (unlikely(flags & ~(BPF_F_INGRESS)))
1823 ri->ifindex = ifindex;
1826 return TC_ACT_REDIRECT;
1829 int skb_do_redirect(struct sk_buff *skb)
1831 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1832 struct net_device *dev;
1834 dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1836 if (unlikely(!dev)) {
1841 return __bpf_redirect(skb, dev, ri->flags);
1844 static const struct bpf_func_proto bpf_redirect_proto = {
1845 .func = bpf_redirect,
1847 .ret_type = RET_INTEGER,
1848 .arg1_type = ARG_ANYTHING,
1849 .arg2_type = ARG_ANYTHING,
1852 BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
1853 struct bpf_map *, map, u32, key, u64, flags)
1855 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1857 /* If user passes invalid input drop the packet. */
1858 if (unlikely(flags & ~(BPF_F_INGRESS)))
1862 tcb->bpf.flags = flags;
1868 struct sock *do_sk_redirect_map(struct sk_buff *skb)
1870 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1871 struct sock *sk = NULL;
1874 sk = __sock_map_lookup_elem(tcb->bpf.map, tcb->bpf.key);
1877 tcb->bpf.map = NULL;
1883 static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
1884 .func = bpf_sk_redirect_map,
1886 .ret_type = RET_INTEGER,
1887 .arg1_type = ARG_PTR_TO_CTX,
1888 .arg2_type = ARG_CONST_MAP_PTR,
1889 .arg3_type = ARG_ANYTHING,
1890 .arg4_type = ARG_ANYTHING,
1893 BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
1894 struct bpf_map *, map, u32, key, u64, flags)
1896 /* If user passes invalid input drop the packet. */
1897 if (unlikely(flags & ~(BPF_F_INGRESS)))
1907 struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
1909 struct sock *sk = NULL;
1912 sk = __sock_map_lookup_elem(msg->map, msg->key);
1921 static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
1922 .func = bpf_msg_redirect_map,
1924 .ret_type = RET_INTEGER,
1925 .arg1_type = ARG_PTR_TO_CTX,
1926 .arg2_type = ARG_CONST_MAP_PTR,
1927 .arg3_type = ARG_ANYTHING,
1928 .arg4_type = ARG_ANYTHING,
1931 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
1933 msg->apply_bytes = bytes;
1937 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
1938 .func = bpf_msg_apply_bytes,
1940 .ret_type = RET_INTEGER,
1941 .arg1_type = ARG_PTR_TO_CTX,
1942 .arg2_type = ARG_ANYTHING,
1945 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
1947 msg->cork_bytes = bytes;
1951 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
1952 .func = bpf_msg_cork_bytes,
1954 .ret_type = RET_INTEGER,
1955 .arg1_type = ARG_PTR_TO_CTX,
1956 .arg2_type = ARG_ANYTHING,
1959 BPF_CALL_4(bpf_msg_pull_data,
1960 struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
1962 unsigned int len = 0, offset = 0, copy = 0;
1963 struct scatterlist *sg = msg->sg_data;
1964 int first_sg, last_sg, i, shift;
1965 unsigned char *p, *to, *from;
1966 int bytes = end - start;
1969 if (unlikely(flags || end <= start))
1972 /* First find the starting scatterlist element */
1977 if (start < offset + len)
1980 if (i == MAX_SKB_FRAGS)
1982 } while (i != msg->sg_end);
1984 if (unlikely(start >= offset + len))
1987 if (!msg->sg_copy[i] && bytes <= len)
1992 /* At this point we need to linearize multiple scatterlist
1993 * elements or a single shared page. Either way we need to
1994 * copy into a linear buffer exclusively owned by BPF. Then
1995 * place the buffer in the scatterlist and fixup the original
1996 * entries by removing the entries now in the linear buffer
1997 * and shifting the remaining entries. For now we do not try
1998 * to copy partial entries to avoid complexity of running out
1999 * of sg_entry slots. The downside is reading a single byte
2000 * will copy the entire sg entry.
2003 copy += sg[i].length;
2005 if (i == MAX_SKB_FRAGS)
2009 } while (i != msg->sg_end);
2012 if (unlikely(copy < end - start))
2015 page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC, get_order(copy));
2016 if (unlikely(!page))
2018 p = page_address(page);
2023 from = sg_virt(&sg[i]);
2027 memcpy(to, from, len);
2030 put_page(sg_page(&sg[i]));
2033 if (i == MAX_SKB_FRAGS)
2035 } while (i != last_sg);
2037 sg[first_sg].length = copy;
2038 sg_set_page(&sg[first_sg], page, copy, 0);
2040 /* To repair sg ring we need to shift entries. If we only
2041 * had a single entry though we can just replace it and
2042 * be done. Otherwise walk the ring and shift the entries.
2044 shift = last_sg - first_sg - 1;
2052 if (i + shift >= MAX_SKB_FRAGS)
2053 move_from = i + shift - MAX_SKB_FRAGS;
2055 move_from = i + shift;
2057 if (move_from == msg->sg_end)
2060 sg[i] = sg[move_from];
2061 sg[move_from].length = 0;
2062 sg[move_from].page_link = 0;
2063 sg[move_from].offset = 0;
2066 if (i == MAX_SKB_FRAGS)
2069 msg->sg_end -= shift;
2070 if (msg->sg_end < 0)
2071 msg->sg_end += MAX_SKB_FRAGS;
2073 msg->data = sg_virt(&sg[i]) + start - offset;
2074 msg->data_end = msg->data + bytes;
2079 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2080 .func = bpf_msg_pull_data,
2082 .ret_type = RET_INTEGER,
2083 .arg1_type = ARG_PTR_TO_CTX,
2084 .arg2_type = ARG_ANYTHING,
2085 .arg3_type = ARG_ANYTHING,
2086 .arg4_type = ARG_ANYTHING,
2089 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2091 return task_get_classid(skb);
2094 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2095 .func = bpf_get_cgroup_classid,
2097 .ret_type = RET_INTEGER,
2098 .arg1_type = ARG_PTR_TO_CTX,
2101 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2103 return dst_tclassid(skb);
2106 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2107 .func = bpf_get_route_realm,
2109 .ret_type = RET_INTEGER,
2110 .arg1_type = ARG_PTR_TO_CTX,
2113 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2115 /* If skb_clear_hash() was called due to mangling, we can
2116 * trigger SW recalculation here. Later access to hash
2117 * can then use the inline skb->hash via context directly
2118 * instead of calling this helper again.
2120 return skb_get_hash(skb);
2123 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2124 .func = bpf_get_hash_recalc,
2126 .ret_type = RET_INTEGER,
2127 .arg1_type = ARG_PTR_TO_CTX,
2130 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2132 /* After all direct packet write, this can be used once for
2133 * triggering a lazy recalc on next skb_get_hash() invocation.
2135 skb_clear_hash(skb);
2139 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2140 .func = bpf_set_hash_invalid,
2142 .ret_type = RET_INTEGER,
2143 .arg1_type = ARG_PTR_TO_CTX,
2146 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2148 /* Set user specified hash as L4(+), so that it gets returned
2149 * on skb_get_hash() call unless BPF prog later on triggers a
2152 __skb_set_sw_hash(skb, hash, true);
2156 static const struct bpf_func_proto bpf_set_hash_proto = {
2157 .func = bpf_set_hash,
2159 .ret_type = RET_INTEGER,
2160 .arg1_type = ARG_PTR_TO_CTX,
2161 .arg2_type = ARG_ANYTHING,
2164 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2169 if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2170 vlan_proto != htons(ETH_P_8021AD)))
2171 vlan_proto = htons(ETH_P_8021Q);
2173 bpf_push_mac_rcsum(skb);
2174 ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2175 bpf_pull_mac_rcsum(skb);
2177 bpf_compute_data_pointers(skb);
2181 const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2182 .func = bpf_skb_vlan_push,
2184 .ret_type = RET_INTEGER,
2185 .arg1_type = ARG_PTR_TO_CTX,
2186 .arg2_type = ARG_ANYTHING,
2187 .arg3_type = ARG_ANYTHING,
2189 EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
2191 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2195 bpf_push_mac_rcsum(skb);
2196 ret = skb_vlan_pop(skb);
2197 bpf_pull_mac_rcsum(skb);
2199 bpf_compute_data_pointers(skb);
2203 const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2204 .func = bpf_skb_vlan_pop,
2206 .ret_type = RET_INTEGER,
2207 .arg1_type = ARG_PTR_TO_CTX,
2209 EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
2211 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2213 /* Caller already did skb_cow() with len as headroom,
2214 * so no need to do it here.
2217 memmove(skb->data, skb->data + len, off);
2218 memset(skb->data + off, 0, len);
2220 /* No skb_postpush_rcsum(skb, skb->data + off, len)
2221 * needed here as it does not change the skb->csum
2222 * result for checksum complete when summing over
2228 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2230 /* skb_ensure_writable() is not needed here, as we're
2231 * already working on an uncloned skb.
2233 if (unlikely(!pskb_may_pull(skb, off + len)))
2236 skb_postpull_rcsum(skb, skb->data + off, len);
2237 memmove(skb->data + len, skb->data, off);
2238 __skb_pull(skb, len);
2243 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2245 bool trans_same = skb->transport_header == skb->network_header;
2248 /* There's no need for __skb_push()/__skb_pull() pair to
2249 * get to the start of the mac header as we're guaranteed
2250 * to always start from here under eBPF.
2252 ret = bpf_skb_generic_push(skb, off, len);
2254 skb->mac_header -= len;
2255 skb->network_header -= len;
2257 skb->transport_header = skb->network_header;
2263 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2265 bool trans_same = skb->transport_header == skb->network_header;
2268 /* Same here, __skb_push()/__skb_pull() pair not needed. */
2269 ret = bpf_skb_generic_pop(skb, off, len);
2271 skb->mac_header += len;
2272 skb->network_header += len;
2274 skb->transport_header = skb->network_header;
2280 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2282 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2283 u32 off = skb_mac_header_len(skb);
2286 /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2287 if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2290 ret = skb_cow(skb, len_diff);
2291 if (unlikely(ret < 0))
2294 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2295 if (unlikely(ret < 0))
2298 if (skb_is_gso(skb)) {
2299 struct skb_shared_info *shinfo = skb_shinfo(skb);
2301 /* SKB_GSO_TCPV4 needs to be changed into
2304 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2305 shinfo->gso_type &= ~SKB_GSO_TCPV4;
2306 shinfo->gso_type |= SKB_GSO_TCPV6;
2309 /* Due to IPv6 header, MSS needs to be downgraded. */
2310 skb_decrease_gso_size(shinfo, len_diff);
2311 /* Header must be checked, and gso_segs recomputed. */
2312 shinfo->gso_type |= SKB_GSO_DODGY;
2313 shinfo->gso_segs = 0;
2316 skb->protocol = htons(ETH_P_IPV6);
2317 skb_clear_hash(skb);
2322 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2324 const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2325 u32 off = skb_mac_header_len(skb);
2328 /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2329 if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2332 ret = skb_unclone(skb, GFP_ATOMIC);
2333 if (unlikely(ret < 0))
2336 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2337 if (unlikely(ret < 0))
2340 if (skb_is_gso(skb)) {
2341 struct skb_shared_info *shinfo = skb_shinfo(skb);
2343 /* SKB_GSO_TCPV6 needs to be changed into
2346 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2347 shinfo->gso_type &= ~SKB_GSO_TCPV6;
2348 shinfo->gso_type |= SKB_GSO_TCPV4;
2351 /* Due to IPv4 header, MSS can be upgraded. */
2352 skb_increase_gso_size(shinfo, len_diff);
2353 /* Header must be checked, and gso_segs recomputed. */
2354 shinfo->gso_type |= SKB_GSO_DODGY;
2355 shinfo->gso_segs = 0;
2358 skb->protocol = htons(ETH_P_IP);
2359 skb_clear_hash(skb);
2364 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2366 __be16 from_proto = skb->protocol;
2368 if (from_proto == htons(ETH_P_IP) &&
2369 to_proto == htons(ETH_P_IPV6))
2370 return bpf_skb_proto_4_to_6(skb);
2372 if (from_proto == htons(ETH_P_IPV6) &&
2373 to_proto == htons(ETH_P_IP))
2374 return bpf_skb_proto_6_to_4(skb);
2379 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2384 if (unlikely(flags))
2387 /* General idea is that this helper does the basic groundwork
2388 * needed for changing the protocol, and eBPF program fills the
2389 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2390 * and other helpers, rather than passing a raw buffer here.
2392 * The rationale is to keep this minimal and without a need to
2393 * deal with raw packet data. F.e. even if we would pass buffers
2394 * here, the program still needs to call the bpf_lX_csum_replace()
2395 * helpers anyway. Plus, this way we keep also separation of
2396 * concerns, since f.e. bpf_skb_store_bytes() should only take
2399 * Currently, additional options and extension header space are
2400 * not supported, but flags register is reserved so we can adapt
2401 * that. For offloads, we mark packet as dodgy, so that headers
2402 * need to be verified first.
2404 ret = bpf_skb_proto_xlat(skb, proto);
2405 bpf_compute_data_pointers(skb);
2409 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2410 .func = bpf_skb_change_proto,
2412 .ret_type = RET_INTEGER,
2413 .arg1_type = ARG_PTR_TO_CTX,
2414 .arg2_type = ARG_ANYTHING,
2415 .arg3_type = ARG_ANYTHING,
2418 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2420 /* We only allow a restricted subset to be changed for now. */
2421 if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2422 !skb_pkt_type_ok(pkt_type)))
2425 skb->pkt_type = pkt_type;
2429 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2430 .func = bpf_skb_change_type,
2432 .ret_type = RET_INTEGER,
2433 .arg1_type = ARG_PTR_TO_CTX,
2434 .arg2_type = ARG_ANYTHING,
2437 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2439 switch (skb->protocol) {
2440 case htons(ETH_P_IP):
2441 return sizeof(struct iphdr);
2442 case htons(ETH_P_IPV6):
2443 return sizeof(struct ipv6hdr);
2449 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2451 u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2454 /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2455 if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2458 ret = skb_cow(skb, len_diff);
2459 if (unlikely(ret < 0))
2462 ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2463 if (unlikely(ret < 0))
2466 if (skb_is_gso(skb)) {
2467 struct skb_shared_info *shinfo = skb_shinfo(skb);
2469 /* Due to header grow, MSS needs to be downgraded. */
2470 skb_decrease_gso_size(shinfo, len_diff);
2471 /* Header must be checked, and gso_segs recomputed. */
2472 shinfo->gso_type |= SKB_GSO_DODGY;
2473 shinfo->gso_segs = 0;
2479 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2481 u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2484 /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2485 if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2488 ret = skb_unclone(skb, GFP_ATOMIC);
2489 if (unlikely(ret < 0))
2492 ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2493 if (unlikely(ret < 0))
2496 if (skb_is_gso(skb)) {
2497 struct skb_shared_info *shinfo = skb_shinfo(skb);
2499 /* Due to header shrink, MSS can be upgraded. */
2500 skb_increase_gso_size(shinfo, len_diff);
2501 /* Header must be checked, and gso_segs recomputed. */
2502 shinfo->gso_type |= SKB_GSO_DODGY;
2503 shinfo->gso_segs = 0;
2509 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2511 return skb->dev->mtu + skb->dev->hard_header_len;
2514 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2516 bool trans_same = skb->transport_header == skb->network_header;
2517 u32 len_cur, len_diff_abs = abs(len_diff);
2518 u32 len_min = bpf_skb_net_base_len(skb);
2519 u32 len_max = __bpf_skb_max_len(skb);
2520 __be16 proto = skb->protocol;
2521 bool shrink = len_diff < 0;
2524 if (unlikely(len_diff_abs > 0xfffU))
2526 if (unlikely(proto != htons(ETH_P_IP) &&
2527 proto != htons(ETH_P_IPV6)))
2530 len_cur = skb->len - skb_network_offset(skb);
2531 if (skb_transport_header_was_set(skb) && !trans_same)
2532 len_cur = skb_network_header_len(skb);
2533 if ((shrink && (len_diff_abs >= len_cur ||
2534 len_cur - len_diff_abs < len_min)) ||
2535 (!shrink && (skb->len + len_diff_abs > len_max &&
2539 ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2540 bpf_skb_net_grow(skb, len_diff_abs);
2542 bpf_compute_data_pointers(skb);
2546 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2547 u32, mode, u64, flags)
2549 if (unlikely(flags))
2551 if (likely(mode == BPF_ADJ_ROOM_NET))
2552 return bpf_skb_adjust_net(skb, len_diff);
2557 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2558 .func = bpf_skb_adjust_room,
2560 .ret_type = RET_INTEGER,
2561 .arg1_type = ARG_PTR_TO_CTX,
2562 .arg2_type = ARG_ANYTHING,
2563 .arg3_type = ARG_ANYTHING,
2564 .arg4_type = ARG_ANYTHING,
2567 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2569 u32 min_len = skb_network_offset(skb);
2571 if (skb_transport_header_was_set(skb))
2572 min_len = skb_transport_offset(skb);
2573 if (skb->ip_summed == CHECKSUM_PARTIAL)
2574 min_len = skb_checksum_start_offset(skb) +
2575 skb->csum_offset + sizeof(__sum16);
2579 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2581 unsigned int old_len = skb->len;
2584 ret = __skb_grow_rcsum(skb, new_len);
2586 memset(skb->data + old_len, 0, new_len - old_len);
2590 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2592 return __skb_trim_rcsum(skb, new_len);
2595 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2598 u32 max_len = __bpf_skb_max_len(skb);
2599 u32 min_len = __bpf_skb_min_len(skb);
2602 if (unlikely(flags || new_len > max_len || new_len < min_len))
2604 if (skb->encapsulation)
2607 /* The basic idea of this helper is that it's performing the
2608 * needed work to either grow or trim an skb, and eBPF program
2609 * rewrites the rest via helpers like bpf_skb_store_bytes(),
2610 * bpf_lX_csum_replace() and others rather than passing a raw
2611 * buffer here. This one is a slow path helper and intended
2612 * for replies with control messages.
2614 * Like in bpf_skb_change_proto(), we want to keep this rather
2615 * minimal and without protocol specifics so that we are able
2616 * to separate concerns as in bpf_skb_store_bytes() should only
2617 * be the one responsible for writing buffers.
2619 * It's really expected to be a slow path operation here for
2620 * control message replies, so we're implicitly linearizing,
2621 * uncloning and drop offloads from the skb by this.
2623 ret = __bpf_try_make_writable(skb, skb->len);
2625 if (new_len > skb->len)
2626 ret = bpf_skb_grow_rcsum(skb, new_len);
2627 else if (new_len < skb->len)
2628 ret = bpf_skb_trim_rcsum(skb, new_len);
2629 if (!ret && skb_is_gso(skb))
2633 bpf_compute_data_pointers(skb);
2637 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2638 .func = bpf_skb_change_tail,
2640 .ret_type = RET_INTEGER,
2641 .arg1_type = ARG_PTR_TO_CTX,
2642 .arg2_type = ARG_ANYTHING,
2643 .arg3_type = ARG_ANYTHING,
2646 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
2649 u32 max_len = __bpf_skb_max_len(skb);
2650 u32 new_len = skb->len + head_room;
2653 if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2654 new_len < skb->len))
2657 ret = skb_cow(skb, head_room);
2659 /* Idea for this helper is that we currently only
2660 * allow to expand on mac header. This means that
2661 * skb->protocol network header, etc, stay as is.
2662 * Compared to bpf_skb_change_tail(), we're more
2663 * flexible due to not needing to linearize or
2664 * reset GSO. Intention for this helper is to be
2665 * used by an L3 skb that needs to push mac header
2666 * for redirection into L2 device.
2668 __skb_push(skb, head_room);
2669 memset(skb->data, 0, head_room);
2670 skb_reset_mac_header(skb);
2673 bpf_compute_data_pointers(skb);
2677 static const struct bpf_func_proto bpf_skb_change_head_proto = {
2678 .func = bpf_skb_change_head,
2680 .ret_type = RET_INTEGER,
2681 .arg1_type = ARG_PTR_TO_CTX,
2682 .arg2_type = ARG_ANYTHING,
2683 .arg3_type = ARG_ANYTHING,
2686 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
2688 return xdp_data_meta_unsupported(xdp) ? 0 :
2689 xdp->data - xdp->data_meta;
2692 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
2694 unsigned long metalen = xdp_get_metalen(xdp);
2695 void *data_start = xdp->data_hard_start + metalen;
2696 void *data = xdp->data + offset;
2698 if (unlikely(data < data_start ||
2699 data > xdp->data_end - ETH_HLEN))
2703 memmove(xdp->data_meta + offset,
2704 xdp->data_meta, metalen);
2705 xdp->data_meta += offset;
2711 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
2712 .func = bpf_xdp_adjust_head,
2714 .ret_type = RET_INTEGER,
2715 .arg1_type = ARG_PTR_TO_CTX,
2716 .arg2_type = ARG_ANYTHING,
2719 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
2721 void *meta = xdp->data_meta + offset;
2722 unsigned long metalen = xdp->data - meta;
2724 if (xdp_data_meta_unsupported(xdp))
2726 if (unlikely(meta < xdp->data_hard_start ||
2729 if (unlikely((metalen & (sizeof(__u32) - 1)) ||
2733 xdp->data_meta = meta;
2738 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
2739 .func = bpf_xdp_adjust_meta,
2741 .ret_type = RET_INTEGER,
2742 .arg1_type = ARG_PTR_TO_CTX,
2743 .arg2_type = ARG_ANYTHING,
2746 static int __bpf_tx_xdp(struct net_device *dev,
2747 struct bpf_map *map,
2748 struct xdp_buff *xdp,
2753 if (!dev->netdev_ops->ndo_xdp_xmit) {
2757 err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
2760 dev->netdev_ops->ndo_xdp_flush(dev);
2764 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
2765 struct bpf_map *map,
2766 struct xdp_buff *xdp,
2771 if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
2772 struct net_device *dev = fwd;
2774 if (!dev->netdev_ops->ndo_xdp_xmit)
2777 err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
2780 __dev_map_insert_ctx(map, index);
2782 } else if (map->map_type == BPF_MAP_TYPE_CPUMAP) {
2783 struct bpf_cpu_map_entry *rcpu = fwd;
2785 err = cpu_map_enqueue(rcpu, xdp, dev_rx);
2788 __cpu_map_insert_ctx(map, index);
2793 void xdp_do_flush_map(void)
2795 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2796 struct bpf_map *map = ri->map_to_flush;
2798 ri->map_to_flush = NULL;
2800 switch (map->map_type) {
2801 case BPF_MAP_TYPE_DEVMAP:
2802 __dev_map_flush(map);
2804 case BPF_MAP_TYPE_CPUMAP:
2805 __cpu_map_flush(map);
2812 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
2814 static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
2816 switch (map->map_type) {
2817 case BPF_MAP_TYPE_DEVMAP:
2818 return __dev_map_lookup_elem(map, index);
2819 case BPF_MAP_TYPE_CPUMAP:
2820 return __cpu_map_lookup_elem(map, index);
2826 static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
2829 return (unsigned long)xdp_prog->aux != aux;
2832 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
2833 struct bpf_prog *xdp_prog)
2835 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2836 unsigned long map_owner = ri->map_owner;
2837 struct bpf_map *map = ri->map;
2838 u32 index = ri->ifindex;
2846 if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2852 fwd = __xdp_map_lookup_elem(map, index);
2857 if (ri->map_to_flush && ri->map_to_flush != map)
2860 err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
2864 ri->map_to_flush = map;
2865 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
2868 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
2872 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
2873 struct bpf_prog *xdp_prog)
2875 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2876 struct net_device *fwd;
2877 u32 index = ri->ifindex;
2881 return xdp_do_redirect_map(dev, xdp, xdp_prog);
2883 fwd = dev_get_by_index_rcu(dev_net(dev), index);
2885 if (unlikely(!fwd)) {
2890 err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
2894 _trace_xdp_redirect(dev, xdp_prog, index);
2897 _trace_xdp_redirect_err(dev, xdp_prog, index, err);
2900 EXPORT_SYMBOL_GPL(xdp_do_redirect);
2902 static int __xdp_generic_ok_fwd_dev(struct sk_buff *skb, struct net_device *fwd)
2906 if (unlikely(!(fwd->flags & IFF_UP)))
2909 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
2916 static int xdp_do_generic_redirect_map(struct net_device *dev,
2917 struct sk_buff *skb,
2918 struct bpf_prog *xdp_prog)
2920 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2921 unsigned long map_owner = ri->map_owner;
2922 struct bpf_map *map = ri->map;
2923 struct net_device *fwd = NULL;
2924 u32 index = ri->ifindex;
2931 if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2936 fwd = __xdp_map_lookup_elem(map, index);
2937 if (unlikely(!fwd)) {
2942 if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
2943 if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
2947 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
2952 _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
2955 _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
2959 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
2960 struct bpf_prog *xdp_prog)
2962 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2963 u32 index = ri->ifindex;
2964 struct net_device *fwd;
2968 return xdp_do_generic_redirect_map(dev, skb, xdp_prog);
2971 fwd = dev_get_by_index_rcu(dev_net(dev), index);
2972 if (unlikely(!fwd)) {
2977 if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
2981 _trace_xdp_redirect(dev, xdp_prog, index);
2984 _trace_xdp_redirect_err(dev, xdp_prog, index, err);
2987 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
2989 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
2991 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2993 if (unlikely(flags))
2996 ri->ifindex = ifindex;
3001 return XDP_REDIRECT;
3004 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3005 .func = bpf_xdp_redirect,
3007 .ret_type = RET_INTEGER,
3008 .arg1_type = ARG_ANYTHING,
3009 .arg2_type = ARG_ANYTHING,
3012 BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
3013 unsigned long, map_owner)
3015 struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3017 if (unlikely(flags))
3020 ri->ifindex = ifindex;
3023 ri->map_owner = map_owner;
3025 return XDP_REDIRECT;
3028 /* Note, arg4 is hidden from users and populated by the verifier
3029 * with the right pointer.
3031 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3032 .func = bpf_xdp_redirect_map,
3034 .ret_type = RET_INTEGER,
3035 .arg1_type = ARG_CONST_MAP_PTR,
3036 .arg2_type = ARG_ANYTHING,
3037 .arg3_type = ARG_ANYTHING,
3040 bool bpf_helper_changes_pkt_data(void *func)
3042 if (func == bpf_skb_vlan_push ||
3043 func == bpf_skb_vlan_pop ||
3044 func == bpf_skb_store_bytes ||
3045 func == bpf_skb_change_proto ||
3046 func == bpf_skb_change_head ||
3047 func == bpf_skb_change_tail ||
3048 func == bpf_skb_adjust_room ||
3049 func == bpf_skb_pull_data ||
3050 func == bpf_clone_redirect ||
3051 func == bpf_l3_csum_replace ||
3052 func == bpf_l4_csum_replace ||
3053 func == bpf_xdp_adjust_head ||
3054 func == bpf_xdp_adjust_meta ||
3055 func == bpf_msg_pull_data)
3061 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3062 unsigned long off, unsigned long len)
3064 void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3068 if (ptr != dst_buff)
3069 memcpy(dst_buff, ptr, len);
3074 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3075 u64, flags, void *, meta, u64, meta_size)
3077 u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3079 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3081 if (unlikely(skb_size > skb->len))
3084 return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3088 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3089 .func = bpf_skb_event_output,
3091 .ret_type = RET_INTEGER,
3092 .arg1_type = ARG_PTR_TO_CTX,
3093 .arg2_type = ARG_CONST_MAP_PTR,
3094 .arg3_type = ARG_ANYTHING,
3095 .arg4_type = ARG_PTR_TO_MEM,
3096 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
3099 static unsigned short bpf_tunnel_key_af(u64 flags)
3101 return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3104 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3105 u32, size, u64, flags)
3107 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3108 u8 compat[sizeof(struct bpf_tunnel_key)];
3112 if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3116 if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3120 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3123 case offsetof(struct bpf_tunnel_key, tunnel_label):
3124 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3126 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3127 /* Fixup deprecated structure layouts here, so we have
3128 * a common path later on.
3130 if (ip_tunnel_info_af(info) != AF_INET)
3133 to = (struct bpf_tunnel_key *)compat;
3140 to->tunnel_id = be64_to_cpu(info->key.tun_id);
3141 to->tunnel_tos = info->key.tos;
3142 to->tunnel_ttl = info->key.ttl;
3144 if (flags & BPF_F_TUNINFO_IPV6) {
3145 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3146 sizeof(to->remote_ipv6));
3147 to->tunnel_label = be32_to_cpu(info->key.label);
3149 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3152 if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3153 memcpy(to_orig, to, size);
3157 memset(to_orig, 0, size);
3161 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3162 .func = bpf_skb_get_tunnel_key,
3164 .ret_type = RET_INTEGER,
3165 .arg1_type = ARG_PTR_TO_CTX,
3166 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
3167 .arg3_type = ARG_CONST_SIZE,
3168 .arg4_type = ARG_ANYTHING,
3171 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3173 const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3176 if (unlikely(!info ||
3177 !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3181 if (unlikely(size < info->options_len)) {
3186 ip_tunnel_info_opts_get(to, info);
3187 if (size > info->options_len)
3188 memset(to + info->options_len, 0, size - info->options_len);
3190 return info->options_len;
3192 memset(to, 0, size);
3196 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3197 .func = bpf_skb_get_tunnel_opt,
3199 .ret_type = RET_INTEGER,
3200 .arg1_type = ARG_PTR_TO_CTX,
3201 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
3202 .arg3_type = ARG_CONST_SIZE,
3205 static struct metadata_dst __percpu *md_dst;
3207 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3208 const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3210 struct metadata_dst *md = this_cpu_ptr(md_dst);
3211 u8 compat[sizeof(struct bpf_tunnel_key)];
3212 struct ip_tunnel_info *info;
3214 if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3215 BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3217 if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3219 case offsetof(struct bpf_tunnel_key, tunnel_label):
3220 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3221 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3222 /* Fixup deprecated structure layouts here, so we have
3223 * a common path later on.
3225 memcpy(compat, from, size);
3226 memset(compat + size, 0, sizeof(compat) - size);
3227 from = (const struct bpf_tunnel_key *) compat;
3233 if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3238 dst_hold((struct dst_entry *) md);
3239 skb_dst_set(skb, (struct dst_entry *) md);
3241 info = &md->u.tun_info;
3242 info->mode = IP_TUNNEL_INFO_TX;
3244 info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3245 if (flags & BPF_F_DONT_FRAGMENT)
3246 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3247 if (flags & BPF_F_ZERO_CSUM_TX)
3248 info->key.tun_flags &= ~TUNNEL_CSUM;
3249 if (flags & BPF_F_SEQ_NUMBER)
3250 info->key.tun_flags |= TUNNEL_SEQ;
3252 info->key.tun_id = cpu_to_be64(from->tunnel_id);
3253 info->key.tos = from->tunnel_tos;
3254 info->key.ttl = from->tunnel_ttl;
3256 if (flags & BPF_F_TUNINFO_IPV6) {
3257 info->mode |= IP_TUNNEL_INFO_IPV6;
3258 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3259 sizeof(from->remote_ipv6));
3260 info->key.label = cpu_to_be32(from->tunnel_label) &
3261 IPV6_FLOWLABEL_MASK;
3263 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3269 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3270 .func = bpf_skb_set_tunnel_key,
3272 .ret_type = RET_INTEGER,
3273 .arg1_type = ARG_PTR_TO_CTX,
3274 .arg2_type = ARG_PTR_TO_MEM,
3275 .arg3_type = ARG_CONST_SIZE,
3276 .arg4_type = ARG_ANYTHING,
3279 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3280 const u8 *, from, u32, size)
3282 struct ip_tunnel_info *info = skb_tunnel_info(skb);
3283 const struct metadata_dst *md = this_cpu_ptr(md_dst);
3285 if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3287 if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3290 ip_tunnel_info_opts_set(info, from, size);
3295 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3296 .func = bpf_skb_set_tunnel_opt,
3298 .ret_type = RET_INTEGER,
3299 .arg1_type = ARG_PTR_TO_CTX,
3300 .arg2_type = ARG_PTR_TO_MEM,
3301 .arg3_type = ARG_CONST_SIZE,
3304 static const struct bpf_func_proto *
3305 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3308 struct metadata_dst __percpu *tmp;
3310 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3315 if (cmpxchg(&md_dst, NULL, tmp))
3316 metadata_dst_free_percpu(tmp);
3320 case BPF_FUNC_skb_set_tunnel_key:
3321 return &bpf_skb_set_tunnel_key_proto;
3322 case BPF_FUNC_skb_set_tunnel_opt:
3323 return &bpf_skb_set_tunnel_opt_proto;
3329 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3332 struct bpf_array *array = container_of(map, struct bpf_array, map);
3333 struct cgroup *cgrp;
3336 sk = skb_to_full_sk(skb);
3337 if (!sk || !sk_fullsock(sk))
3339 if (unlikely(idx >= array->map.max_entries))
3342 cgrp = READ_ONCE(array->ptrs[idx]);
3343 if (unlikely(!cgrp))
3346 return sk_under_cgroup_hierarchy(sk, cgrp);
3349 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3350 .func = bpf_skb_under_cgroup,
3352 .ret_type = RET_INTEGER,
3353 .arg1_type = ARG_PTR_TO_CTX,
3354 .arg2_type = ARG_CONST_MAP_PTR,
3355 .arg3_type = ARG_ANYTHING,
3358 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3359 unsigned long off, unsigned long len)
3361 memcpy(dst_buff, src_buff + off, len);
3365 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3366 u64, flags, void *, meta, u64, meta_size)
3368 u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3370 if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3372 if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3375 return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3376 xdp_size, bpf_xdp_copy);
3379 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3380 .func = bpf_xdp_event_output,
3382 .ret_type = RET_INTEGER,
3383 .arg1_type = ARG_PTR_TO_CTX,
3384 .arg2_type = ARG_CONST_MAP_PTR,
3385 .arg3_type = ARG_ANYTHING,
3386 .arg4_type = ARG_PTR_TO_MEM,
3387 .arg5_type = ARG_CONST_SIZE_OR_ZERO,
3390 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3392 return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3395 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3396 .func = bpf_get_socket_cookie,
3398 .ret_type = RET_INTEGER,
3399 .arg1_type = ARG_PTR_TO_CTX,
3402 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3404 struct sock *sk = sk_to_full_sk(skb->sk);
3407 if (!sk || !sk_fullsock(sk))
3409 kuid = sock_net_uid(sock_net(sk), sk);
3410 return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3413 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3414 .func = bpf_get_socket_uid,
3416 .ret_type = RET_INTEGER,
3417 .arg1_type = ARG_PTR_TO_CTX,
3420 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3421 int, level, int, optname, char *, optval, int, optlen)
3423 struct sock *sk = bpf_sock->sk;
3427 if (!sk_fullsock(sk))
3430 if (level == SOL_SOCKET) {
3431 if (optlen != sizeof(int))
3433 val = *((int *)optval);
3435 /* Only some socketops are supported */
3438 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3439 sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3442 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3443 sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3445 case SO_MAX_PACING_RATE:
3446 sk->sk_max_pacing_rate = val;
3447 sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3448 sk->sk_max_pacing_rate);
3451 sk->sk_priority = val;
3456 sk->sk_rcvlowat = val ? : 1;
3465 } else if (level == SOL_IP) {
3466 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3469 val = *((int *)optval);
3470 /* Only some options are supported */
3473 if (val < -1 || val > 0xff) {
3476 struct inet_sock *inet = inet_sk(sk);
3486 #if IS_ENABLED(CONFIG_IPV6)
3487 } else if (level == SOL_IPV6) {
3488 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3491 val = *((int *)optval);
3492 /* Only some options are supported */
3495 if (val < -1 || val > 0xff) {
3498 struct ipv6_pinfo *np = inet6_sk(sk);
3509 } else if (level == SOL_TCP &&
3510 sk->sk_prot->setsockopt == tcp_setsockopt) {
3511 if (optname == TCP_CONGESTION) {
3512 char name[TCP_CA_NAME_MAX];
3513 bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3515 strncpy(name, optval, min_t(long, optlen,
3516 TCP_CA_NAME_MAX-1));
3517 name[TCP_CA_NAME_MAX-1] = 0;
3518 ret = tcp_set_congestion_control(sk, name, false,
3521 struct tcp_sock *tp = tcp_sk(sk);
3523 if (optlen != sizeof(int))
3526 val = *((int *)optval);
3527 /* Only some options are supported */
3530 if (val <= 0 || tp->data_segs_out > 0)
3535 case TCP_BPF_SNDCWND_CLAMP:
3539 tp->snd_cwnd_clamp = val;
3540 tp->snd_ssthresh = val;
3554 static const struct bpf_func_proto bpf_setsockopt_proto = {
3555 .func = bpf_setsockopt,
3557 .ret_type = RET_INTEGER,
3558 .arg1_type = ARG_PTR_TO_CTX,
3559 .arg2_type = ARG_ANYTHING,
3560 .arg3_type = ARG_ANYTHING,
3561 .arg4_type = ARG_PTR_TO_MEM,
3562 .arg5_type = ARG_CONST_SIZE,
3565 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3566 int, level, int, optname, char *, optval, int, optlen)
3568 struct sock *sk = bpf_sock->sk;
3570 if (!sk_fullsock(sk))
3574 if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
3575 if (optname == TCP_CONGESTION) {
3576 struct inet_connection_sock *icsk = inet_csk(sk);
3578 if (!icsk->icsk_ca_ops || optlen <= 1)
3580 strncpy(optval, icsk->icsk_ca_ops->name, optlen);
3581 optval[optlen - 1] = 0;
3585 } else if (level == SOL_IP) {
3586 struct inet_sock *inet = inet_sk(sk);
3588 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3591 /* Only some options are supported */
3594 *((int *)optval) = (int)inet->tos;
3599 #if IS_ENABLED(CONFIG_IPV6)
3600 } else if (level == SOL_IPV6) {
3601 struct ipv6_pinfo *np = inet6_sk(sk);
3603 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3606 /* Only some options are supported */
3609 *((int *)optval) = (int)np->tclass;
3621 memset(optval, 0, optlen);
3625 static const struct bpf_func_proto bpf_getsockopt_proto = {
3626 .func = bpf_getsockopt,
3628 .ret_type = RET_INTEGER,
3629 .arg1_type = ARG_PTR_TO_CTX,
3630 .arg2_type = ARG_ANYTHING,
3631 .arg3_type = ARG_ANYTHING,
3632 .arg4_type = ARG_PTR_TO_UNINIT_MEM,
3633 .arg5_type = ARG_CONST_SIZE,
3636 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
3639 struct sock *sk = bpf_sock->sk;
3640 int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
3642 if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
3646 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
3648 return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
3651 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
3652 .func = bpf_sock_ops_cb_flags_set,
3654 .ret_type = RET_INTEGER,
3655 .arg1_type = ARG_PTR_TO_CTX,
3656 .arg2_type = ARG_ANYTHING,
3659 static const struct bpf_func_proto *
3660 bpf_base_func_proto(enum bpf_func_id func_id)
3663 case BPF_FUNC_map_lookup_elem:
3664 return &bpf_map_lookup_elem_proto;
3665 case BPF_FUNC_map_update_elem:
3666 return &bpf_map_update_elem_proto;
3667 case BPF_FUNC_map_delete_elem:
3668 return &bpf_map_delete_elem_proto;
3669 case BPF_FUNC_get_prandom_u32:
3670 return &bpf_get_prandom_u32_proto;
3671 case BPF_FUNC_get_smp_processor_id:
3672 return &bpf_get_raw_smp_processor_id_proto;
3673 case BPF_FUNC_get_numa_node_id:
3674 return &bpf_get_numa_node_id_proto;
3675 case BPF_FUNC_tail_call:
3676 return &bpf_tail_call_proto;
3677 case BPF_FUNC_ktime_get_ns:
3678 return &bpf_ktime_get_ns_proto;
3679 case BPF_FUNC_trace_printk:
3680 if (capable(CAP_SYS_ADMIN))
3681 return bpf_get_trace_printk_proto();
3687 static const struct bpf_func_proto *
3688 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3691 /* inet and inet6 sockets are created in a process
3692 * context so there is always a valid uid/gid
3694 case BPF_FUNC_get_current_uid_gid:
3695 return &bpf_get_current_uid_gid_proto;
3697 return bpf_base_func_proto(func_id);
3701 static const struct bpf_func_proto *
3702 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3705 case BPF_FUNC_skb_load_bytes:
3706 return &bpf_skb_load_bytes_proto;
3707 case BPF_FUNC_get_socket_cookie:
3708 return &bpf_get_socket_cookie_proto;
3709 case BPF_FUNC_get_socket_uid:
3710 return &bpf_get_socket_uid_proto;
3712 return bpf_base_func_proto(func_id);
3716 static const struct bpf_func_proto *
3717 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3720 case BPF_FUNC_skb_store_bytes:
3721 return &bpf_skb_store_bytes_proto;
3722 case BPF_FUNC_skb_load_bytes:
3723 return &bpf_skb_load_bytes_proto;
3724 case BPF_FUNC_skb_pull_data:
3725 return &bpf_skb_pull_data_proto;
3726 case BPF_FUNC_csum_diff:
3727 return &bpf_csum_diff_proto;
3728 case BPF_FUNC_csum_update:
3729 return &bpf_csum_update_proto;
3730 case BPF_FUNC_l3_csum_replace:
3731 return &bpf_l3_csum_replace_proto;
3732 case BPF_FUNC_l4_csum_replace:
3733 return &bpf_l4_csum_replace_proto;
3734 case BPF_FUNC_clone_redirect:
3735 return &bpf_clone_redirect_proto;
3736 case BPF_FUNC_get_cgroup_classid:
3737 return &bpf_get_cgroup_classid_proto;
3738 case BPF_FUNC_skb_vlan_push:
3739 return &bpf_skb_vlan_push_proto;
3740 case BPF_FUNC_skb_vlan_pop:
3741 return &bpf_skb_vlan_pop_proto;
3742 case BPF_FUNC_skb_change_proto:
3743 return &bpf_skb_change_proto_proto;
3744 case BPF_FUNC_skb_change_type:
3745 return &bpf_skb_change_type_proto;
3746 case BPF_FUNC_skb_adjust_room:
3747 return &bpf_skb_adjust_room_proto;
3748 case BPF_FUNC_skb_change_tail:
3749 return &bpf_skb_change_tail_proto;
3750 case BPF_FUNC_skb_get_tunnel_key:
3751 return &bpf_skb_get_tunnel_key_proto;
3752 case BPF_FUNC_skb_set_tunnel_key:
3753 return bpf_get_skb_set_tunnel_proto(func_id);
3754 case BPF_FUNC_skb_get_tunnel_opt:
3755 return &bpf_skb_get_tunnel_opt_proto;
3756 case BPF_FUNC_skb_set_tunnel_opt:
3757 return bpf_get_skb_set_tunnel_proto(func_id);
3758 case BPF_FUNC_redirect:
3759 return &bpf_redirect_proto;
3760 case BPF_FUNC_get_route_realm:
3761 return &bpf_get_route_realm_proto;
3762 case BPF_FUNC_get_hash_recalc:
3763 return &bpf_get_hash_recalc_proto;
3764 case BPF_FUNC_set_hash_invalid:
3765 return &bpf_set_hash_invalid_proto;
3766 case BPF_FUNC_set_hash:
3767 return &bpf_set_hash_proto;
3768 case BPF_FUNC_perf_event_output:
3769 return &bpf_skb_event_output_proto;
3770 case BPF_FUNC_get_smp_processor_id:
3771 return &bpf_get_smp_processor_id_proto;
3772 case BPF_FUNC_skb_under_cgroup:
3773 return &bpf_skb_under_cgroup_proto;
3774 case BPF_FUNC_get_socket_cookie:
3775 return &bpf_get_socket_cookie_proto;
3776 case BPF_FUNC_get_socket_uid:
3777 return &bpf_get_socket_uid_proto;
3779 return bpf_base_func_proto(func_id);
3783 static const struct bpf_func_proto *
3784 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3787 case BPF_FUNC_perf_event_output:
3788 return &bpf_xdp_event_output_proto;
3789 case BPF_FUNC_get_smp_processor_id:
3790 return &bpf_get_smp_processor_id_proto;
3791 case BPF_FUNC_csum_diff:
3792 return &bpf_csum_diff_proto;
3793 case BPF_FUNC_xdp_adjust_head:
3794 return &bpf_xdp_adjust_head_proto;
3795 case BPF_FUNC_xdp_adjust_meta:
3796 return &bpf_xdp_adjust_meta_proto;
3797 case BPF_FUNC_redirect:
3798 return &bpf_xdp_redirect_proto;
3799 case BPF_FUNC_redirect_map:
3800 return &bpf_xdp_redirect_map_proto;
3802 return bpf_base_func_proto(func_id);
3806 static const struct bpf_func_proto *
3807 lwt_inout_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3810 case BPF_FUNC_skb_load_bytes:
3811 return &bpf_skb_load_bytes_proto;
3812 case BPF_FUNC_skb_pull_data:
3813 return &bpf_skb_pull_data_proto;
3814 case BPF_FUNC_csum_diff:
3815 return &bpf_csum_diff_proto;
3816 case BPF_FUNC_get_cgroup_classid:
3817 return &bpf_get_cgroup_classid_proto;
3818 case BPF_FUNC_get_route_realm:
3819 return &bpf_get_route_realm_proto;
3820 case BPF_FUNC_get_hash_recalc:
3821 return &bpf_get_hash_recalc_proto;
3822 case BPF_FUNC_perf_event_output:
3823 return &bpf_skb_event_output_proto;
3824 case BPF_FUNC_get_smp_processor_id:
3825 return &bpf_get_smp_processor_id_proto;
3826 case BPF_FUNC_skb_under_cgroup:
3827 return &bpf_skb_under_cgroup_proto;
3829 return bpf_base_func_proto(func_id);
3833 static const struct bpf_func_proto *
3834 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3837 case BPF_FUNC_setsockopt:
3838 return &bpf_setsockopt_proto;
3839 case BPF_FUNC_getsockopt:
3840 return &bpf_getsockopt_proto;
3841 case BPF_FUNC_sock_ops_cb_flags_set:
3842 return &bpf_sock_ops_cb_flags_set_proto;
3843 case BPF_FUNC_sock_map_update:
3844 return &bpf_sock_map_update_proto;
3846 return bpf_base_func_proto(func_id);
3850 static const struct bpf_func_proto *
3851 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3854 case BPF_FUNC_msg_redirect_map:
3855 return &bpf_msg_redirect_map_proto;
3856 case BPF_FUNC_msg_apply_bytes:
3857 return &bpf_msg_apply_bytes_proto;
3858 case BPF_FUNC_msg_cork_bytes:
3859 return &bpf_msg_cork_bytes_proto;
3860 case BPF_FUNC_msg_pull_data:
3861 return &bpf_msg_pull_data_proto;
3863 return bpf_base_func_proto(func_id);
3867 static const struct bpf_func_proto *
3868 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3871 case BPF_FUNC_skb_store_bytes:
3872 return &bpf_skb_store_bytes_proto;
3873 case BPF_FUNC_skb_load_bytes:
3874 return &bpf_skb_load_bytes_proto;
3875 case BPF_FUNC_skb_pull_data:
3876 return &bpf_skb_pull_data_proto;
3877 case BPF_FUNC_skb_change_tail:
3878 return &bpf_skb_change_tail_proto;
3879 case BPF_FUNC_skb_change_head:
3880 return &bpf_skb_change_head_proto;
3881 case BPF_FUNC_get_socket_cookie:
3882 return &bpf_get_socket_cookie_proto;
3883 case BPF_FUNC_get_socket_uid:
3884 return &bpf_get_socket_uid_proto;
3885 case BPF_FUNC_sk_redirect_map:
3886 return &bpf_sk_redirect_map_proto;
3888 return bpf_base_func_proto(func_id);
3892 static const struct bpf_func_proto *
3893 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3896 case BPF_FUNC_skb_get_tunnel_key:
3897 return &bpf_skb_get_tunnel_key_proto;
3898 case BPF_FUNC_skb_set_tunnel_key:
3899 return bpf_get_skb_set_tunnel_proto(func_id);
3900 case BPF_FUNC_skb_get_tunnel_opt:
3901 return &bpf_skb_get_tunnel_opt_proto;
3902 case BPF_FUNC_skb_set_tunnel_opt:
3903 return bpf_get_skb_set_tunnel_proto(func_id);
3904 case BPF_FUNC_redirect:
3905 return &bpf_redirect_proto;
3906 case BPF_FUNC_clone_redirect:
3907 return &bpf_clone_redirect_proto;
3908 case BPF_FUNC_skb_change_tail:
3909 return &bpf_skb_change_tail_proto;
3910 case BPF_FUNC_skb_change_head:
3911 return &bpf_skb_change_head_proto;
3912 case BPF_FUNC_skb_store_bytes:
3913 return &bpf_skb_store_bytes_proto;
3914 case BPF_FUNC_csum_update:
3915 return &bpf_csum_update_proto;
3916 case BPF_FUNC_l3_csum_replace:
3917 return &bpf_l3_csum_replace_proto;
3918 case BPF_FUNC_l4_csum_replace:
3919 return &bpf_l4_csum_replace_proto;
3920 case BPF_FUNC_set_hash_invalid:
3921 return &bpf_set_hash_invalid_proto;
3923 return lwt_inout_func_proto(func_id, prog);
3927 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
3928 const struct bpf_prog *prog,
3929 struct bpf_insn_access_aux *info)
3931 const int size_default = sizeof(__u32);
3933 if (off < 0 || off >= sizeof(struct __sk_buff))
3936 /* The verifier guarantees that size > 0. */
3937 if (off % size != 0)
3941 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3942 if (off + size > offsetofend(struct __sk_buff, cb[4]))
3945 case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
3946 case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
3947 case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
3948 case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
3949 case bpf_ctx_range(struct __sk_buff, data):
3950 case bpf_ctx_range(struct __sk_buff, data_meta):
3951 case bpf_ctx_range(struct __sk_buff, data_end):
3952 if (size != size_default)
3956 /* Only narrow read access allowed for now. */
3957 if (type == BPF_WRITE) {
3958 if (size != size_default)
3961 bpf_ctx_record_field_size(info, size_default);
3962 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
3970 static bool sk_filter_is_valid_access(int off, int size,
3971 enum bpf_access_type type,
3972 const struct bpf_prog *prog,
3973 struct bpf_insn_access_aux *info)
3976 case bpf_ctx_range(struct __sk_buff, tc_classid):
3977 case bpf_ctx_range(struct __sk_buff, data):
3978 case bpf_ctx_range(struct __sk_buff, data_meta):
3979 case bpf_ctx_range(struct __sk_buff, data_end):
3980 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
3984 if (type == BPF_WRITE) {
3986 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
3993 return bpf_skb_is_valid_access(off, size, type, prog, info);
3996 static bool lwt_is_valid_access(int off, int size,
3997 enum bpf_access_type type,
3998 const struct bpf_prog *prog,
3999 struct bpf_insn_access_aux *info)
4002 case bpf_ctx_range(struct __sk_buff, tc_classid):
4003 case bpf_ctx_range_till(struct __sk_buff, family, local_port):
4004 case bpf_ctx_range(struct __sk_buff, data_meta):
4008 if (type == BPF_WRITE) {
4010 case bpf_ctx_range(struct __sk_buff, mark):
4011 case bpf_ctx_range(struct __sk_buff, priority):
4012 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4020 case bpf_ctx_range(struct __sk_buff, data):
4021 info->reg_type = PTR_TO_PACKET;
4023 case bpf_ctx_range(struct __sk_buff, data_end):
4024 info->reg_type = PTR_TO_PACKET_END;
4028 return bpf_skb_is_valid_access(off, size, type, prog, info);
4031 static bool sock_filter_is_valid_access(int off, int size,
4032 enum bpf_access_type type,
4033 const struct bpf_prog *prog,
4034 struct bpf_insn_access_aux *info)
4036 if (type == BPF_WRITE) {
4038 case offsetof(struct bpf_sock, bound_dev_if):
4039 case offsetof(struct bpf_sock, mark):
4040 case offsetof(struct bpf_sock, priority):
4047 if (off < 0 || off + size > sizeof(struct bpf_sock))
4049 /* The verifier guarantees that size > 0. */
4050 if (off % size != 0)
4052 if (size != sizeof(__u32))