bdb9cadd4d275813d245d0fca4922ce85a27ff10
[muen/linux.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/inet_common.h>
37 #include <net/ip.h>
38 #include <net/protocol.h>
39 #include <net/netlink.h>
40 #include <linux/skbuff.h>
41 #include <net/sock.h>
42 #include <net/flow_dissector.h>
43 #include <linux/errno.h>
44 #include <linux/timer.h>
45 #include <linux/uaccess.h>
46 #include <asm/unaligned.h>
47 #include <asm/cmpxchg.h>
48 #include <linux/filter.h>
49 #include <linux/ratelimit.h>
50 #include <linux/seccomp.h>
51 #include <linux/if_vlan.h>
52 #include <linux/bpf.h>
53 #include <net/sch_generic.h>
54 #include <net/cls_cgroup.h>
55 #include <net/dst_metadata.h>
56 #include <net/dst.h>
57 #include <net/sock_reuseport.h>
58 #include <net/busy_poll.h>
59 #include <net/tcp.h>
60 #include <linux/bpf_trace.h>
61
62 /**
63  *      sk_filter_trim_cap - run a packet through a socket filter
64  *      @sk: sock associated with &sk_buff
65  *      @skb: buffer to filter
66  *      @cap: limit on how short the eBPF program may trim the packet
67  *
68  * Run the eBPF program and then cut skb->data to correct size returned by
69  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
70  * than pkt_len we keep whole skb->data. This is the socket level
71  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
72  * be accepted or -EPERM if the packet should be tossed.
73  *
74  */
75 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
76 {
77         int err;
78         struct sk_filter *filter;
79
80         /*
81          * If the skb was allocated from pfmemalloc reserves, only
82          * allow SOCK_MEMALLOC sockets to use it as this socket is
83          * helping free memory
84          */
85         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
86                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
87                 return -ENOMEM;
88         }
89         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
90         if (err)
91                 return err;
92
93         err = security_sock_rcv_skb(sk, skb);
94         if (err)
95                 return err;
96
97         rcu_read_lock();
98         filter = rcu_dereference(sk->sk_filter);
99         if (filter) {
100                 struct sock *save_sk = skb->sk;
101                 unsigned int pkt_len;
102
103                 skb->sk = sk;
104                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
105                 skb->sk = save_sk;
106                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
107         }
108         rcu_read_unlock();
109
110         return err;
111 }
112 EXPORT_SYMBOL(sk_filter_trim_cap);
113
114 BPF_CALL_1(__skb_get_pay_offset, struct sk_buff *, skb)
115 {
116         return skb_get_poff(skb);
117 }
118
119 BPF_CALL_3(__skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
120 {
121         struct nlattr *nla;
122
123         if (skb_is_nonlinear(skb))
124                 return 0;
125
126         if (skb->len < sizeof(struct nlattr))
127                 return 0;
128
129         if (a > skb->len - sizeof(struct nlattr))
130                 return 0;
131
132         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
133         if (nla)
134                 return (void *) nla - (void *) skb->data;
135
136         return 0;
137 }
138
139 BPF_CALL_3(__skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
140 {
141         struct nlattr *nla;
142
143         if (skb_is_nonlinear(skb))
144                 return 0;
145
146         if (skb->len < sizeof(struct nlattr))
147                 return 0;
148
149         if (a > skb->len - sizeof(struct nlattr))
150                 return 0;
151
152         nla = (struct nlattr *) &skb->data[a];
153         if (nla->nla_len > skb->len - a)
154                 return 0;
155
156         nla = nla_find_nested(nla, x);
157         if (nla)
158                 return (void *) nla - (void *) skb->data;
159
160         return 0;
161 }
162
163 BPF_CALL_0(__get_raw_cpu_id)
164 {
165         return raw_smp_processor_id();
166 }
167
168 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
169         .func           = __get_raw_cpu_id,
170         .gpl_only       = false,
171         .ret_type       = RET_INTEGER,
172 };
173
174 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
175                               struct bpf_insn *insn_buf)
176 {
177         struct bpf_insn *insn = insn_buf;
178
179         switch (skb_field) {
180         case SKF_AD_MARK:
181                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
182
183                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
184                                       offsetof(struct sk_buff, mark));
185                 break;
186
187         case SKF_AD_PKTTYPE:
188                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
189                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
190 #ifdef __BIG_ENDIAN_BITFIELD
191                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
192 #endif
193                 break;
194
195         case SKF_AD_QUEUE:
196                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
197
198                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
199                                       offsetof(struct sk_buff, queue_mapping));
200                 break;
201
202         case SKF_AD_VLAN_TAG:
203         case SKF_AD_VLAN_TAG_PRESENT:
204                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
205                 BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
206
207                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
208                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
209                                       offsetof(struct sk_buff, vlan_tci));
210                 if (skb_field == SKF_AD_VLAN_TAG) {
211                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
212                                                 ~VLAN_TAG_PRESENT);
213                 } else {
214                         /* dst_reg >>= 12 */
215                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
216                         /* dst_reg &= 1 */
217                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
218                 }
219                 break;
220         }
221
222         return insn - insn_buf;
223 }
224
225 static bool convert_bpf_extensions(struct sock_filter *fp,
226                                    struct bpf_insn **insnp)
227 {
228         struct bpf_insn *insn = *insnp;
229         u32 cnt;
230
231         switch (fp->k) {
232         case SKF_AD_OFF + SKF_AD_PROTOCOL:
233                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
234
235                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
236                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
237                                       offsetof(struct sk_buff, protocol));
238                 /* A = ntohs(A) [emitting a nop or swap16] */
239                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
240                 break;
241
242         case SKF_AD_OFF + SKF_AD_PKTTYPE:
243                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
244                 insn += cnt - 1;
245                 break;
246
247         case SKF_AD_OFF + SKF_AD_IFINDEX:
248         case SKF_AD_OFF + SKF_AD_HATYPE:
249                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
250                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
251
252                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
253                                       BPF_REG_TMP, BPF_REG_CTX,
254                                       offsetof(struct sk_buff, dev));
255                 /* if (tmp != 0) goto pc + 1 */
256                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
257                 *insn++ = BPF_EXIT_INSN();
258                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
259                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
260                                             offsetof(struct net_device, ifindex));
261                 else
262                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
263                                             offsetof(struct net_device, type));
264                 break;
265
266         case SKF_AD_OFF + SKF_AD_MARK:
267                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
268                 insn += cnt - 1;
269                 break;
270
271         case SKF_AD_OFF + SKF_AD_RXHASH:
272                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
273
274                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
275                                     offsetof(struct sk_buff, hash));
276                 break;
277
278         case SKF_AD_OFF + SKF_AD_QUEUE:
279                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
280                 insn += cnt - 1;
281                 break;
282
283         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
284                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
285                                          BPF_REG_A, BPF_REG_CTX, insn);
286                 insn += cnt - 1;
287                 break;
288
289         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
290                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
291                                          BPF_REG_A, BPF_REG_CTX, insn);
292                 insn += cnt - 1;
293                 break;
294
295         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
296                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
297
298                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
299                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
300                                       offsetof(struct sk_buff, vlan_proto));
301                 /* A = ntohs(A) [emitting a nop or swap16] */
302                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
303                 break;
304
305         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
306         case SKF_AD_OFF + SKF_AD_NLATTR:
307         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
308         case SKF_AD_OFF + SKF_AD_CPU:
309         case SKF_AD_OFF + SKF_AD_RANDOM:
310                 /* arg1 = CTX */
311                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
312                 /* arg2 = A */
313                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
314                 /* arg3 = X */
315                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
316                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
317                 switch (fp->k) {
318                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
319                         *insn = BPF_EMIT_CALL(__skb_get_pay_offset);
320                         break;
321                 case SKF_AD_OFF + SKF_AD_NLATTR:
322                         *insn = BPF_EMIT_CALL(__skb_get_nlattr);
323                         break;
324                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
325                         *insn = BPF_EMIT_CALL(__skb_get_nlattr_nest);
326                         break;
327                 case SKF_AD_OFF + SKF_AD_CPU:
328                         *insn = BPF_EMIT_CALL(__get_raw_cpu_id);
329                         break;
330                 case SKF_AD_OFF + SKF_AD_RANDOM:
331                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
332                         bpf_user_rnd_init_once();
333                         break;
334                 }
335                 break;
336
337         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
338                 /* A ^= X */
339                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
340                 break;
341
342         default:
343                 /* This is just a dummy call to avoid letting the compiler
344                  * evict __bpf_call_base() as an optimization. Placed here
345                  * where no-one bothers.
346                  */
347                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
348                 return false;
349         }
350
351         *insnp = insn;
352         return true;
353 }
354
355 /**
356  *      bpf_convert_filter - convert filter program
357  *      @prog: the user passed filter program
358  *      @len: the length of the user passed filter program
359  *      @new_prog: allocated 'struct bpf_prog' or NULL
360  *      @new_len: pointer to store length of converted program
361  *
362  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
363  * style extended BPF (eBPF).
364  * Conversion workflow:
365  *
366  * 1) First pass for calculating the new program length:
367  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len)
368  *
369  * 2) 2nd pass to remap in two passes: 1st pass finds new
370  *    jump offsets, 2nd pass remapping:
371  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len);
372  */
373 static int bpf_convert_filter(struct sock_filter *prog, int len,
374                               struct bpf_prog *new_prog, int *new_len)
375 {
376         int new_flen = 0, pass = 0, target, i, stack_off;
377         struct bpf_insn *new_insn, *first_insn = NULL;
378         struct sock_filter *fp;
379         int *addrs = NULL;
380         u8 bpf_src;
381
382         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
383         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
384
385         if (len <= 0 || len > BPF_MAXINSNS)
386                 return -EINVAL;
387
388         if (new_prog) {
389                 first_insn = new_prog->insnsi;
390                 addrs = kcalloc(len, sizeof(*addrs),
391                                 GFP_KERNEL | __GFP_NOWARN);
392                 if (!addrs)
393                         return -ENOMEM;
394         }
395
396 do_pass:
397         new_insn = first_insn;
398         fp = prog;
399
400         /* Classic BPF related prologue emission. */
401         if (new_prog) {
402                 /* Classic BPF expects A and X to be reset first. These need
403                  * to be guaranteed to be the first two instructions.
404                  */
405                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
406                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
407
408                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
409                  * In eBPF case it's done by the compiler, here we need to
410                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
411                  */
412                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
413         } else {
414                 new_insn += 3;
415         }
416
417         for (i = 0; i < len; fp++, i++) {
418                 struct bpf_insn tmp_insns[6] = { };
419                 struct bpf_insn *insn = tmp_insns;
420
421                 if (addrs)
422                         addrs[i] = new_insn - first_insn;
423
424                 switch (fp->code) {
425                 /* All arithmetic insns and skb loads map as-is. */
426                 case BPF_ALU | BPF_ADD | BPF_X:
427                 case BPF_ALU | BPF_ADD | BPF_K:
428                 case BPF_ALU | BPF_SUB | BPF_X:
429                 case BPF_ALU | BPF_SUB | BPF_K:
430                 case BPF_ALU | BPF_AND | BPF_X:
431                 case BPF_ALU | BPF_AND | BPF_K:
432                 case BPF_ALU | BPF_OR | BPF_X:
433                 case BPF_ALU | BPF_OR | BPF_K:
434                 case BPF_ALU | BPF_LSH | BPF_X:
435                 case BPF_ALU | BPF_LSH | BPF_K:
436                 case BPF_ALU | BPF_RSH | BPF_X:
437                 case BPF_ALU | BPF_RSH | BPF_K:
438                 case BPF_ALU | BPF_XOR | BPF_X:
439                 case BPF_ALU | BPF_XOR | BPF_K:
440                 case BPF_ALU | BPF_MUL | BPF_X:
441                 case BPF_ALU | BPF_MUL | BPF_K:
442                 case BPF_ALU | BPF_DIV | BPF_X:
443                 case BPF_ALU | BPF_DIV | BPF_K:
444                 case BPF_ALU | BPF_MOD | BPF_X:
445                 case BPF_ALU | BPF_MOD | BPF_K:
446                 case BPF_ALU | BPF_NEG:
447                 case BPF_LD | BPF_ABS | BPF_W:
448                 case BPF_LD | BPF_ABS | BPF_H:
449                 case BPF_LD | BPF_ABS | BPF_B:
450                 case BPF_LD | BPF_IND | BPF_W:
451                 case BPF_LD | BPF_IND | BPF_H:
452                 case BPF_LD | BPF_IND | BPF_B:
453                         /* Check for overloaded BPF extension and
454                          * directly convert it if found, otherwise
455                          * just move on with mapping.
456                          */
457                         if (BPF_CLASS(fp->code) == BPF_LD &&
458                             BPF_MODE(fp->code) == BPF_ABS &&
459                             convert_bpf_extensions(fp, &insn))
460                                 break;
461
462                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
463                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
464                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
465                                 /* Error with exception code on div/mod by 0.
466                                  * For cBPF programs, this was always return 0.
467                                  */
468                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
469                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
470                                 *insn++ = BPF_EXIT_INSN();
471                         }
472
473                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
474                         break;
475
476                 /* Jump transformation cannot use BPF block macros
477                  * everywhere as offset calculation and target updates
478                  * require a bit more work than the rest, i.e. jump
479                  * opcodes map as-is, but offsets need adjustment.
480                  */
481
482 #define BPF_EMIT_JMP                                                    \
483         do {                                                            \
484                 if (target >= len || target < 0)                        \
485                         goto err;                                       \
486                 insn->off = addrs ? addrs[target] - addrs[i] - 1 : 0;   \
487                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
488                 insn->off -= insn - tmp_insns;                          \
489         } while (0)
490
491                 case BPF_JMP | BPF_JA:
492                         target = i + fp->k + 1;
493                         insn->code = fp->code;
494                         BPF_EMIT_JMP;
495                         break;
496
497                 case BPF_JMP | BPF_JEQ | BPF_K:
498                 case BPF_JMP | BPF_JEQ | BPF_X:
499                 case BPF_JMP | BPF_JSET | BPF_K:
500                 case BPF_JMP | BPF_JSET | BPF_X:
501                 case BPF_JMP | BPF_JGT | BPF_K:
502                 case BPF_JMP | BPF_JGT | BPF_X:
503                 case BPF_JMP | BPF_JGE | BPF_K:
504                 case BPF_JMP | BPF_JGE | BPF_X:
505                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
506                                 /* BPF immediates are signed, zero extend
507                                  * immediate into tmp register and use it
508                                  * in compare insn.
509                                  */
510                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
511
512                                 insn->dst_reg = BPF_REG_A;
513                                 insn->src_reg = BPF_REG_TMP;
514                                 bpf_src = BPF_X;
515                         } else {
516                                 insn->dst_reg = BPF_REG_A;
517                                 insn->imm = fp->k;
518                                 bpf_src = BPF_SRC(fp->code);
519                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
520                         }
521
522                         /* Common case where 'jump_false' is next insn. */
523                         if (fp->jf == 0) {
524                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
525                                 target = i + fp->jt + 1;
526                                 BPF_EMIT_JMP;
527                                 break;
528                         }
529
530                         /* Convert some jumps when 'jump_true' is next insn. */
531                         if (fp->jt == 0) {
532                                 switch (BPF_OP(fp->code)) {
533                                 case BPF_JEQ:
534                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
535                                         break;
536                                 case BPF_JGT:
537                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
538                                         break;
539                                 case BPF_JGE:
540                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
541                                         break;
542                                 default:
543                                         goto jmp_rest;
544                                 }
545
546                                 target = i + fp->jf + 1;
547                                 BPF_EMIT_JMP;
548                                 break;
549                         }
550 jmp_rest:
551                         /* Other jumps are mapped into two insns: Jxx and JA. */
552                         target = i + fp->jt + 1;
553                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
554                         BPF_EMIT_JMP;
555                         insn++;
556
557                         insn->code = BPF_JMP | BPF_JA;
558                         target = i + fp->jf + 1;
559                         BPF_EMIT_JMP;
560                         break;
561
562                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
563                 case BPF_LDX | BPF_MSH | BPF_B:
564                         /* tmp = A */
565                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_A);
566                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
567                         *insn++ = BPF_LD_ABS(BPF_B, fp->k);
568                         /* A &= 0xf */
569                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
570                         /* A <<= 2 */
571                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
572                         /* X = A */
573                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
574                         /* A = tmp */
575                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
576                         break;
577
578                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
579                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
580                  */
581                 case BPF_RET | BPF_A:
582                 case BPF_RET | BPF_K:
583                         if (BPF_RVAL(fp->code) == BPF_K)
584                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
585                                                         0, fp->k);
586                         *insn = BPF_EXIT_INSN();
587                         break;
588
589                 /* Store to stack. */
590                 case BPF_ST:
591                 case BPF_STX:
592                         stack_off = fp->k * 4  + 4;
593                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
594                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
595                                             -stack_off);
596                         /* check_load_and_stores() verifies that classic BPF can
597                          * load from stack only after write, so tracking
598                          * stack_depth for ST|STX insns is enough
599                          */
600                         if (new_prog && new_prog->aux->stack_depth < stack_off)
601                                 new_prog->aux->stack_depth = stack_off;
602                         break;
603
604                 /* Load from stack. */
605                 case BPF_LD | BPF_MEM:
606                 case BPF_LDX | BPF_MEM:
607                         stack_off = fp->k * 4  + 4;
608                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
609                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
610                                             -stack_off);
611                         break;
612
613                 /* A = K or X = K */
614                 case BPF_LD | BPF_IMM:
615                 case BPF_LDX | BPF_IMM:
616                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
617                                               BPF_REG_A : BPF_REG_X, fp->k);
618                         break;
619
620                 /* X = A */
621                 case BPF_MISC | BPF_TAX:
622                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
623                         break;
624
625                 /* A = X */
626                 case BPF_MISC | BPF_TXA:
627                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
628                         break;
629
630                 /* A = skb->len or X = skb->len */
631                 case BPF_LD | BPF_W | BPF_LEN:
632                 case BPF_LDX | BPF_W | BPF_LEN:
633                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
634                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
635                                             offsetof(struct sk_buff, len));
636                         break;
637
638                 /* Access seccomp_data fields. */
639                 case BPF_LDX | BPF_ABS | BPF_W:
640                         /* A = *(u32 *) (ctx + K) */
641                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
642                         break;
643
644                 /* Unknown instruction. */
645                 default:
646                         goto err;
647                 }
648
649                 insn++;
650                 if (new_prog)
651                         memcpy(new_insn, tmp_insns,
652                                sizeof(*insn) * (insn - tmp_insns));
653                 new_insn += insn - tmp_insns;
654         }
655
656         if (!new_prog) {
657                 /* Only calculating new length. */
658                 *new_len = new_insn - first_insn;
659                 return 0;
660         }
661
662         pass++;
663         if (new_flen != new_insn - first_insn) {
664                 new_flen = new_insn - first_insn;
665                 if (pass > 2)
666                         goto err;
667                 goto do_pass;
668         }
669
670         kfree(addrs);
671         BUG_ON(*new_len != new_flen);
672         return 0;
673 err:
674         kfree(addrs);
675         return -EINVAL;
676 }
677
678 /* Security:
679  *
680  * As we dont want to clear mem[] array for each packet going through
681  * __bpf_prog_run(), we check that filter loaded by user never try to read
682  * a cell if not previously written, and we check all branches to be sure
683  * a malicious user doesn't try to abuse us.
684  */
685 static int check_load_and_stores(const struct sock_filter *filter, int flen)
686 {
687         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
688         int pc, ret = 0;
689
690         BUILD_BUG_ON(BPF_MEMWORDS > 16);
691
692         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
693         if (!masks)
694                 return -ENOMEM;
695
696         memset(masks, 0xff, flen * sizeof(*masks));
697
698         for (pc = 0; pc < flen; pc++) {
699                 memvalid &= masks[pc];
700
701                 switch (filter[pc].code) {
702                 case BPF_ST:
703                 case BPF_STX:
704                         memvalid |= (1 << filter[pc].k);
705                         break;
706                 case BPF_LD | BPF_MEM:
707                 case BPF_LDX | BPF_MEM:
708                         if (!(memvalid & (1 << filter[pc].k))) {
709                                 ret = -EINVAL;
710                                 goto error;
711                         }
712                         break;
713                 case BPF_JMP | BPF_JA:
714                         /* A jump must set masks on target */
715                         masks[pc + 1 + filter[pc].k] &= memvalid;
716                         memvalid = ~0;
717                         break;
718                 case BPF_JMP | BPF_JEQ | BPF_K:
719                 case BPF_JMP | BPF_JEQ | BPF_X:
720                 case BPF_JMP | BPF_JGE | BPF_K:
721                 case BPF_JMP | BPF_JGE | BPF_X:
722                 case BPF_JMP | BPF_JGT | BPF_K:
723                 case BPF_JMP | BPF_JGT | BPF_X:
724                 case BPF_JMP | BPF_JSET | BPF_K:
725                 case BPF_JMP | BPF_JSET | BPF_X:
726                         /* A jump must set masks on targets */
727                         masks[pc + 1 + filter[pc].jt] &= memvalid;
728                         masks[pc + 1 + filter[pc].jf] &= memvalid;
729                         memvalid = ~0;
730                         break;
731                 }
732         }
733 error:
734         kfree(masks);
735         return ret;
736 }
737
738 static bool chk_code_allowed(u16 code_to_probe)
739 {
740         static const bool codes[] = {
741                 /* 32 bit ALU operations */
742                 [BPF_ALU | BPF_ADD | BPF_K] = true,
743                 [BPF_ALU | BPF_ADD | BPF_X] = true,
744                 [BPF_ALU | BPF_SUB | BPF_K] = true,
745                 [BPF_ALU | BPF_SUB | BPF_X] = true,
746                 [BPF_ALU | BPF_MUL | BPF_K] = true,
747                 [BPF_ALU | BPF_MUL | BPF_X] = true,
748                 [BPF_ALU | BPF_DIV | BPF_K] = true,
749                 [BPF_ALU | BPF_DIV | BPF_X] = true,
750                 [BPF_ALU | BPF_MOD | BPF_K] = true,
751                 [BPF_ALU | BPF_MOD | BPF_X] = true,
752                 [BPF_ALU | BPF_AND | BPF_K] = true,
753                 [BPF_ALU | BPF_AND | BPF_X] = true,
754                 [BPF_ALU | BPF_OR | BPF_K] = true,
755                 [BPF_ALU | BPF_OR | BPF_X] = true,
756                 [BPF_ALU | BPF_XOR | BPF_K] = true,
757                 [BPF_ALU | BPF_XOR | BPF_X] = true,
758                 [BPF_ALU | BPF_LSH | BPF_K] = true,
759                 [BPF_ALU | BPF_LSH | BPF_X] = true,
760                 [BPF_ALU | BPF_RSH | BPF_K] = true,
761                 [BPF_ALU | BPF_RSH | BPF_X] = true,
762                 [BPF_ALU | BPF_NEG] = true,
763                 /* Load instructions */
764                 [BPF_LD | BPF_W | BPF_ABS] = true,
765                 [BPF_LD | BPF_H | BPF_ABS] = true,
766                 [BPF_LD | BPF_B | BPF_ABS] = true,
767                 [BPF_LD | BPF_W | BPF_LEN] = true,
768                 [BPF_LD | BPF_W | BPF_IND] = true,
769                 [BPF_LD | BPF_H | BPF_IND] = true,
770                 [BPF_LD | BPF_B | BPF_IND] = true,
771                 [BPF_LD | BPF_IMM] = true,
772                 [BPF_LD | BPF_MEM] = true,
773                 [BPF_LDX | BPF_W | BPF_LEN] = true,
774                 [BPF_LDX | BPF_B | BPF_MSH] = true,
775                 [BPF_LDX | BPF_IMM] = true,
776                 [BPF_LDX | BPF_MEM] = true,
777                 /* Store instructions */
778                 [BPF_ST] = true,
779                 [BPF_STX] = true,
780                 /* Misc instructions */
781                 [BPF_MISC | BPF_TAX] = true,
782                 [BPF_MISC | BPF_TXA] = true,
783                 /* Return instructions */
784                 [BPF_RET | BPF_K] = true,
785                 [BPF_RET | BPF_A] = true,
786                 /* Jump instructions */
787                 [BPF_JMP | BPF_JA] = true,
788                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
789                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
790                 [BPF_JMP | BPF_JGE | BPF_K] = true,
791                 [BPF_JMP | BPF_JGE | BPF_X] = true,
792                 [BPF_JMP | BPF_JGT | BPF_K] = true,
793                 [BPF_JMP | BPF_JGT | BPF_X] = true,
794                 [BPF_JMP | BPF_JSET | BPF_K] = true,
795                 [BPF_JMP | BPF_JSET | BPF_X] = true,
796         };
797
798         if (code_to_probe >= ARRAY_SIZE(codes))
799                 return false;
800
801         return codes[code_to_probe];
802 }
803
804 static bool bpf_check_basics_ok(const struct sock_filter *filter,
805                                 unsigned int flen)
806 {
807         if (filter == NULL)
808                 return false;
809         if (flen == 0 || flen > BPF_MAXINSNS)
810                 return false;
811
812         return true;
813 }
814
815 /**
816  *      bpf_check_classic - verify socket filter code
817  *      @filter: filter to verify
818  *      @flen: length of filter
819  *
820  * Check the user's filter code. If we let some ugly
821  * filter code slip through kaboom! The filter must contain
822  * no references or jumps that are out of range, no illegal
823  * instructions, and must end with a RET instruction.
824  *
825  * All jumps are forward as they are not signed.
826  *
827  * Returns 0 if the rule set is legal or -EINVAL if not.
828  */
829 static int bpf_check_classic(const struct sock_filter *filter,
830                              unsigned int flen)
831 {
832         bool anc_found;
833         int pc;
834
835         /* Check the filter code now */
836         for (pc = 0; pc < flen; pc++) {
837                 const struct sock_filter *ftest = &filter[pc];
838
839                 /* May we actually operate on this code? */
840                 if (!chk_code_allowed(ftest->code))
841                         return -EINVAL;
842
843                 /* Some instructions need special checks */
844                 switch (ftest->code) {
845                 case BPF_ALU | BPF_DIV | BPF_K:
846                 case BPF_ALU | BPF_MOD | BPF_K:
847                         /* Check for division by zero */
848                         if (ftest->k == 0)
849                                 return -EINVAL;
850                         break;
851                 case BPF_ALU | BPF_LSH | BPF_K:
852                 case BPF_ALU | BPF_RSH | BPF_K:
853                         if (ftest->k >= 32)
854                                 return -EINVAL;
855                         break;
856                 case BPF_LD | BPF_MEM:
857                 case BPF_LDX | BPF_MEM:
858                 case BPF_ST:
859                 case BPF_STX:
860                         /* Check for invalid memory addresses */
861                         if (ftest->k >= BPF_MEMWORDS)
862                                 return -EINVAL;
863                         break;
864                 case BPF_JMP | BPF_JA:
865                         /* Note, the large ftest->k might cause loops.
866                          * Compare this with conditional jumps below,
867                          * where offsets are limited. --ANK (981016)
868                          */
869                         if (ftest->k >= (unsigned int)(flen - pc - 1))
870                                 return -EINVAL;
871                         break;
872                 case BPF_JMP | BPF_JEQ | BPF_K:
873                 case BPF_JMP | BPF_JEQ | BPF_X:
874                 case BPF_JMP | BPF_JGE | BPF_K:
875                 case BPF_JMP | BPF_JGE | BPF_X:
876                 case BPF_JMP | BPF_JGT | BPF_K:
877                 case BPF_JMP | BPF_JGT | BPF_X:
878                 case BPF_JMP | BPF_JSET | BPF_K:
879                 case BPF_JMP | BPF_JSET | BPF_X:
880                         /* Both conditionals must be safe */
881                         if (pc + ftest->jt + 1 >= flen ||
882                             pc + ftest->jf + 1 >= flen)
883                                 return -EINVAL;
884                         break;
885                 case BPF_LD | BPF_W | BPF_ABS:
886                 case BPF_LD | BPF_H | BPF_ABS:
887                 case BPF_LD | BPF_B | BPF_ABS:
888                         anc_found = false;
889                         if (bpf_anc_helper(ftest) & BPF_ANC)
890                                 anc_found = true;
891                         /* Ancillary operation unknown or unsupported */
892                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
893                                 return -EINVAL;
894                 }
895         }
896
897         /* Last instruction must be a RET code */
898         switch (filter[flen - 1].code) {
899         case BPF_RET | BPF_K:
900         case BPF_RET | BPF_A:
901                 return check_load_and_stores(filter, flen);
902         }
903
904         return -EINVAL;
905 }
906
907 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
908                                       const struct sock_fprog *fprog)
909 {
910         unsigned int fsize = bpf_classic_proglen(fprog);
911         struct sock_fprog_kern *fkprog;
912
913         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
914         if (!fp->orig_prog)
915                 return -ENOMEM;
916
917         fkprog = fp->orig_prog;
918         fkprog->len = fprog->len;
919
920         fkprog->filter = kmemdup(fp->insns, fsize,
921                                  GFP_KERNEL | __GFP_NOWARN);
922         if (!fkprog->filter) {
923                 kfree(fp->orig_prog);
924                 return -ENOMEM;
925         }
926
927         return 0;
928 }
929
930 static void bpf_release_orig_filter(struct bpf_prog *fp)
931 {
932         struct sock_fprog_kern *fprog = fp->orig_prog;
933
934         if (fprog) {
935                 kfree(fprog->filter);
936                 kfree(fprog);
937         }
938 }
939
940 static void __bpf_prog_release(struct bpf_prog *prog)
941 {
942         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
943                 bpf_prog_put(prog);
944         } else {
945                 bpf_release_orig_filter(prog);
946                 bpf_prog_free(prog);
947         }
948 }
949
950 static void __sk_filter_release(struct sk_filter *fp)
951 {
952         __bpf_prog_release(fp->prog);
953         kfree(fp);
954 }
955
956 /**
957  *      sk_filter_release_rcu - Release a socket filter by rcu_head
958  *      @rcu: rcu_head that contains the sk_filter to free
959  */
960 static void sk_filter_release_rcu(struct rcu_head *rcu)
961 {
962         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
963
964         __sk_filter_release(fp);
965 }
966
967 /**
968  *      sk_filter_release - release a socket filter
969  *      @fp: filter to remove
970  *
971  *      Remove a filter from a socket and release its resources.
972  */
973 static void sk_filter_release(struct sk_filter *fp)
974 {
975         if (refcount_dec_and_test(&fp->refcnt))
976                 call_rcu(&fp->rcu, sk_filter_release_rcu);
977 }
978
979 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
980 {
981         u32 filter_size = bpf_prog_size(fp->prog->len);
982
983         atomic_sub(filter_size, &sk->sk_omem_alloc);
984         sk_filter_release(fp);
985 }
986
987 /* try to charge the socket memory if there is space available
988  * return true on success
989  */
990 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
991 {
992         u32 filter_size = bpf_prog_size(fp->prog->len);
993
994         /* same check as in sock_kmalloc() */
995         if (filter_size <= sysctl_optmem_max &&
996             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
997                 atomic_add(filter_size, &sk->sk_omem_alloc);
998                 return true;
999         }
1000         return false;
1001 }
1002
1003 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1004 {
1005         if (!refcount_inc_not_zero(&fp->refcnt))
1006                 return false;
1007
1008         if (!__sk_filter_charge(sk, fp)) {
1009                 sk_filter_release(fp);
1010                 return false;
1011         }
1012         return true;
1013 }
1014
1015 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1016 {
1017         struct sock_filter *old_prog;
1018         struct bpf_prog *old_fp;
1019         int err, new_len, old_len = fp->len;
1020
1021         /* We are free to overwrite insns et al right here as it
1022          * won't be used at this point in time anymore internally
1023          * after the migration to the internal BPF instruction
1024          * representation.
1025          */
1026         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1027                      sizeof(struct bpf_insn));
1028
1029         /* Conversion cannot happen on overlapping memory areas,
1030          * so we need to keep the user BPF around until the 2nd
1031          * pass. At this time, the user BPF is stored in fp->insns.
1032          */
1033         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1034                            GFP_KERNEL | __GFP_NOWARN);
1035         if (!old_prog) {
1036                 err = -ENOMEM;
1037                 goto out_err;
1038         }
1039
1040         /* 1st pass: calculate the new program length. */
1041         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len);
1042         if (err)
1043                 goto out_err_free;
1044
1045         /* Expand fp for appending the new filter representation. */
1046         old_fp = fp;
1047         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1048         if (!fp) {
1049                 /* The old_fp is still around in case we couldn't
1050                  * allocate new memory, so uncharge on that one.
1051                  */
1052                 fp = old_fp;
1053                 err = -ENOMEM;
1054                 goto out_err_free;
1055         }
1056
1057         fp->len = new_len;
1058
1059         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1060         err = bpf_convert_filter(old_prog, old_len, fp, &new_len);
1061         if (err)
1062                 /* 2nd bpf_convert_filter() can fail only if it fails
1063                  * to allocate memory, remapping must succeed. Note,
1064                  * that at this time old_fp has already been released
1065                  * by krealloc().
1066                  */
1067                 goto out_err_free;
1068
1069         fp = bpf_prog_select_runtime(fp, &err);
1070         if (err)
1071                 goto out_err_free;
1072
1073         kfree(old_prog);
1074         return fp;
1075
1076 out_err_free:
1077         kfree(old_prog);
1078 out_err:
1079         __bpf_prog_release(fp);
1080         return ERR_PTR(err);
1081 }
1082
1083 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1084                                            bpf_aux_classic_check_t trans)
1085 {
1086         int err;
1087
1088         fp->bpf_func = NULL;
1089         fp->jited = 0;
1090
1091         err = bpf_check_classic(fp->insns, fp->len);
1092         if (err) {
1093                 __bpf_prog_release(fp);
1094                 return ERR_PTR(err);
1095         }
1096
1097         /* There might be additional checks and transformations
1098          * needed on classic filters, f.e. in case of seccomp.
1099          */
1100         if (trans) {
1101                 err = trans(fp->insns, fp->len);
1102                 if (err) {
1103                         __bpf_prog_release(fp);
1104                         return ERR_PTR(err);
1105                 }
1106         }
1107
1108         /* Probe if we can JIT compile the filter and if so, do
1109          * the compilation of the filter.
1110          */
1111         bpf_jit_compile(fp);
1112
1113         /* JIT compiler couldn't process this filter, so do the
1114          * internal BPF translation for the optimized interpreter.
1115          */
1116         if (!fp->jited)
1117                 fp = bpf_migrate_filter(fp);
1118
1119         return fp;
1120 }
1121
1122 /**
1123  *      bpf_prog_create - create an unattached filter
1124  *      @pfp: the unattached filter that is created
1125  *      @fprog: the filter program
1126  *
1127  * Create a filter independent of any socket. We first run some
1128  * sanity checks on it to make sure it does not explode on us later.
1129  * If an error occurs or there is insufficient memory for the filter
1130  * a negative errno code is returned. On success the return is zero.
1131  */
1132 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1133 {
1134         unsigned int fsize = bpf_classic_proglen(fprog);
1135         struct bpf_prog *fp;
1136
1137         /* Make sure new filter is there and in the right amounts. */
1138         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1139                 return -EINVAL;
1140
1141         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1142         if (!fp)
1143                 return -ENOMEM;
1144
1145         memcpy(fp->insns, fprog->filter, fsize);
1146
1147         fp->len = fprog->len;
1148         /* Since unattached filters are not copied back to user
1149          * space through sk_get_filter(), we do not need to hold
1150          * a copy here, and can spare us the work.
1151          */
1152         fp->orig_prog = NULL;
1153
1154         /* bpf_prepare_filter() already takes care of freeing
1155          * memory in case something goes wrong.
1156          */
1157         fp = bpf_prepare_filter(fp, NULL);
1158         if (IS_ERR(fp))
1159                 return PTR_ERR(fp);
1160
1161         *pfp = fp;
1162         return 0;
1163 }
1164 EXPORT_SYMBOL_GPL(bpf_prog_create);
1165
1166 /**
1167  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1168  *      @pfp: the unattached filter that is created
1169  *      @fprog: the filter program
1170  *      @trans: post-classic verifier transformation handler
1171  *      @save_orig: save classic BPF program
1172  *
1173  * This function effectively does the same as bpf_prog_create(), only
1174  * that it builds up its insns buffer from user space provided buffer.
1175  * It also allows for passing a bpf_aux_classic_check_t handler.
1176  */
1177 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1178                               bpf_aux_classic_check_t trans, bool save_orig)
1179 {
1180         unsigned int fsize = bpf_classic_proglen(fprog);
1181         struct bpf_prog *fp;
1182         int err;
1183
1184         /* Make sure new filter is there and in the right amounts. */
1185         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1186                 return -EINVAL;
1187
1188         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1189         if (!fp)
1190                 return -ENOMEM;
1191
1192         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1193                 __bpf_prog_free(fp);
1194                 return -EFAULT;
1195         }
1196
1197         fp->len = fprog->len;
1198         fp->orig_prog = NULL;
1199
1200         if (save_orig) {
1201                 err = bpf_prog_store_orig_filter(fp, fprog);
1202                 if (err) {
1203                         __bpf_prog_free(fp);
1204                         return -ENOMEM;
1205                 }
1206         }
1207
1208         /* bpf_prepare_filter() already takes care of freeing
1209          * memory in case something goes wrong.
1210          */
1211         fp = bpf_prepare_filter(fp, trans);
1212         if (IS_ERR(fp))
1213                 return PTR_ERR(fp);
1214
1215         *pfp = fp;
1216         return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1219
1220 void bpf_prog_destroy(struct bpf_prog *fp)
1221 {
1222         __bpf_prog_release(fp);
1223 }
1224 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1225
1226 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1227 {
1228         struct sk_filter *fp, *old_fp;
1229
1230         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1231         if (!fp)
1232                 return -ENOMEM;
1233
1234         fp->prog = prog;
1235
1236         if (!__sk_filter_charge(sk, fp)) {
1237                 kfree(fp);
1238                 return -ENOMEM;
1239         }
1240         refcount_set(&fp->refcnt, 1);
1241
1242         old_fp = rcu_dereference_protected(sk->sk_filter,
1243                                            lockdep_sock_is_held(sk));
1244         rcu_assign_pointer(sk->sk_filter, fp);
1245
1246         if (old_fp)
1247                 sk_filter_uncharge(sk, old_fp);
1248
1249         return 0;
1250 }
1251
1252 static int __reuseport_attach_prog(struct bpf_prog *prog, struct sock *sk)
1253 {
1254         struct bpf_prog *old_prog;
1255         int err;
1256
1257         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1258                 return -ENOMEM;
1259
1260         if (sk_unhashed(sk) && sk->sk_reuseport) {
1261                 err = reuseport_alloc(sk);
1262                 if (err)
1263                         return err;
1264         } else if (!rcu_access_pointer(sk->sk_reuseport_cb)) {
1265                 /* The socket wasn't bound with SO_REUSEPORT */
1266                 return -EINVAL;
1267         }
1268
1269         old_prog = reuseport_attach_prog(sk, prog);
1270         if (old_prog)
1271                 bpf_prog_destroy(old_prog);
1272
1273         return 0;
1274 }
1275
1276 static
1277 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1278 {
1279         unsigned int fsize = bpf_classic_proglen(fprog);
1280         struct bpf_prog *prog;
1281         int err;
1282
1283         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1284                 return ERR_PTR(-EPERM);
1285
1286         /* Make sure new filter is there and in the right amounts. */
1287         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1288                 return ERR_PTR(-EINVAL);
1289
1290         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1291         if (!prog)
1292                 return ERR_PTR(-ENOMEM);
1293
1294         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1295                 __bpf_prog_free(prog);
1296                 return ERR_PTR(-EFAULT);
1297         }
1298
1299         prog->len = fprog->len;
1300
1301         err = bpf_prog_store_orig_filter(prog, fprog);
1302         if (err) {
1303                 __bpf_prog_free(prog);
1304                 return ERR_PTR(-ENOMEM);
1305         }
1306
1307         /* bpf_prepare_filter() already takes care of freeing
1308          * memory in case something goes wrong.
1309          */
1310         return bpf_prepare_filter(prog, NULL);
1311 }
1312
1313 /**
1314  *      sk_attach_filter - attach a socket filter
1315  *      @fprog: the filter program
1316  *      @sk: the socket to use
1317  *
1318  * Attach the user's filter code. We first run some sanity checks on
1319  * it to make sure it does not explode on us later. If an error
1320  * occurs or there is insufficient memory for the filter a negative
1321  * errno code is returned. On success the return is zero.
1322  */
1323 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1324 {
1325         struct bpf_prog *prog = __get_filter(fprog, sk);
1326         int err;
1327
1328         if (IS_ERR(prog))
1329                 return PTR_ERR(prog);
1330
1331         err = __sk_attach_prog(prog, sk);
1332         if (err < 0) {
1333                 __bpf_prog_release(prog);
1334                 return err;
1335         }
1336
1337         return 0;
1338 }
1339 EXPORT_SYMBOL_GPL(sk_attach_filter);
1340
1341 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1342 {
1343         struct bpf_prog *prog = __get_filter(fprog, sk);
1344         int err;
1345
1346         if (IS_ERR(prog))
1347                 return PTR_ERR(prog);
1348
1349         err = __reuseport_attach_prog(prog, sk);
1350         if (err < 0) {
1351                 __bpf_prog_release(prog);
1352                 return err;
1353         }
1354
1355         return 0;
1356 }
1357
1358 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1359 {
1360         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1361                 return ERR_PTR(-EPERM);
1362
1363         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1364 }
1365
1366 int sk_attach_bpf(u32 ufd, struct sock *sk)
1367 {
1368         struct bpf_prog *prog = __get_bpf(ufd, sk);
1369         int err;
1370
1371         if (IS_ERR(prog))
1372                 return PTR_ERR(prog);
1373
1374         err = __sk_attach_prog(prog, sk);
1375         if (err < 0) {
1376                 bpf_prog_put(prog);
1377                 return err;
1378         }
1379
1380         return 0;
1381 }
1382
1383 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1384 {
1385         struct bpf_prog *prog = __get_bpf(ufd, sk);
1386         int err;
1387
1388         if (IS_ERR(prog))
1389                 return PTR_ERR(prog);
1390
1391         err = __reuseport_attach_prog(prog, sk);
1392         if (err < 0) {
1393                 bpf_prog_put(prog);
1394                 return err;
1395         }
1396
1397         return 0;
1398 }
1399
1400 struct bpf_scratchpad {
1401         union {
1402                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1403                 u8     buff[MAX_BPF_STACK];
1404         };
1405 };
1406
1407 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1408
1409 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1410                                           unsigned int write_len)
1411 {
1412         return skb_ensure_writable(skb, write_len);
1413 }
1414
1415 static inline int bpf_try_make_writable(struct sk_buff *skb,
1416                                         unsigned int write_len)
1417 {
1418         int err = __bpf_try_make_writable(skb, write_len);
1419
1420         bpf_compute_data_pointers(skb);
1421         return err;
1422 }
1423
1424 static int bpf_try_make_head_writable(struct sk_buff *skb)
1425 {
1426         return bpf_try_make_writable(skb, skb_headlen(skb));
1427 }
1428
1429 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1430 {
1431         if (skb_at_tc_ingress(skb))
1432                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1433 }
1434
1435 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1436 {
1437         if (skb_at_tc_ingress(skb))
1438                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1439 }
1440
1441 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1442            const void *, from, u32, len, u64, flags)
1443 {
1444         void *ptr;
1445
1446         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1447                 return -EINVAL;
1448         if (unlikely(offset > 0xffff))
1449                 return -EFAULT;
1450         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1451                 return -EFAULT;
1452
1453         ptr = skb->data + offset;
1454         if (flags & BPF_F_RECOMPUTE_CSUM)
1455                 __skb_postpull_rcsum(skb, ptr, len, offset);
1456
1457         memcpy(ptr, from, len);
1458
1459         if (flags & BPF_F_RECOMPUTE_CSUM)
1460                 __skb_postpush_rcsum(skb, ptr, len, offset);
1461         if (flags & BPF_F_INVALIDATE_HASH)
1462                 skb_clear_hash(skb);
1463
1464         return 0;
1465 }
1466
1467 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1468         .func           = bpf_skb_store_bytes,
1469         .gpl_only       = false,
1470         .ret_type       = RET_INTEGER,
1471         .arg1_type      = ARG_PTR_TO_CTX,
1472         .arg2_type      = ARG_ANYTHING,
1473         .arg3_type      = ARG_PTR_TO_MEM,
1474         .arg4_type      = ARG_CONST_SIZE,
1475         .arg5_type      = ARG_ANYTHING,
1476 };
1477
1478 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1479            void *, to, u32, len)
1480 {
1481         void *ptr;
1482
1483         if (unlikely(offset > 0xffff))
1484                 goto err_clear;
1485
1486         ptr = skb_header_pointer(skb, offset, len, to);
1487         if (unlikely(!ptr))
1488                 goto err_clear;
1489         if (ptr != to)
1490                 memcpy(to, ptr, len);
1491
1492         return 0;
1493 err_clear:
1494         memset(to, 0, len);
1495         return -EFAULT;
1496 }
1497
1498 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1499         .func           = bpf_skb_load_bytes,
1500         .gpl_only       = false,
1501         .ret_type       = RET_INTEGER,
1502         .arg1_type      = ARG_PTR_TO_CTX,
1503         .arg2_type      = ARG_ANYTHING,
1504         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1505         .arg4_type      = ARG_CONST_SIZE,
1506 };
1507
1508 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1509 {
1510         /* Idea is the following: should the needed direct read/write
1511          * test fail during runtime, we can pull in more data and redo
1512          * again, since implicitly, we invalidate previous checks here.
1513          *
1514          * Or, since we know how much we need to make read/writeable,
1515          * this can be done once at the program beginning for direct
1516          * access case. By this we overcome limitations of only current
1517          * headroom being accessible.
1518          */
1519         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1520 }
1521
1522 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1523         .func           = bpf_skb_pull_data,
1524         .gpl_only       = false,
1525         .ret_type       = RET_INTEGER,
1526         .arg1_type      = ARG_PTR_TO_CTX,
1527         .arg2_type      = ARG_ANYTHING,
1528 };
1529
1530 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1531            u64, from, u64, to, u64, flags)
1532 {
1533         __sum16 *ptr;
1534
1535         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1536                 return -EINVAL;
1537         if (unlikely(offset > 0xffff || offset & 1))
1538                 return -EFAULT;
1539         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1540                 return -EFAULT;
1541
1542         ptr = (__sum16 *)(skb->data + offset);
1543         switch (flags & BPF_F_HDR_FIELD_MASK) {
1544         case 0:
1545                 if (unlikely(from != 0))
1546                         return -EINVAL;
1547
1548                 csum_replace_by_diff(ptr, to);
1549                 break;
1550         case 2:
1551                 csum_replace2(ptr, from, to);
1552                 break;
1553         case 4:
1554                 csum_replace4(ptr, from, to);
1555                 break;
1556         default:
1557                 return -EINVAL;
1558         }
1559
1560         return 0;
1561 }
1562
1563 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1564         .func           = bpf_l3_csum_replace,
1565         .gpl_only       = false,
1566         .ret_type       = RET_INTEGER,
1567         .arg1_type      = ARG_PTR_TO_CTX,
1568         .arg2_type      = ARG_ANYTHING,
1569         .arg3_type      = ARG_ANYTHING,
1570         .arg4_type      = ARG_ANYTHING,
1571         .arg5_type      = ARG_ANYTHING,
1572 };
1573
1574 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1575            u64, from, u64, to, u64, flags)
1576 {
1577         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1578         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1579         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1580         __sum16 *ptr;
1581
1582         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1583                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1584                 return -EINVAL;
1585         if (unlikely(offset > 0xffff || offset & 1))
1586                 return -EFAULT;
1587         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1588                 return -EFAULT;
1589
1590         ptr = (__sum16 *)(skb->data + offset);
1591         if (is_mmzero && !do_mforce && !*ptr)
1592                 return 0;
1593
1594         switch (flags & BPF_F_HDR_FIELD_MASK) {
1595         case 0:
1596                 if (unlikely(from != 0))
1597                         return -EINVAL;
1598
1599                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1600                 break;
1601         case 2:
1602                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1603                 break;
1604         case 4:
1605                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1606                 break;
1607         default:
1608                 return -EINVAL;
1609         }
1610
1611         if (is_mmzero && !*ptr)
1612                 *ptr = CSUM_MANGLED_0;
1613         return 0;
1614 }
1615
1616 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1617         .func           = bpf_l4_csum_replace,
1618         .gpl_only       = false,
1619         .ret_type       = RET_INTEGER,
1620         .arg1_type      = ARG_PTR_TO_CTX,
1621         .arg2_type      = ARG_ANYTHING,
1622         .arg3_type      = ARG_ANYTHING,
1623         .arg4_type      = ARG_ANYTHING,
1624         .arg5_type      = ARG_ANYTHING,
1625 };
1626
1627 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1628            __be32 *, to, u32, to_size, __wsum, seed)
1629 {
1630         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1631         u32 diff_size = from_size + to_size;
1632         int i, j = 0;
1633
1634         /* This is quite flexible, some examples:
1635          *
1636          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1637          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1638          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1639          *
1640          * Even for diffing, from_size and to_size don't need to be equal.
1641          */
1642         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1643                      diff_size > sizeof(sp->diff)))
1644                 return -EINVAL;
1645
1646         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1647                 sp->diff[j] = ~from[i];
1648         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1649                 sp->diff[j] = to[i];
1650
1651         return csum_partial(sp->diff, diff_size, seed);
1652 }
1653
1654 static const struct bpf_func_proto bpf_csum_diff_proto = {
1655         .func           = bpf_csum_diff,
1656         .gpl_only       = false,
1657         .pkt_access     = true,
1658         .ret_type       = RET_INTEGER,
1659         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
1660         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1661         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
1662         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
1663         .arg5_type      = ARG_ANYTHING,
1664 };
1665
1666 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1667 {
1668         /* The interface is to be used in combination with bpf_csum_diff()
1669          * for direct packet writes. csum rotation for alignment as well
1670          * as emulating csum_sub() can be done from the eBPF program.
1671          */
1672         if (skb->ip_summed == CHECKSUM_COMPLETE)
1673                 return (skb->csum = csum_add(skb->csum, csum));
1674
1675         return -ENOTSUPP;
1676 }
1677
1678 static const struct bpf_func_proto bpf_csum_update_proto = {
1679         .func           = bpf_csum_update,
1680         .gpl_only       = false,
1681         .ret_type       = RET_INTEGER,
1682         .arg1_type      = ARG_PTR_TO_CTX,
1683         .arg2_type      = ARG_ANYTHING,
1684 };
1685
1686 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1687 {
1688         return dev_forward_skb(dev, skb);
1689 }
1690
1691 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1692                                       struct sk_buff *skb)
1693 {
1694         int ret = ____dev_forward_skb(dev, skb);
1695
1696         if (likely(!ret)) {
1697                 skb->dev = dev;
1698                 ret = netif_rx(skb);
1699         }
1700
1701         return ret;
1702 }
1703
1704 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
1705 {
1706         int ret;
1707
1708         if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
1709                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
1710                 kfree_skb(skb);
1711                 return -ENETDOWN;
1712         }
1713
1714         skb->dev = dev;
1715
1716         __this_cpu_inc(xmit_recursion);
1717         ret = dev_queue_xmit(skb);
1718         __this_cpu_dec(xmit_recursion);
1719
1720         return ret;
1721 }
1722
1723 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
1724                                  u32 flags)
1725 {
1726         /* skb->mac_len is not set on normal egress */
1727         unsigned int mlen = skb->network_header - skb->mac_header;
1728
1729         __skb_pull(skb, mlen);
1730
1731         /* At ingress, the mac header has already been pulled once.
1732          * At egress, skb_pospull_rcsum has to be done in case that
1733          * the skb is originated from ingress (i.e. a forwarded skb)
1734          * to ensure that rcsum starts at net header.
1735          */
1736         if (!skb_at_tc_ingress(skb))
1737                 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
1738         skb_pop_mac_header(skb);
1739         skb_reset_mac_len(skb);
1740         return flags & BPF_F_INGRESS ?
1741                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
1742 }
1743
1744 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
1745                                  u32 flags)
1746 {
1747         /* Verify that a link layer header is carried */
1748         if (unlikely(skb->mac_header >= skb->network_header)) {
1749                 kfree_skb(skb);
1750                 return -ERANGE;
1751         }
1752
1753         bpf_push_mac_rcsum(skb);
1754         return flags & BPF_F_INGRESS ?
1755                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
1756 }
1757
1758 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
1759                           u32 flags)
1760 {
1761         if (dev_is_mac_header_xmit(dev))
1762                 return __bpf_redirect_common(skb, dev, flags);
1763         else
1764                 return __bpf_redirect_no_mac(skb, dev, flags);
1765 }
1766
1767 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
1768 {
1769         struct net_device *dev;
1770         struct sk_buff *clone;
1771         int ret;
1772
1773         if (unlikely(flags & ~(BPF_F_INGRESS)))
1774                 return -EINVAL;
1775
1776         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
1777         if (unlikely(!dev))
1778                 return -EINVAL;
1779
1780         clone = skb_clone(skb, GFP_ATOMIC);
1781         if (unlikely(!clone))
1782                 return -ENOMEM;
1783
1784         /* For direct write, we need to keep the invariant that the skbs
1785          * we're dealing with need to be uncloned. Should uncloning fail
1786          * here, we need to free the just generated clone to unclone once
1787          * again.
1788          */
1789         ret = bpf_try_make_head_writable(skb);
1790         if (unlikely(ret)) {
1791                 kfree_skb(clone);
1792                 return -ENOMEM;
1793         }
1794
1795         return __bpf_redirect(clone, dev, flags);
1796 }
1797
1798 static const struct bpf_func_proto bpf_clone_redirect_proto = {
1799         .func           = bpf_clone_redirect,
1800         .gpl_only       = false,
1801         .ret_type       = RET_INTEGER,
1802         .arg1_type      = ARG_PTR_TO_CTX,
1803         .arg2_type      = ARG_ANYTHING,
1804         .arg3_type      = ARG_ANYTHING,
1805 };
1806
1807 struct redirect_info {
1808         u32 ifindex;
1809         u32 flags;
1810         struct bpf_map *map;
1811         struct bpf_map *map_to_flush;
1812         unsigned long   map_owner;
1813 };
1814
1815 static DEFINE_PER_CPU(struct redirect_info, redirect_info);
1816
1817 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
1818 {
1819         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1820
1821         if (unlikely(flags & ~(BPF_F_INGRESS)))
1822                 return TC_ACT_SHOT;
1823
1824         ri->ifindex = ifindex;
1825         ri->flags = flags;
1826
1827         return TC_ACT_REDIRECT;
1828 }
1829
1830 int skb_do_redirect(struct sk_buff *skb)
1831 {
1832         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
1833         struct net_device *dev;
1834
1835         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
1836         ri->ifindex = 0;
1837         if (unlikely(!dev)) {
1838                 kfree_skb(skb);
1839                 return -EINVAL;
1840         }
1841
1842         return __bpf_redirect(skb, dev, ri->flags);
1843 }
1844
1845 static const struct bpf_func_proto bpf_redirect_proto = {
1846         .func           = bpf_redirect,
1847         .gpl_only       = false,
1848         .ret_type       = RET_INTEGER,
1849         .arg1_type      = ARG_ANYTHING,
1850         .arg2_type      = ARG_ANYTHING,
1851 };
1852
1853 BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
1854            struct bpf_map *, map, u32, key, u64, flags)
1855 {
1856         struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1857
1858         /* If user passes invalid input drop the packet. */
1859         if (unlikely(flags & ~(BPF_F_INGRESS)))
1860                 return SK_DROP;
1861
1862         tcb->bpf.key = key;
1863         tcb->bpf.flags = flags;
1864         tcb->bpf.map = map;
1865
1866         return SK_PASS;
1867 }
1868
1869 struct sock *do_sk_redirect_map(struct sk_buff *skb)
1870 {
1871         struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
1872         struct sock *sk = NULL;
1873
1874         if (tcb->bpf.map) {
1875                 sk = __sock_map_lookup_elem(tcb->bpf.map, tcb->bpf.key);
1876
1877                 tcb->bpf.key = 0;
1878                 tcb->bpf.map = NULL;
1879         }
1880
1881         return sk;
1882 }
1883
1884 static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
1885         .func           = bpf_sk_redirect_map,
1886         .gpl_only       = false,
1887         .ret_type       = RET_INTEGER,
1888         .arg1_type      = ARG_PTR_TO_CTX,
1889         .arg2_type      = ARG_CONST_MAP_PTR,
1890         .arg3_type      = ARG_ANYTHING,
1891         .arg4_type      = ARG_ANYTHING,
1892 };
1893
1894 BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
1895            struct bpf_map *, map, u32, key, u64, flags)
1896 {
1897         /* If user passes invalid input drop the packet. */
1898         if (unlikely(flags & ~(BPF_F_INGRESS)))
1899                 return SK_DROP;
1900
1901         msg->key = key;
1902         msg->flags = flags;
1903         msg->map = map;
1904
1905         return SK_PASS;
1906 }
1907
1908 struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
1909 {
1910         struct sock *sk = NULL;
1911
1912         if (msg->map) {
1913                 sk = __sock_map_lookup_elem(msg->map, msg->key);
1914
1915                 msg->key = 0;
1916                 msg->map = NULL;
1917         }
1918
1919         return sk;
1920 }
1921
1922 static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
1923         .func           = bpf_msg_redirect_map,
1924         .gpl_only       = false,
1925         .ret_type       = RET_INTEGER,
1926         .arg1_type      = ARG_PTR_TO_CTX,
1927         .arg2_type      = ARG_CONST_MAP_PTR,
1928         .arg3_type      = ARG_ANYTHING,
1929         .arg4_type      = ARG_ANYTHING,
1930 };
1931
1932 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
1933 {
1934         msg->apply_bytes = bytes;
1935         return 0;
1936 }
1937
1938 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
1939         .func           = bpf_msg_apply_bytes,
1940         .gpl_only       = false,
1941         .ret_type       = RET_INTEGER,
1942         .arg1_type      = ARG_PTR_TO_CTX,
1943         .arg2_type      = ARG_ANYTHING,
1944 };
1945
1946 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
1947 {
1948         msg->cork_bytes = bytes;
1949         return 0;
1950 }
1951
1952 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
1953         .func           = bpf_msg_cork_bytes,
1954         .gpl_only       = false,
1955         .ret_type       = RET_INTEGER,
1956         .arg1_type      = ARG_PTR_TO_CTX,
1957         .arg2_type      = ARG_ANYTHING,
1958 };
1959
1960 BPF_CALL_4(bpf_msg_pull_data,
1961            struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
1962 {
1963         unsigned int len = 0, offset = 0, copy = 0;
1964         struct scatterlist *sg = msg->sg_data;
1965         int first_sg, last_sg, i, shift;
1966         unsigned char *p, *to, *from;
1967         int bytes = end - start;
1968         struct page *page;
1969
1970         if (unlikely(flags || end <= start))
1971                 return -EINVAL;
1972
1973         /* First find the starting scatterlist element */
1974         i = msg->sg_start;
1975         do {
1976                 len = sg[i].length;
1977                 offset += len;
1978                 if (start < offset + len)
1979                         break;
1980                 i++;
1981                 if (i == MAX_SKB_FRAGS)
1982                         i = 0;
1983         } while (i != msg->sg_end);
1984
1985         if (unlikely(start >= offset + len))
1986                 return -EINVAL;
1987
1988         if (!msg->sg_copy[i] && bytes <= len)
1989                 goto out;
1990
1991         first_sg = i;
1992
1993         /* At this point we need to linearize multiple scatterlist
1994          * elements or a single shared page. Either way we need to
1995          * copy into a linear buffer exclusively owned by BPF. Then
1996          * place the buffer in the scatterlist and fixup the original
1997          * entries by removing the entries now in the linear buffer
1998          * and shifting the remaining entries. For now we do not try
1999          * to copy partial entries to avoid complexity of running out
2000          * of sg_entry slots. The downside is reading a single byte
2001          * will copy the entire sg entry.
2002          */
2003         do {
2004                 copy += sg[i].length;
2005                 i++;
2006                 if (i == MAX_SKB_FRAGS)
2007                         i = 0;
2008                 if (bytes < copy)
2009                         break;
2010         } while (i != msg->sg_end);
2011         last_sg = i;
2012
2013         if (unlikely(copy < end - start))
2014                 return -EINVAL;
2015
2016         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC, get_order(copy));
2017         if (unlikely(!page))
2018                 return -ENOMEM;
2019         p = page_address(page);
2020         offset = 0;
2021
2022         i = first_sg;
2023         do {
2024                 from = sg_virt(&sg[i]);
2025                 len = sg[i].length;
2026                 to = p + offset;
2027
2028                 memcpy(to, from, len);
2029                 offset += len;
2030                 sg[i].length = 0;
2031                 put_page(sg_page(&sg[i]));
2032
2033                 i++;
2034                 if (i == MAX_SKB_FRAGS)
2035                         i = 0;
2036         } while (i != last_sg);
2037
2038         sg[first_sg].length = copy;
2039         sg_set_page(&sg[first_sg], page, copy, 0);
2040
2041         /* To repair sg ring we need to shift entries. If we only
2042          * had a single entry though we can just replace it and
2043          * be done. Otherwise walk the ring and shift the entries.
2044          */
2045         shift = last_sg - first_sg - 1;
2046         if (!shift)
2047                 goto out;
2048
2049         i = first_sg + 1;
2050         do {
2051                 int move_from;
2052
2053                 if (i + shift >= MAX_SKB_FRAGS)
2054                         move_from = i + shift - MAX_SKB_FRAGS;
2055                 else
2056                         move_from = i + shift;
2057
2058                 if (move_from == msg->sg_end)
2059                         break;
2060
2061                 sg[i] = sg[move_from];
2062                 sg[move_from].length = 0;
2063                 sg[move_from].page_link = 0;
2064                 sg[move_from].offset = 0;
2065
2066                 i++;
2067                 if (i == MAX_SKB_FRAGS)
2068                         i = 0;
2069         } while (1);
2070         msg->sg_end -= shift;
2071         if (msg->sg_end < 0)
2072                 msg->sg_end += MAX_SKB_FRAGS;
2073 out:
2074         msg->data = sg_virt(&sg[i]) + start - offset;
2075         msg->data_end = msg->data + bytes;
2076
2077         return 0;
2078 }
2079
2080 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2081         .func           = bpf_msg_pull_data,
2082         .gpl_only       = false,
2083         .ret_type       = RET_INTEGER,
2084         .arg1_type      = ARG_PTR_TO_CTX,
2085         .arg2_type      = ARG_ANYTHING,
2086         .arg3_type      = ARG_ANYTHING,
2087         .arg4_type      = ARG_ANYTHING,
2088 };
2089
2090 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2091 {
2092         return task_get_classid(skb);
2093 }
2094
2095 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2096         .func           = bpf_get_cgroup_classid,
2097         .gpl_only       = false,
2098         .ret_type       = RET_INTEGER,
2099         .arg1_type      = ARG_PTR_TO_CTX,
2100 };
2101
2102 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2103 {
2104         return dst_tclassid(skb);
2105 }
2106
2107 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2108         .func           = bpf_get_route_realm,
2109         .gpl_only       = false,
2110         .ret_type       = RET_INTEGER,
2111         .arg1_type      = ARG_PTR_TO_CTX,
2112 };
2113
2114 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2115 {
2116         /* If skb_clear_hash() was called due to mangling, we can
2117          * trigger SW recalculation here. Later access to hash
2118          * can then use the inline skb->hash via context directly
2119          * instead of calling this helper again.
2120          */
2121         return skb_get_hash(skb);
2122 }
2123
2124 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2125         .func           = bpf_get_hash_recalc,
2126         .gpl_only       = false,
2127         .ret_type       = RET_INTEGER,
2128         .arg1_type      = ARG_PTR_TO_CTX,
2129 };
2130
2131 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2132 {
2133         /* After all direct packet write, this can be used once for
2134          * triggering a lazy recalc on next skb_get_hash() invocation.
2135          */
2136         skb_clear_hash(skb);
2137         return 0;
2138 }
2139
2140 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2141         .func           = bpf_set_hash_invalid,
2142         .gpl_only       = false,
2143         .ret_type       = RET_INTEGER,
2144         .arg1_type      = ARG_PTR_TO_CTX,
2145 };
2146
2147 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2148 {
2149         /* Set user specified hash as L4(+), so that it gets returned
2150          * on skb_get_hash() call unless BPF prog later on triggers a
2151          * skb_clear_hash().
2152          */
2153         __skb_set_sw_hash(skb, hash, true);
2154         return 0;
2155 }
2156
2157 static const struct bpf_func_proto bpf_set_hash_proto = {
2158         .func           = bpf_set_hash,
2159         .gpl_only       = false,
2160         .ret_type       = RET_INTEGER,
2161         .arg1_type      = ARG_PTR_TO_CTX,
2162         .arg2_type      = ARG_ANYTHING,
2163 };
2164
2165 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2166            u16, vlan_tci)
2167 {
2168         int ret;
2169
2170         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2171                      vlan_proto != htons(ETH_P_8021AD)))
2172                 vlan_proto = htons(ETH_P_8021Q);
2173
2174         bpf_push_mac_rcsum(skb);
2175         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2176         bpf_pull_mac_rcsum(skb);
2177
2178         bpf_compute_data_pointers(skb);
2179         return ret;
2180 }
2181
2182 const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2183         .func           = bpf_skb_vlan_push,
2184         .gpl_only       = false,
2185         .ret_type       = RET_INTEGER,
2186         .arg1_type      = ARG_PTR_TO_CTX,
2187         .arg2_type      = ARG_ANYTHING,
2188         .arg3_type      = ARG_ANYTHING,
2189 };
2190 EXPORT_SYMBOL_GPL(bpf_skb_vlan_push_proto);
2191
2192 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2193 {
2194         int ret;
2195
2196         bpf_push_mac_rcsum(skb);
2197         ret = skb_vlan_pop(skb);
2198         bpf_pull_mac_rcsum(skb);
2199
2200         bpf_compute_data_pointers(skb);
2201         return ret;
2202 }
2203
2204 const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2205         .func           = bpf_skb_vlan_pop,
2206         .gpl_only       = false,
2207         .ret_type       = RET_INTEGER,
2208         .arg1_type      = ARG_PTR_TO_CTX,
2209 };
2210 EXPORT_SYMBOL_GPL(bpf_skb_vlan_pop_proto);
2211
2212 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2213 {
2214         /* Caller already did skb_cow() with len as headroom,
2215          * so no need to do it here.
2216          */
2217         skb_push(skb, len);
2218         memmove(skb->data, skb->data + len, off);
2219         memset(skb->data + off, 0, len);
2220
2221         /* No skb_postpush_rcsum(skb, skb->data + off, len)
2222          * needed here as it does not change the skb->csum
2223          * result for checksum complete when summing over
2224          * zeroed blocks.
2225          */
2226         return 0;
2227 }
2228
2229 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2230 {
2231         /* skb_ensure_writable() is not needed here, as we're
2232          * already working on an uncloned skb.
2233          */
2234         if (unlikely(!pskb_may_pull(skb, off + len)))
2235                 return -ENOMEM;
2236
2237         skb_postpull_rcsum(skb, skb->data + off, len);
2238         memmove(skb->data + len, skb->data, off);
2239         __skb_pull(skb, len);
2240
2241         return 0;
2242 }
2243
2244 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2245 {
2246         bool trans_same = skb->transport_header == skb->network_header;
2247         int ret;
2248
2249         /* There's no need for __skb_push()/__skb_pull() pair to
2250          * get to the start of the mac header as we're guaranteed
2251          * to always start from here under eBPF.
2252          */
2253         ret = bpf_skb_generic_push(skb, off, len);
2254         if (likely(!ret)) {
2255                 skb->mac_header -= len;
2256                 skb->network_header -= len;
2257                 if (trans_same)
2258                         skb->transport_header = skb->network_header;
2259         }
2260
2261         return ret;
2262 }
2263
2264 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2265 {
2266         bool trans_same = skb->transport_header == skb->network_header;
2267         int ret;
2268
2269         /* Same here, __skb_push()/__skb_pull() pair not needed. */
2270         ret = bpf_skb_generic_pop(skb, off, len);
2271         if (likely(!ret)) {
2272                 skb->mac_header += len;
2273                 skb->network_header += len;
2274                 if (trans_same)
2275                         skb->transport_header = skb->network_header;
2276         }
2277
2278         return ret;
2279 }
2280
2281 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2282 {
2283         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2284         u32 off = skb_mac_header_len(skb);
2285         int ret;
2286
2287         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2288         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2289                 return -ENOTSUPP;
2290
2291         ret = skb_cow(skb, len_diff);
2292         if (unlikely(ret < 0))
2293                 return ret;
2294
2295         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2296         if (unlikely(ret < 0))
2297                 return ret;
2298
2299         if (skb_is_gso(skb)) {
2300                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2301
2302                 /* SKB_GSO_TCPV4 needs to be changed into
2303                  * SKB_GSO_TCPV6.
2304                  */
2305                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2306                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
2307                         shinfo->gso_type |=  SKB_GSO_TCPV6;
2308                 }
2309
2310                 /* Due to IPv6 header, MSS needs to be downgraded. */
2311                 skb_decrease_gso_size(shinfo, len_diff);
2312                 /* Header must be checked, and gso_segs recomputed. */
2313                 shinfo->gso_type |= SKB_GSO_DODGY;
2314                 shinfo->gso_segs = 0;
2315         }
2316
2317         skb->protocol = htons(ETH_P_IPV6);
2318         skb_clear_hash(skb);
2319
2320         return 0;
2321 }
2322
2323 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2324 {
2325         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2326         u32 off = skb_mac_header_len(skb);
2327         int ret;
2328
2329         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2330         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2331                 return -ENOTSUPP;
2332
2333         ret = skb_unclone(skb, GFP_ATOMIC);
2334         if (unlikely(ret < 0))
2335                 return ret;
2336
2337         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2338         if (unlikely(ret < 0))
2339                 return ret;
2340
2341         if (skb_is_gso(skb)) {
2342                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2343
2344                 /* SKB_GSO_TCPV6 needs to be changed into
2345                  * SKB_GSO_TCPV4.
2346                  */
2347                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2348                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
2349                         shinfo->gso_type |=  SKB_GSO_TCPV4;
2350                 }
2351
2352                 /* Due to IPv4 header, MSS can be upgraded. */
2353                 skb_increase_gso_size(shinfo, len_diff);
2354                 /* Header must be checked, and gso_segs recomputed. */
2355                 shinfo->gso_type |= SKB_GSO_DODGY;
2356                 shinfo->gso_segs = 0;
2357         }
2358
2359         skb->protocol = htons(ETH_P_IP);
2360         skb_clear_hash(skb);
2361
2362         return 0;
2363 }
2364
2365 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2366 {
2367         __be16 from_proto = skb->protocol;
2368
2369         if (from_proto == htons(ETH_P_IP) &&
2370               to_proto == htons(ETH_P_IPV6))
2371                 return bpf_skb_proto_4_to_6(skb);
2372
2373         if (from_proto == htons(ETH_P_IPV6) &&
2374               to_proto == htons(ETH_P_IP))
2375                 return bpf_skb_proto_6_to_4(skb);
2376
2377         return -ENOTSUPP;
2378 }
2379
2380 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2381            u64, flags)
2382 {
2383         int ret;
2384
2385         if (unlikely(flags))
2386                 return -EINVAL;
2387
2388         /* General idea is that this helper does the basic groundwork
2389          * needed for changing the protocol, and eBPF program fills the
2390          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2391          * and other helpers, rather than passing a raw buffer here.
2392          *
2393          * The rationale is to keep this minimal and without a need to
2394          * deal with raw packet data. F.e. even if we would pass buffers
2395          * here, the program still needs to call the bpf_lX_csum_replace()
2396          * helpers anyway. Plus, this way we keep also separation of
2397          * concerns, since f.e. bpf_skb_store_bytes() should only take
2398          * care of stores.
2399          *
2400          * Currently, additional options and extension header space are
2401          * not supported, but flags register is reserved so we can adapt
2402          * that. For offloads, we mark packet as dodgy, so that headers
2403          * need to be verified first.
2404          */
2405         ret = bpf_skb_proto_xlat(skb, proto);
2406         bpf_compute_data_pointers(skb);
2407         return ret;
2408 }
2409
2410 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2411         .func           = bpf_skb_change_proto,
2412         .gpl_only       = false,
2413         .ret_type       = RET_INTEGER,
2414         .arg1_type      = ARG_PTR_TO_CTX,
2415         .arg2_type      = ARG_ANYTHING,
2416         .arg3_type      = ARG_ANYTHING,
2417 };
2418
2419 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2420 {
2421         /* We only allow a restricted subset to be changed for now. */
2422         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2423                      !skb_pkt_type_ok(pkt_type)))
2424                 return -EINVAL;
2425
2426         skb->pkt_type = pkt_type;
2427         return 0;
2428 }
2429
2430 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2431         .func           = bpf_skb_change_type,
2432         .gpl_only       = false,
2433         .ret_type       = RET_INTEGER,
2434         .arg1_type      = ARG_PTR_TO_CTX,
2435         .arg2_type      = ARG_ANYTHING,
2436 };
2437
2438 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2439 {
2440         switch (skb->protocol) {
2441         case htons(ETH_P_IP):
2442                 return sizeof(struct iphdr);
2443         case htons(ETH_P_IPV6):
2444                 return sizeof(struct ipv6hdr);
2445         default:
2446                 return ~0U;
2447         }
2448 }
2449
2450 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2451 {
2452         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2453         int ret;
2454
2455         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2456         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2457                 return -ENOTSUPP;
2458
2459         ret = skb_cow(skb, len_diff);
2460         if (unlikely(ret < 0))
2461                 return ret;
2462
2463         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2464         if (unlikely(ret < 0))
2465                 return ret;
2466
2467         if (skb_is_gso(skb)) {
2468                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2469
2470                 /* Due to header grow, MSS needs to be downgraded. */
2471                 skb_decrease_gso_size(shinfo, len_diff);
2472                 /* Header must be checked, and gso_segs recomputed. */
2473                 shinfo->gso_type |= SKB_GSO_DODGY;
2474                 shinfo->gso_segs = 0;
2475         }
2476
2477         return 0;
2478 }
2479
2480 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2481 {
2482         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2483         int ret;
2484
2485         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2486         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2487                 return -ENOTSUPP;
2488
2489         ret = skb_unclone(skb, GFP_ATOMIC);
2490         if (unlikely(ret < 0))
2491                 return ret;
2492
2493         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2494         if (unlikely(ret < 0))
2495                 return ret;
2496
2497         if (skb_is_gso(skb)) {
2498                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2499
2500                 /* Due to header shrink, MSS can be upgraded. */
2501                 skb_increase_gso_size(shinfo, len_diff);
2502                 /* Header must be checked, and gso_segs recomputed. */
2503                 shinfo->gso_type |= SKB_GSO_DODGY;
2504                 shinfo->gso_segs = 0;
2505         }
2506
2507         return 0;
2508 }
2509
2510 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2511 {
2512         return skb->dev->mtu + skb->dev->hard_header_len;
2513 }
2514
2515 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2516 {
2517         bool trans_same = skb->transport_header == skb->network_header;
2518         u32 len_cur, len_diff_abs = abs(len_diff);
2519         u32 len_min = bpf_skb_net_base_len(skb);
2520         u32 len_max = __bpf_skb_max_len(skb);
2521         __be16 proto = skb->protocol;
2522         bool shrink = len_diff < 0;
2523         int ret;
2524
2525         if (unlikely(len_diff_abs > 0xfffU))
2526                 return -EFAULT;
2527         if (unlikely(proto != htons(ETH_P_IP) &&
2528                      proto != htons(ETH_P_IPV6)))
2529                 return -ENOTSUPP;
2530
2531         len_cur = skb->len - skb_network_offset(skb);
2532         if (skb_transport_header_was_set(skb) && !trans_same)
2533                 len_cur = skb_network_header_len(skb);
2534         if ((shrink && (len_diff_abs >= len_cur ||
2535                         len_cur - len_diff_abs < len_min)) ||
2536             (!shrink && (skb->len + len_diff_abs > len_max &&
2537                          !skb_is_gso(skb))))
2538                 return -ENOTSUPP;
2539
2540         ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2541                        bpf_skb_net_grow(skb, len_diff_abs);
2542
2543         bpf_compute_data_pointers(skb);
2544         return ret;
2545 }
2546
2547 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2548            u32, mode, u64, flags)
2549 {
2550         if (unlikely(flags))
2551                 return -EINVAL;
2552         if (likely(mode == BPF_ADJ_ROOM_NET))
2553                 return bpf_skb_adjust_net(skb, len_diff);
2554
2555         return -ENOTSUPP;
2556 }
2557
2558 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2559         .func           = bpf_skb_adjust_room,
2560         .gpl_only       = false,
2561         .ret_type       = RET_INTEGER,
2562         .arg1_type      = ARG_PTR_TO_CTX,
2563         .arg2_type      = ARG_ANYTHING,
2564         .arg3_type      = ARG_ANYTHING,
2565         .arg4_type      = ARG_ANYTHING,
2566 };
2567
2568 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2569 {
2570         u32 min_len = skb_network_offset(skb);
2571
2572         if (skb_transport_header_was_set(skb))
2573                 min_len = skb_transport_offset(skb);
2574         if (skb->ip_summed == CHECKSUM_PARTIAL)
2575                 min_len = skb_checksum_start_offset(skb) +
2576                           skb->csum_offset + sizeof(__sum16);
2577         return min_len;
2578 }
2579
2580 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2581 {
2582         unsigned int old_len = skb->len;
2583         int ret;
2584
2585         ret = __skb_grow_rcsum(skb, new_len);
2586         if (!ret)
2587                 memset(skb->data + old_len, 0, new_len - old_len);
2588         return ret;
2589 }
2590
2591 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2592 {
2593         return __skb_trim_rcsum(skb, new_len);
2594 }
2595
2596 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2597            u64, flags)
2598 {
2599         u32 max_len = __bpf_skb_max_len(skb);
2600         u32 min_len = __bpf_skb_min_len(skb);
2601         int ret;
2602
2603         if (unlikely(flags || new_len > max_len || new_len < min_len))
2604                 return -EINVAL;
2605         if (skb->encapsulation)
2606                 return -ENOTSUPP;
2607
2608         /* The basic idea of this helper is that it's performing the
2609          * needed work to either grow or trim an skb, and eBPF program
2610          * rewrites the rest via helpers like bpf_skb_store_bytes(),
2611          * bpf_lX_csum_replace() and others rather than passing a raw
2612          * buffer here. This one is a slow path helper and intended
2613          * for replies with control messages.
2614          *
2615          * Like in bpf_skb_change_proto(), we want to keep this rather
2616          * minimal and without protocol specifics so that we are able
2617          * to separate concerns as in bpf_skb_store_bytes() should only
2618          * be the one responsible for writing buffers.
2619          *
2620          * It's really expected to be a slow path operation here for
2621          * control message replies, so we're implicitly linearizing,
2622          * uncloning and drop offloads from the skb by this.
2623          */
2624         ret = __bpf_try_make_writable(skb, skb->len);
2625         if (!ret) {
2626                 if (new_len > skb->len)
2627                         ret = bpf_skb_grow_rcsum(skb, new_len);
2628                 else if (new_len < skb->len)
2629                         ret = bpf_skb_trim_rcsum(skb, new_len);
2630                 if (!ret && skb_is_gso(skb))
2631                         skb_gso_reset(skb);
2632         }
2633
2634         bpf_compute_data_pointers(skb);
2635         return ret;
2636 }
2637
2638 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2639         .func           = bpf_skb_change_tail,
2640         .gpl_only       = false,
2641         .ret_type       = RET_INTEGER,
2642         .arg1_type      = ARG_PTR_TO_CTX,
2643         .arg2_type      = ARG_ANYTHING,
2644         .arg3_type      = ARG_ANYTHING,
2645 };
2646
2647 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
2648            u64, flags)
2649 {
2650         u32 max_len = __bpf_skb_max_len(skb);
2651         u32 new_len = skb->len + head_room;
2652         int ret;
2653
2654         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
2655                      new_len < skb->len))
2656                 return -EINVAL;
2657
2658         ret = skb_cow(skb, head_room);
2659         if (likely(!ret)) {
2660                 /* Idea for this helper is that we currently only
2661                  * allow to expand on mac header. This means that
2662                  * skb->protocol network header, etc, stay as is.
2663                  * Compared to bpf_skb_change_tail(), we're more
2664                  * flexible due to not needing to linearize or
2665                  * reset GSO. Intention for this helper is to be
2666                  * used by an L3 skb that needs to push mac header
2667                  * for redirection into L2 device.
2668                  */
2669                 __skb_push(skb, head_room);
2670                 memset(skb->data, 0, head_room);
2671                 skb_reset_mac_header(skb);
2672         }
2673
2674         bpf_compute_data_pointers(skb);
2675         return 0;
2676 }
2677
2678 static const struct bpf_func_proto bpf_skb_change_head_proto = {
2679         .func           = bpf_skb_change_head,
2680         .gpl_only       = false,
2681         .ret_type       = RET_INTEGER,
2682         .arg1_type      = ARG_PTR_TO_CTX,
2683         .arg2_type      = ARG_ANYTHING,
2684         .arg3_type      = ARG_ANYTHING,
2685 };
2686
2687 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
2688 {
2689         return xdp_data_meta_unsupported(xdp) ? 0 :
2690                xdp->data - xdp->data_meta;
2691 }
2692
2693 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
2694 {
2695         unsigned long metalen = xdp_get_metalen(xdp);
2696         void *data_start = xdp->data_hard_start + metalen;
2697         void *data = xdp->data + offset;
2698
2699         if (unlikely(data < data_start ||
2700                      data > xdp->data_end - ETH_HLEN))
2701                 return -EINVAL;
2702
2703         if (metalen)
2704                 memmove(xdp->data_meta + offset,
2705                         xdp->data_meta, metalen);
2706         xdp->data_meta += offset;
2707         xdp->data = data;
2708
2709         return 0;
2710 }
2711
2712 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
2713         .func           = bpf_xdp_adjust_head,
2714         .gpl_only       = false,
2715         .ret_type       = RET_INTEGER,
2716         .arg1_type      = ARG_PTR_TO_CTX,
2717         .arg2_type      = ARG_ANYTHING,
2718 };
2719
2720 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
2721 {
2722         void *meta = xdp->data_meta + offset;
2723         unsigned long metalen = xdp->data - meta;
2724
2725         if (xdp_data_meta_unsupported(xdp))
2726                 return -ENOTSUPP;
2727         if (unlikely(meta < xdp->data_hard_start ||
2728                      meta > xdp->data))
2729                 return -EINVAL;
2730         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
2731                      (metalen > 32)))
2732                 return -EACCES;
2733
2734         xdp->data_meta = meta;
2735
2736         return 0;
2737 }
2738
2739 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
2740         .func           = bpf_xdp_adjust_meta,
2741         .gpl_only       = false,
2742         .ret_type       = RET_INTEGER,
2743         .arg1_type      = ARG_PTR_TO_CTX,
2744         .arg2_type      = ARG_ANYTHING,
2745 };
2746
2747 static int __bpf_tx_xdp(struct net_device *dev,
2748                         struct bpf_map *map,
2749                         struct xdp_buff *xdp,
2750                         u32 index)
2751 {
2752         int err;
2753
2754         if (!dev->netdev_ops->ndo_xdp_xmit) {
2755                 return -EOPNOTSUPP;
2756         }
2757
2758         err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
2759         if (err)
2760                 return err;
2761         dev->netdev_ops->ndo_xdp_flush(dev);
2762         return 0;
2763 }
2764
2765 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
2766                             struct bpf_map *map,
2767                             struct xdp_buff *xdp,
2768                             u32 index)
2769 {
2770         int err;
2771
2772         if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
2773                 struct net_device *dev = fwd;
2774
2775                 if (!dev->netdev_ops->ndo_xdp_xmit)
2776                         return -EOPNOTSUPP;
2777
2778                 err = dev->netdev_ops->ndo_xdp_xmit(dev, xdp);
2779                 if (err)
2780                         return err;
2781                 __dev_map_insert_ctx(map, index);
2782
2783         } else if (map->map_type == BPF_MAP_TYPE_CPUMAP) {
2784                 struct bpf_cpu_map_entry *rcpu = fwd;
2785
2786                 err = cpu_map_enqueue(rcpu, xdp, dev_rx);
2787                 if (err)
2788                         return err;
2789                 __cpu_map_insert_ctx(map, index);
2790         }
2791         return 0;
2792 }
2793
2794 void xdp_do_flush_map(void)
2795 {
2796         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2797         struct bpf_map *map = ri->map_to_flush;
2798
2799         ri->map_to_flush = NULL;
2800         if (map) {
2801                 switch (map->map_type) {
2802                 case BPF_MAP_TYPE_DEVMAP:
2803                         __dev_map_flush(map);
2804                         break;
2805                 case BPF_MAP_TYPE_CPUMAP:
2806                         __cpu_map_flush(map);
2807                         break;
2808                 default:
2809                         break;
2810                 }
2811         }
2812 }
2813 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
2814
2815 static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
2816 {
2817         switch (map->map_type) {
2818         case BPF_MAP_TYPE_DEVMAP:
2819                 return __dev_map_lookup_elem(map, index);
2820         case BPF_MAP_TYPE_CPUMAP:
2821                 return __cpu_map_lookup_elem(map, index);
2822         default:
2823                 return NULL;
2824         }
2825 }
2826
2827 static inline bool xdp_map_invalid(const struct bpf_prog *xdp_prog,
2828                                    unsigned long aux)
2829 {
2830         return (unsigned long)xdp_prog->aux != aux;
2831 }
2832
2833 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
2834                                struct bpf_prog *xdp_prog)
2835 {
2836         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2837         unsigned long map_owner = ri->map_owner;
2838         struct bpf_map *map = ri->map;
2839         u32 index = ri->ifindex;
2840         void *fwd = NULL;
2841         int err;
2842
2843         ri->ifindex = 0;
2844         ri->map = NULL;
2845         ri->map_owner = 0;
2846
2847         if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2848                 err = -EFAULT;
2849                 map = NULL;
2850                 goto err;
2851         }
2852
2853         fwd = __xdp_map_lookup_elem(map, index);
2854         if (!fwd) {
2855                 err = -EINVAL;
2856                 goto err;
2857         }
2858         if (ri->map_to_flush && ri->map_to_flush != map)
2859                 xdp_do_flush_map();
2860
2861         err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
2862         if (unlikely(err))
2863                 goto err;
2864
2865         ri->map_to_flush = map;
2866         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
2867         return 0;
2868 err:
2869         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
2870         return err;
2871 }
2872
2873 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
2874                     struct bpf_prog *xdp_prog)
2875 {
2876         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2877         struct net_device *fwd;
2878         u32 index = ri->ifindex;
2879         int err;
2880
2881         if (ri->map)
2882                 return xdp_do_redirect_map(dev, xdp, xdp_prog);
2883
2884         fwd = dev_get_by_index_rcu(dev_net(dev), index);
2885         ri->ifindex = 0;
2886         if (unlikely(!fwd)) {
2887                 err = -EINVAL;
2888                 goto err;
2889         }
2890
2891         err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
2892         if (unlikely(err))
2893                 goto err;
2894
2895         _trace_xdp_redirect(dev, xdp_prog, index);
2896         return 0;
2897 err:
2898         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
2899         return err;
2900 }
2901 EXPORT_SYMBOL_GPL(xdp_do_redirect);
2902
2903 static int __xdp_generic_ok_fwd_dev(struct sk_buff *skb, struct net_device *fwd)
2904 {
2905         unsigned int len;
2906
2907         if (unlikely(!(fwd->flags & IFF_UP)))
2908                 return -ENETDOWN;
2909
2910         len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
2911         if (skb->len > len)
2912                 return -EMSGSIZE;
2913
2914         return 0;
2915 }
2916
2917 static int xdp_do_generic_redirect_map(struct net_device *dev,
2918                                        struct sk_buff *skb,
2919                                        struct bpf_prog *xdp_prog)
2920 {
2921         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2922         unsigned long map_owner = ri->map_owner;
2923         struct bpf_map *map = ri->map;
2924         struct net_device *fwd = NULL;
2925         u32 index = ri->ifindex;
2926         int err = 0;
2927
2928         ri->ifindex = 0;
2929         ri->map = NULL;
2930         ri->map_owner = 0;
2931
2932         if (unlikely(xdp_map_invalid(xdp_prog, map_owner))) {
2933                 err = -EFAULT;
2934                 map = NULL;
2935                 goto err;
2936         }
2937         fwd = __xdp_map_lookup_elem(map, index);
2938         if (unlikely(!fwd)) {
2939                 err = -EINVAL;
2940                 goto err;
2941         }
2942
2943         if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
2944                 if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
2945                         goto err;
2946                 skb->dev = fwd;
2947         } else {
2948                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
2949                 err = -EBADRQC;
2950                 goto err;
2951         }
2952
2953         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
2954         return 0;
2955 err:
2956         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
2957         return err;
2958 }
2959
2960 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
2961                             struct bpf_prog *xdp_prog)
2962 {
2963         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2964         u32 index = ri->ifindex;
2965         struct net_device *fwd;
2966         int err = 0;
2967
2968         if (ri->map)
2969                 return xdp_do_generic_redirect_map(dev, skb, xdp_prog);
2970
2971         ri->ifindex = 0;
2972         fwd = dev_get_by_index_rcu(dev_net(dev), index);
2973         if (unlikely(!fwd)) {
2974                 err = -EINVAL;
2975                 goto err;
2976         }
2977
2978         if (unlikely((err = __xdp_generic_ok_fwd_dev(skb, fwd))))
2979                 goto err;
2980
2981         skb->dev = fwd;
2982         _trace_xdp_redirect(dev, xdp_prog, index);
2983         return 0;
2984 err:
2985         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
2986         return err;
2987 }
2988 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
2989
2990 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
2991 {
2992         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
2993
2994         if (unlikely(flags))
2995                 return XDP_ABORTED;
2996
2997         ri->ifindex = ifindex;
2998         ri->flags = flags;
2999         ri->map = NULL;
3000         ri->map_owner = 0;
3001
3002         return XDP_REDIRECT;
3003 }
3004
3005 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3006         .func           = bpf_xdp_redirect,
3007         .gpl_only       = false,
3008         .ret_type       = RET_INTEGER,
3009         .arg1_type      = ARG_ANYTHING,
3010         .arg2_type      = ARG_ANYTHING,
3011 };
3012
3013 BPF_CALL_4(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex, u64, flags,
3014            unsigned long, map_owner)
3015 {
3016         struct redirect_info *ri = this_cpu_ptr(&redirect_info);
3017
3018         if (unlikely(flags))
3019                 return XDP_ABORTED;
3020
3021         ri->ifindex = ifindex;
3022         ri->flags = flags;
3023         ri->map = map;
3024         ri->map_owner = map_owner;
3025
3026         return XDP_REDIRECT;
3027 }
3028
3029 /* Note, arg4 is hidden from users and populated by the verifier
3030  * with the right pointer.
3031  */
3032 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3033         .func           = bpf_xdp_redirect_map,
3034         .gpl_only       = false,
3035         .ret_type       = RET_INTEGER,
3036         .arg1_type      = ARG_CONST_MAP_PTR,
3037         .arg2_type      = ARG_ANYTHING,
3038         .arg3_type      = ARG_ANYTHING,
3039 };
3040
3041 bool bpf_helper_changes_pkt_data(void *func)
3042 {
3043         if (func == bpf_skb_vlan_push ||
3044             func == bpf_skb_vlan_pop ||
3045             func == bpf_skb_store_bytes ||
3046             func == bpf_skb_change_proto ||
3047             func == bpf_skb_change_head ||
3048             func == bpf_skb_change_tail ||
3049             func == bpf_skb_adjust_room ||
3050             func == bpf_skb_pull_data ||
3051             func == bpf_clone_redirect ||
3052             func == bpf_l3_csum_replace ||
3053             func == bpf_l4_csum_replace ||
3054             func == bpf_xdp_adjust_head ||
3055             func == bpf_xdp_adjust_meta ||
3056             func == bpf_msg_pull_data)
3057                 return true;
3058
3059         return false;
3060 }
3061
3062 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3063                                   unsigned long off, unsigned long len)
3064 {
3065         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3066
3067         if (unlikely(!ptr))
3068                 return len;
3069         if (ptr != dst_buff)
3070                 memcpy(dst_buff, ptr, len);
3071
3072         return 0;
3073 }
3074
3075 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3076            u64, flags, void *, meta, u64, meta_size)
3077 {
3078         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3079
3080         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3081                 return -EINVAL;
3082         if (unlikely(skb_size > skb->len))
3083                 return -EFAULT;
3084
3085         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3086                                 bpf_skb_copy);
3087 }
3088
3089 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3090         .func           = bpf_skb_event_output,
3091         .gpl_only       = true,
3092         .ret_type       = RET_INTEGER,
3093         .arg1_type      = ARG_PTR_TO_CTX,
3094         .arg2_type      = ARG_CONST_MAP_PTR,
3095         .arg3_type      = ARG_ANYTHING,
3096         .arg4_type      = ARG_PTR_TO_MEM,
3097         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3098 };
3099
3100 static unsigned short bpf_tunnel_key_af(u64 flags)
3101 {
3102         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3103 }
3104
3105 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3106            u32, size, u64, flags)
3107 {
3108         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3109         u8 compat[sizeof(struct bpf_tunnel_key)];
3110         void *to_orig = to;
3111         int err;
3112
3113         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3114                 err = -EINVAL;
3115                 goto err_clear;
3116         }
3117         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3118                 err = -EPROTO;
3119                 goto err_clear;
3120         }
3121         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3122                 err = -EINVAL;
3123                 switch (size) {
3124                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3125                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3126                         goto set_compat;
3127                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3128                         /* Fixup deprecated structure layouts here, so we have
3129                          * a common path later on.
3130                          */
3131                         if (ip_tunnel_info_af(info) != AF_INET)
3132                                 goto err_clear;
3133 set_compat:
3134                         to = (struct bpf_tunnel_key *)compat;
3135                         break;
3136                 default:
3137                         goto err_clear;
3138                 }
3139         }
3140
3141         to->tunnel_id = be64_to_cpu(info->key.tun_id);
3142         to->tunnel_tos = info->key.tos;
3143         to->tunnel_ttl = info->key.ttl;
3144
3145         if (flags & BPF_F_TUNINFO_IPV6) {
3146                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3147                        sizeof(to->remote_ipv6));
3148                 to->tunnel_label = be32_to_cpu(info->key.label);
3149         } else {
3150                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3151         }
3152
3153         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3154                 memcpy(to_orig, to, size);
3155
3156         return 0;
3157 err_clear:
3158         memset(to_orig, 0, size);
3159         return err;
3160 }
3161
3162 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3163         .func           = bpf_skb_get_tunnel_key,
3164         .gpl_only       = false,
3165         .ret_type       = RET_INTEGER,
3166         .arg1_type      = ARG_PTR_TO_CTX,
3167         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3168         .arg3_type      = ARG_CONST_SIZE,
3169         .arg4_type      = ARG_ANYTHING,
3170 };
3171
3172 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3173 {
3174         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3175         int err;
3176
3177         if (unlikely(!info ||
3178                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3179                 err = -ENOENT;
3180                 goto err_clear;
3181         }
3182         if (unlikely(size < info->options_len)) {
3183                 err = -ENOMEM;
3184                 goto err_clear;
3185         }
3186
3187         ip_tunnel_info_opts_get(to, info);
3188         if (size > info->options_len)
3189                 memset(to + info->options_len, 0, size - info->options_len);
3190
3191         return info->options_len;
3192 err_clear:
3193         memset(to, 0, size);
3194         return err;
3195 }
3196
3197 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3198         .func           = bpf_skb_get_tunnel_opt,
3199         .gpl_only       = false,
3200         .ret_type       = RET_INTEGER,
3201         .arg1_type      = ARG_PTR_TO_CTX,
3202         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3203         .arg3_type      = ARG_CONST_SIZE,
3204 };
3205
3206 static struct metadata_dst __percpu *md_dst;
3207
3208 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3209            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3210 {
3211         struct metadata_dst *md = this_cpu_ptr(md_dst);
3212         u8 compat[sizeof(struct bpf_tunnel_key)];
3213         struct ip_tunnel_info *info;
3214
3215         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3216                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3217                 return -EINVAL;
3218         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3219                 switch (size) {
3220                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3221                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3222                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3223                         /* Fixup deprecated structure layouts here, so we have
3224                          * a common path later on.
3225                          */
3226                         memcpy(compat, from, size);
3227                         memset(compat + size, 0, sizeof(compat) - size);
3228                         from = (const struct bpf_tunnel_key *) compat;
3229                         break;
3230                 default:
3231                         return -EINVAL;
3232                 }
3233         }
3234         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3235                      from->tunnel_ext))
3236                 return -EINVAL;
3237
3238         skb_dst_drop(skb);
3239         dst_hold((struct dst_entry *) md);
3240         skb_dst_set(skb, (struct dst_entry *) md);
3241
3242         info = &md->u.tun_info;
3243         info->mode = IP_TUNNEL_INFO_TX;
3244
3245         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3246         if (flags & BPF_F_DONT_FRAGMENT)
3247                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3248         if (flags & BPF_F_ZERO_CSUM_TX)
3249                 info->key.tun_flags &= ~TUNNEL_CSUM;
3250         if (flags & BPF_F_SEQ_NUMBER)
3251                 info->key.tun_flags |= TUNNEL_SEQ;
3252
3253         info->key.tun_id = cpu_to_be64(from->tunnel_id);
3254         info->key.tos = from->tunnel_tos;
3255         info->key.ttl = from->tunnel_ttl;
3256
3257         if (flags & BPF_F_TUNINFO_IPV6) {
3258                 info->mode |= IP_TUNNEL_INFO_IPV6;
3259                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3260                        sizeof(from->remote_ipv6));
3261                 info->key.label = cpu_to_be32(from->tunnel_label) &
3262                                   IPV6_FLOWLABEL_MASK;
3263         } else {
3264                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3265         }
3266
3267         return 0;
3268 }
3269
3270 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3271         .func           = bpf_skb_set_tunnel_key,
3272         .gpl_only       = false,
3273         .ret_type       = RET_INTEGER,
3274         .arg1_type      = ARG_PTR_TO_CTX,
3275         .arg2_type      = ARG_PTR_TO_MEM,
3276         .arg3_type      = ARG_CONST_SIZE,
3277         .arg4_type      = ARG_ANYTHING,
3278 };
3279
3280 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3281            const u8 *, from, u32, size)
3282 {
3283         struct ip_tunnel_info *info = skb_tunnel_info(skb);
3284         const struct metadata_dst *md = this_cpu_ptr(md_dst);
3285
3286         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3287                 return -EINVAL;
3288         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3289                 return -ENOMEM;
3290
3291         ip_tunnel_info_opts_set(info, from, size);
3292
3293         return 0;
3294 }
3295
3296 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3297         .func           = bpf_skb_set_tunnel_opt,
3298         .gpl_only       = false,
3299         .ret_type       = RET_INTEGER,
3300         .arg1_type      = ARG_PTR_TO_CTX,
3301         .arg2_type      = ARG_PTR_TO_MEM,
3302         .arg3_type      = ARG_CONST_SIZE,
3303 };
3304
3305 static const struct bpf_func_proto *
3306 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3307 {
3308         if (!md_dst) {
3309                 struct metadata_dst __percpu *tmp;
3310
3311                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3312                                                 METADATA_IP_TUNNEL,
3313                                                 GFP_KERNEL);
3314                 if (!tmp)
3315                         return NULL;
3316                 if (cmpxchg(&md_dst, NULL, tmp))
3317                         metadata_dst_free_percpu(tmp);
3318         }
3319
3320         switch (which) {
3321         case BPF_FUNC_skb_set_tunnel_key:
3322                 return &bpf_skb_set_tunnel_key_proto;
3323         case BPF_FUNC_skb_set_tunnel_opt:
3324                 return &bpf_skb_set_tunnel_opt_proto;
3325         default:
3326                 return NULL;
3327         }
3328 }
3329
3330 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3331            u32, idx)
3332 {
3333         struct bpf_array *array = container_of(map, struct bpf_array, map);
3334         struct cgroup *cgrp;
3335         struct sock *sk;
3336
3337         sk = skb_to_full_sk(skb);
3338         if (!sk || !sk_fullsock(sk))
3339                 return -ENOENT;
3340         if (unlikely(idx >= array->map.max_entries))
3341                 return -E2BIG;
3342
3343         cgrp = READ_ONCE(array->ptrs[idx]);
3344         if (unlikely(!cgrp))
3345                 return -EAGAIN;
3346
3347         return sk_under_cgroup_hierarchy(sk, cgrp);
3348 }
3349
3350 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3351         .func           = bpf_skb_under_cgroup,
3352         .gpl_only       = false,
3353         .ret_type       = RET_INTEGER,
3354         .arg1_type      = ARG_PTR_TO_CTX,
3355         .arg2_type      = ARG_CONST_MAP_PTR,
3356         .arg3_type      = ARG_ANYTHING,
3357 };
3358
3359 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3360                                   unsigned long off, unsigned long len)
3361 {
3362         memcpy(dst_buff, src_buff + off, len);
3363         return 0;
3364 }
3365
3366 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3367            u64, flags, void *, meta, u64, meta_size)
3368 {
3369         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3370
3371         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3372                 return -EINVAL;
3373         if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3374                 return -EFAULT;
3375
3376         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3377                                 xdp_size, bpf_xdp_copy);
3378 }
3379
3380 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3381         .func           = bpf_xdp_event_output,
3382         .gpl_only       = true,
3383         .ret_type       = RET_INTEGER,
3384         .arg1_type      = ARG_PTR_TO_CTX,
3385         .arg2_type      = ARG_CONST_MAP_PTR,
3386         .arg3_type      = ARG_ANYTHING,
3387         .arg4_type      = ARG_PTR_TO_MEM,
3388         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3389 };
3390
3391 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3392 {
3393         return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3394 }
3395
3396 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3397         .func           = bpf_get_socket_cookie,
3398         .gpl_only       = false,
3399         .ret_type       = RET_INTEGER,
3400         .arg1_type      = ARG_PTR_TO_CTX,
3401 };
3402
3403 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3404 {
3405         struct sock *sk = sk_to_full_sk(skb->sk);
3406         kuid_t kuid;
3407
3408         if (!sk || !sk_fullsock(sk))
3409                 return overflowuid;
3410         kuid = sock_net_uid(sock_net(sk), sk);
3411         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3412 }
3413
3414 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3415         .func           = bpf_get_socket_uid,
3416         .gpl_only       = false,
3417         .ret_type       = RET_INTEGER,
3418         .arg1_type      = ARG_PTR_TO_CTX,
3419 };
3420
3421 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3422            int, level, int, optname, char *, optval, int, optlen)
3423 {
3424         struct sock *sk = bpf_sock->sk;
3425         int ret = 0;
3426         int val;
3427
3428         if (!sk_fullsock(sk))
3429                 return -EINVAL;
3430
3431         if (level == SOL_SOCKET) {
3432                 if (optlen != sizeof(int))
3433                         return -EINVAL;
3434                 val = *((int *)optval);
3435
3436                 /* Only some socketops are supported */
3437                 switch (optname) {
3438                 case SO_RCVBUF:
3439                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3440                         sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3441                         break;
3442                 case SO_SNDBUF:
3443                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3444                         sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3445                         break;
3446                 case SO_MAX_PACING_RATE:
3447                         sk->sk_max_pacing_rate = val;
3448                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3449                                                  sk->sk_max_pacing_rate);
3450                         break;
3451                 case SO_PRIORITY:
3452                         sk->sk_priority = val;
3453                         break;
3454                 case SO_RCVLOWAT:
3455                         if (val < 0)
3456                                 val = INT_MAX;
3457                         sk->sk_rcvlowat = val ? : 1;
3458                         break;
3459                 case SO_MARK:
3460                         sk->sk_mark = val;
3461                         break;
3462                 default:
3463                         ret = -EINVAL;
3464                 }
3465 #ifdef CONFIG_INET
3466         } else if (level == SOL_IP) {
3467                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3468                         return -EINVAL;
3469
3470                 val = *((int *)optval);
3471                 /* Only some options are supported */
3472                 switch (optname) {
3473                 case IP_TOS:
3474                         if (val < -1 || val > 0xff) {
3475                                 ret = -EINVAL;
3476                         } else {
3477                                 struct inet_sock *inet = inet_sk(sk);
3478
3479                                 if (val == -1)
3480                                         val = 0;
3481                                 inet->tos = val;
3482                         }
3483                         break;
3484                 default:
3485                         ret = -EINVAL;
3486                 }
3487 #if IS_ENABLED(CONFIG_IPV6)
3488         } else if (level == SOL_IPV6) {
3489                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3490                         return -EINVAL;
3491
3492                 val = *((int *)optval);
3493                 /* Only some options are supported */
3494                 switch (optname) {
3495                 case IPV6_TCLASS:
3496                         if (val < -1 || val > 0xff) {
3497                                 ret = -EINVAL;
3498                         } else {
3499                                 struct ipv6_pinfo *np = inet6_sk(sk);
3500
3501                                 if (val == -1)
3502                                         val = 0;
3503                                 np->tclass = val;
3504                         }
3505                         break;
3506                 default:
3507                         ret = -EINVAL;
3508                 }
3509 #endif
3510         } else if (level == SOL_TCP &&
3511                    sk->sk_prot->setsockopt == tcp_setsockopt) {
3512                 if (optname == TCP_CONGESTION) {
3513                         char name[TCP_CA_NAME_MAX];
3514                         bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3515
3516                         strncpy(name, optval, min_t(long, optlen,
3517                                                     TCP_CA_NAME_MAX-1));
3518                         name[TCP_CA_NAME_MAX-1] = 0;
3519                         ret = tcp_set_congestion_control(sk, name, false,
3520                                                          reinit);
3521                 } else {
3522                         struct tcp_sock *tp = tcp_sk(sk);
3523
3524                         if (optlen != sizeof(int))
3525                                 return -EINVAL;
3526
3527                         val = *((int *)optval);
3528                         /* Only some options are supported */
3529                         switch (optname) {
3530                         case TCP_BPF_IW:
3531                                 if (val <= 0 || tp->data_segs_out > 0)
3532                                         ret = -EINVAL;
3533                                 else
3534                                         tp->snd_cwnd = val;
3535                                 break;
3536                         case TCP_BPF_SNDCWND_CLAMP:
3537                                 if (val <= 0) {
3538                                         ret = -EINVAL;
3539                                 } else {
3540                                         tp->snd_cwnd_clamp = val;
3541                                         tp->snd_ssthresh = val;
3542                                 }
3543                                 break;
3544                         default:
3545                                 ret = -EINVAL;
3546                         }
3547                 }
3548 #endif
3549         } else {
3550                 ret = -EINVAL;
3551         }
3552         return ret;
3553 }
3554
3555 static const struct bpf_func_proto bpf_setsockopt_proto = {
3556         .func           = bpf_setsockopt,
3557         .gpl_only       = false,
3558         .ret_type       = RET_INTEGER,
3559         .arg1_type      = ARG_PTR_TO_CTX,
3560         .arg2_type      = ARG_ANYTHING,
3561         .arg3_type      = ARG_ANYTHING,
3562         .arg4_type      = ARG_PTR_TO_MEM,
3563         .arg5_type      = ARG_CONST_SIZE,
3564 };
3565
3566 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3567            int, level, int, optname, char *, optval, int, optlen)
3568 {
3569         struct sock *sk = bpf_sock->sk;
3570
3571         if (!sk_fullsock(sk))
3572                 goto err_clear;
3573
3574 #ifdef CONFIG_INET
3575         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
3576                 if (optname == TCP_CONGESTION) {
3577                         struct inet_connection_sock *icsk = inet_csk(sk);
3578
3579                         if (!icsk->icsk_ca_ops || optlen <= 1)
3580                                 goto err_clear;
3581                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
3582                         optval[optlen - 1] = 0;
3583                 } else {
3584                         goto err_clear;
3585                 }
3586         } else if (level == SOL_IP) {
3587                 struct inet_sock *inet = inet_sk(sk);
3588
3589                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3590                         goto err_clear;
3591
3592                 /* Only some options are supported */
3593                 switch (optname) {
3594                 case IP_TOS:
3595                         *((int *)optval) = (int)inet->tos;
3596                         break;
3597                 default:
3598                         goto err_clear;
3599                 }
3600 #if IS_ENABLED(CONFIG_IPV6)
3601         } else if (level == SOL_IPV6) {
3602                 struct ipv6_pinfo *np = inet6_sk(sk);
3603
3604                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3605                         goto err_clear;
3606
3607                 /* Only some options are supported */
3608                 switch (optname) {
3609                 case IPV6_TCLASS:
3610                         *((int *)optval) = (int)np->tclass;
3611                         break;
3612                 default:
3613                         goto err_clear;
3614                 }
3615 #endif
3616         } else {
3617                 goto err_clear;
3618         }
3619         return 0;
3620 #endif
3621 err_clear:
3622         memset(optval, 0, optlen);
3623         return -EINVAL;
3624 }
3625
3626 static const struct bpf_func_proto bpf_getsockopt_proto = {
3627         .func           = bpf_getsockopt,
3628         .gpl_only       = false,
3629         .ret_type       = RET_INTEGER,
3630         .arg1_type      = ARG_PTR_TO_CTX,
3631         .arg2_type      = ARG_ANYTHING,
3632         .arg3_type      = ARG_ANYTHING,
3633         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
3634         .arg5_type      = ARG_CONST_SIZE,
3635 };
3636
3637 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
3638            int, argval)
3639 {
3640         struct sock *sk = bpf_sock->sk;
3641         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
3642
3643         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
3644                 return -EINVAL;
3645
3646         if (val)
3647                 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
3648
3649         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
3650 }
3651
3652 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
3653         .func           = bpf_sock_ops_cb_flags_set,
3654         .gpl_only       = false,
3655         .ret_type       = RET_INTEGER,
3656         .arg1_type      = ARG_PTR_TO_CTX,
3657         .arg2_type      = ARG_ANYTHING,
3658 };
3659
3660 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
3661 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
3662
3663 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
3664            int, addr_len)
3665 {
3666 #ifdef CONFIG_INET
3667         struct sock *sk = ctx->sk;
3668         int err;
3669
3670         /* Binding to port can be expensive so it's prohibited in the helper.
3671          * Only binding to IP is supported.
3672          */
3673         err = -EINVAL;
3674         if (addr->sa_family == AF_INET) {
3675                 if (addr_len < sizeof(struct sockaddr_in))
3676                         return err;
3677                 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
3678                         return err;
3679                 return __inet_bind(sk, addr, addr_len, true, false);
3680 #if IS_ENABLED(CONFIG_IPV6)
3681         } else if (addr->sa_family == AF_INET6) {
3682                 if (addr_len < SIN6_LEN_RFC2133)
3683                         return err;
3684                 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
3685                         return err;
3686                 /* ipv6_bpf_stub cannot be NULL, since it's called from
3687                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
3688                  */
3689                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
3690 #endif /* CONFIG_IPV6 */
3691         }
3692 #endif /* CONFIG_INET */
3693
3694         return -EAFNOSUPPORT;
3695 }
3696
3697 static const struct bpf_func_proto bpf_bind_proto = {
3698         .func           = bpf_bind,
3699         .gpl_only       = false,
3700         .ret_type       = RET_INTEGER,
3701         .arg1_type      = ARG_PTR_TO_CTX,
3702         .arg2_type      = ARG_PTR_TO_MEM,
3703         .arg3_type      = ARG_CONST_SIZE,
3704 };
3705
3706 static const struct bpf_func_proto *
3707 bpf_base_func_proto(enum bpf_func_id func_id)
3708 {
3709         switch (func_id) {
3710         case BPF_FUNC_map_lookup_elem:
3711                 return &bpf_map_lookup_elem_proto;
3712         case BPF_FUNC_map_update_elem:
3713                 return &bpf_map_update_elem_proto;
3714         case BPF_FUNC_map_delete_elem:
3715                 return &bpf_map_delete_elem_proto;
3716         case BPF_FUNC_get_prandom_u32:
3717                 return &bpf_get_prandom_u32_proto;
3718         case BPF_FUNC_get_smp_processor_id:
3719                 return &bpf_get_raw_smp_processor_id_proto;
3720         case BPF_FUNC_get_numa_node_id:
3721                 return &bpf_get_numa_node_id_proto;
3722         case BPF_FUNC_tail_call:
3723                 return &bpf_tail_call_proto;
3724         case BPF_FUNC_ktime_get_ns:
3725                 return &bpf_ktime_get_ns_proto;
3726         case BPF_FUNC_trace_printk:
3727                 if (capable(CAP_SYS_ADMIN))
3728                         return bpf_get_trace_printk_proto();
3729         default:
3730                 return NULL;
3731         }
3732 }
3733
3734 static const struct bpf_func_proto *
3735 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3736 {
3737         switch (func_id) {
3738         /* inet and inet6 sockets are created in a process
3739          * context so there is always a valid uid/gid
3740          */
3741         case BPF_FUNC_get_current_uid_gid:
3742                 return &bpf_get_current_uid_gid_proto;
3743         default:
3744                 return bpf_base_func_proto(func_id);
3745         }
3746 }
3747
3748 static const struct bpf_func_proto *
3749 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3750 {
3751         switch (func_id) {
3752         /* inet and inet6 sockets are created in a process
3753          * context so there is always a valid uid/gid
3754          */
3755         case BPF_FUNC_get_current_uid_gid:
3756                 return &bpf_get_current_uid_gid_proto;
3757         case BPF_FUNC_bind:
3758                 switch (prog->expected_attach_type) {
3759                 case BPF_CGROUP_INET4_CONNECT:
3760                 case BPF_CGROUP_INET6_CONNECT:
3761                         return &bpf_bind_proto;
3762                 default:
3763                         return NULL;
3764                 }
3765         default:
3766                 return bpf_base_func_proto(func_id);
3767         }
3768 }
3769
3770 static const struct bpf_func_proto *
3771 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3772 {
3773         switch (func_id) {
3774         case BPF_FUNC_skb_load_bytes:
3775                 return &bpf_skb_load_bytes_proto;
3776         case BPF_FUNC_get_socket_cookie:
3777                 return &bpf_get_socket_cookie_proto;
3778         case BPF_FUNC_get_socket_uid:
3779                 return &bpf_get_socket_uid_proto;
3780         default:
3781                 return bpf_base_func_proto(func_id);
3782         }
3783 }
3784
3785 static const struct bpf_func_proto *
3786 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3787 {
3788         switch (func_id) {
3789         case BPF_FUNC_skb_store_bytes:
3790                 return &bpf_skb_store_bytes_proto;
3791         case BPF_FUNC_skb_load_bytes:
3792                 return &bpf_skb_load_bytes_proto;
3793         case BPF_FUNC_skb_pull_data:
3794                 return &bpf_skb_pull_data_proto;
3795         case BPF_FUNC_csum_diff:
3796                 return &bpf_csum_diff_proto;
3797         case BPF_FUNC_csum_update:
3798                 return &bpf_csum_update_proto;
3799         case BPF_FUNC_l3_csum_replace:
3800                 return &bpf_l3_csum_replace_proto;
3801         case BPF_FUNC_l4_csum_replace:
3802                 return &bpf_l4_csum_replace_proto;
3803         case BPF_FUNC_clone_redirect:
3804                 return &bpf_clone_redirect_proto;
3805         case BPF_FUNC_get_cgroup_classid:
3806                 return &bpf_get_cgroup_classid_proto;
3807         case BPF_FUNC_skb_vlan_push:
3808                 return &bpf_skb_vlan_push_proto;
3809         case BPF_FUNC_skb_vlan_pop:
3810                 return &bpf_skb_vlan_pop_proto;
3811         case BPF_FUNC_skb_change_proto:
3812                 return &bpf_skb_change_proto_proto;
3813         case BPF_FUNC_skb_change_type:
3814                 return &bpf_skb_change_type_proto;
3815         case BPF_FUNC_skb_adjust_room:
3816                 return &bpf_skb_adjust_room_proto;
3817         case BPF_FUNC_skb_change_tail:
3818                 return &bpf_skb_change_tail_proto;
3819         case BPF_FUNC_skb_get_tunnel_key:
3820                 return &bpf_skb_get_tunnel_key_proto;
3821         case BPF_FUNC_skb_set_tunnel_key:
3822                 return bpf_get_skb_set_tunnel_proto(func_id);
3823         case BPF_FUNC_skb_get_tunnel_opt:
3824                 return &bpf_skb_get_tunnel_opt_proto;
3825         case BPF_FUNC_skb_set_tunnel_opt:
3826                 return bpf_get_skb_set_tunnel_proto(func_id);
3827         case BPF_FUNC_redirect:
3828                 return &bpf_redirect_proto;
3829         case BPF_FUNC_get_route_realm:
3830                 return &bpf_get_route_realm_proto;
3831         case BPF_FUNC_get_hash_recalc:
3832                 return &bpf_get_hash_recalc_proto;
3833         case BPF_FUNC_set_hash_invalid:
3834                 return &bpf_set_hash_invalid_proto;
3835         case BPF_FUNC_set_hash:
3836                 return &bpf_set_hash_proto;
3837         case BPF_FUNC_perf_event_output:
3838                 return &bpf_skb_event_output_proto;
3839         case BPF_FUNC_get_smp_processor_id:
3840                 return &bpf_get_smp_processor_id_proto;
3841         case BPF_FUNC_skb_under_cgroup:
3842                 return &bpf_skb_under_cgroup_proto;
3843         case BPF_FUNC_get_socket_cookie:
3844                 return &bpf_get_socket_cookie_proto;
3845         case BPF_FUNC_get_socket_uid:
3846                 return &bpf_get_socket_uid_proto;
3847         default:
3848                 return bpf_base_func_proto(func_id);
3849         }
3850 }
3851
3852 static const struct bpf_func_proto *
3853 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3854 {
3855         switch (func_id) {
3856         case BPF_FUNC_perf_event_output:
3857                 return &bpf_xdp_event_output_proto;
3858         case BPF_FUNC_get_smp_processor_id:
3859                 return &bpf_get_smp_processor_id_proto;
3860         case BPF_FUNC_csum_diff:
3861                 return &bpf_csum_diff_proto;
3862         case BPF_FUNC_xdp_adjust_head:
3863                 return &bpf_xdp_adjust_head_proto;
3864         case BPF_FUNC_xdp_adjust_meta:
3865                 return &bpf_xdp_adjust_meta_proto;
3866         case BPF_FUNC_redirect:
3867                 return &bpf_xdp_redirect_proto;
3868         case BPF_FUNC_redirect_map:
3869                 return &bpf_xdp_redirect_map_proto;
3870         default:
3871                 return bpf_base_func_proto(func_id);
3872         }
3873 }
3874
3875 static const struct bpf_func_proto *
3876 lwt_inout_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3877 {
3878         switch (func_id) {
3879         case BPF_FUNC_skb_load_bytes:
3880                 return &bpf_skb_load_bytes_proto;
3881         case BPF_FUNC_skb_pull_data:
3882                 return &bpf_skb_pull_data_proto;
3883         case BPF_FUNC_csum_diff:
3884                 return &bpf_csum_diff_proto;
3885         case BPF_FUNC_get_cgroup_classid:
3886                 return &bpf_get_cgroup_classid_proto;
3887         case BPF_FUNC_get_route_realm:
3888                 return &bpf_get_route_realm_proto;
3889         case BPF_FUNC_get_hash_recalc:
3890                 return &bpf_get_hash_recalc_proto;
3891         case BPF_FUNC_perf_event_output:
3892                 return &bpf_skb_event_output_proto;
3893         case BPF_FUNC_get_smp_processor_id:
3894                 return &bpf_get_smp_processor_id_proto;
3895         case BPF_FUNC_skb_under_cgroup:
3896                 return &bpf_skb_under_cgroup_proto;
3897         default:
3898                 return bpf_base_func_proto(func_id);
3899         }
3900 }
3901
3902 static const struct bpf_func_proto *
3903 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3904 {
3905         switch (func_id) {
3906         case BPF_FUNC_setsockopt:
3907                 return &bpf_setsockopt_proto;
3908         case BPF_FUNC_getsockopt:
3909                 return &bpf_getsockopt_proto;
3910         case BPF_FUNC_sock_ops_cb_flags_set:
3911                 return &bpf_sock_ops_cb_flags_set_proto;
3912         case BPF_FUNC_sock_map_update:
3913                 return &bpf_sock_map_update_proto;
3914         default:
3915                 return bpf_base_func_proto(func_id);
3916         }
3917 }
3918
3919 static const struct bpf_func_proto *
3920 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3921 {
3922         switch (func_id) {
3923         case BPF_FUNC_msg_redirect_map:
3924                 return &bpf_msg_redirect_map_proto;
3925         case BPF_FUNC_msg_apply_bytes:
3926                 return &bpf_msg_apply_bytes_proto;
3927         case BPF_FUNC_msg_cork_bytes:
3928                 return &bpf_msg_cork_bytes_proto;
3929         case BPF_FUNC_msg_pull_data:
3930                 return &bpf_msg_pull_data_proto;
3931         default:
3932                 return bpf_base_func_proto(func_id);
3933         }
3934 }
3935
3936 static const struct bpf_func_proto *
3937 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3938 {
3939         switch (func_id) {
3940         case BPF_FUNC_skb_store_bytes:
3941                 return &bpf_skb_store_bytes_proto;
3942         case BPF_FUNC_skb_load_bytes:
3943                 return &bpf_skb_load_bytes_proto;
3944         case BPF_FUNC_skb_pull_data:
3945                 return &bpf_skb_pull_data_proto;
3946         case BPF_FUNC_skb_change_tail:
3947                 return &bpf_skb_change_tail_proto;
3948         case BPF_FUNC_skb_change_head:
3949                 return &bpf_skb_change_head_proto;
3950         case BPF_FUNC_get_socket_cookie:
3951                 return &bpf_get_socket_cookie_proto;
3952         case BPF_FUNC_get_socket_uid:
3953                 return &bpf_get_socket_uid_proto;
3954         case BPF_FUNC_sk_redirect_map:
3955                 return &bpf_sk_redirect_map_proto;
3956         default:
3957                 return bpf_base_func_proto(func_id);
3958         }
3959 }
3960
3961 static const struct bpf_func_proto *
3962 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3963 {
3964         switch (func_id) {
3965         case BPF_FUNC_skb_get_tunnel_key:
3966                 return &bpf_skb_get_tunnel_key_proto;
3967         case BPF_FUNC_skb_set_tunnel_key:
3968                 return bpf_get_skb_set_tunnel_proto(func_id);
3969         case BPF_FUNC_skb_get_tunnel_opt:
3970                 return &bpf_skb_get_tunnel_opt_proto;
3971         case BPF_FUNC_skb_set_tunnel_opt:
3972                 return bpf_get_skb_set_tunnel_proto(func_id);
3973         case BPF_FUNC_redirect:
3974                 return &bpf_redirect_proto;
3975         case BPF_FUNC_clone_redirect:
3976                 return &bpf_clone_redirect_proto;
3977         case BPF_FUNC_skb_change_tail:
3978                 return &bpf_skb_change_tail_proto;
3979         case BPF_FUNC_skb_change_head:
3980                 return &bpf_skb_change_head_proto;
3981         case BPF_FUNC_skb_store_bytes:
3982                 return &bpf_skb_store_bytes_proto;
3983         case BPF_FUNC_csum_update:
3984                 return &bpf_csum_update_proto;
3985         case BPF_FUNC_l3_csum_replace:
3986                 return &bpf_l3_csum_replace_proto;
3987         case BPF_FUNC_l4_csum_replace:
3988                 return &bpf_l4_csum_replace_proto;
3989         case BPF_FUNC_set_hash_invalid:
3990                 return &bpf_set_hash_invalid_proto;
3991         default:
3992                 return lwt_inout_func_proto(func_id, prog);
3993         }
3994 }
3995
3996 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
3997                                     const struct bpf_prog *prog,
3998                                     struct bpf_insn_access_aux *info)
3999 {
4000         const int size_default = sizeof(__u32);
4001
4002         if (off < 0 || off >= sizeof(struct __sk_buff))
4003                 return false;
4004
4005         /* The verifier guarantees that size > 0. */
4006         if (off % size != 0)
4007                 return false;
4008
4009         switch (off) {
4010         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4011                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
4012                         return false;
4013                 break;
4014         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
4015         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
4016         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
4017         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
4018         case bpf_ctx_range(struct __sk_buff, data):
4019         case bpf_ctx_range(struct __sk_buff, data_meta):
4020         case bpf_ctx_range(struct __sk_buff, data_end):
4021                 if (size != size_default)
4022                         return false;
4023                 break;
4024         default:
4025                 /* Only narrow read access allowed for now. */
4026                 if (type == BPF_WRITE) {
4027                         if (size != size_default)
4028                                 return false;
4029                 } else {
4030                         bpf_ctx_record_field_size(info, size_default);
4031                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
4032                                 return false;
4033                 }
4034         }
4035
4036         return true;
4037 }
4038
4039 static bool sk_filter_is_valid_access(int off, int size,
4040                                       enum bpf_access_type type,
4041                                       const struct bpf_prog *prog,
4042                                       struct bpf_insn_access_aux *info)
4043 {
4044         switch (off) {
4045         case bpf_ctx_range(struct __sk_buff, tc_classid):
4046         case bpf_ctx_range(struct __sk_buff, data):
4047         case bpf_ctx_range(struct __sk_buff, data_meta):
4048         case bpf_ctx_range(struct __sk_buff, data_end):
4049         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
4050                 return false;
4051         }
4052
4053         if (type == BPF_WRITE) {
4054                 switch (off) {
4055                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
4056                         break;
4057                 default:
4058                         return false;
4059                 }
<