2 * NET An implementation of the SOCKET network access protocol.
4 * Version: @(#)socket.c 1.1.93 18/02/95
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
55 * This module is effectively the top level interface to the BSD socket
58 * Based upon Swansea University Computer Society NET3.039
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
96 #include <net/compat.h>
98 #include <net/cls_cgroup.h>
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <net/busy_poll.h>
108 #include <linux/errqueue.h>
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
115 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
116 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
117 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 static int sock_close(struct inode *inode, struct file *file);
120 static struct wait_queue_head *sock_get_poll_head(struct file *file,
122 static __poll_t sock_poll_mask(struct file *file, __poll_t);
123 static __poll_t sock_poll(struct file *file, struct poll_table_struct *wait);
124 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 static long compat_sock_ioctl(struct file *file,
127 unsigned int cmd, unsigned long arg);
129 static int sock_fasync(int fd, struct file *filp, int on);
130 static ssize_t sock_sendpage(struct file *file, struct page *page,
131 int offset, size_t size, loff_t *ppos, int more);
132 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
133 struct pipe_inode_info *pipe, size_t len,
137 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
138 * in the operation structures but are done directly via the socketcall() multiplexor.
141 static const struct file_operations socket_file_ops = {
142 .owner = THIS_MODULE,
144 .read_iter = sock_read_iter,
145 .write_iter = sock_write_iter,
146 .get_poll_head = sock_get_poll_head,
147 .poll_mask = sock_poll_mask,
149 .unlocked_ioctl = sock_ioctl,
151 .compat_ioctl = compat_sock_ioctl,
154 .release = sock_close,
155 .fasync = sock_fasync,
156 .sendpage = sock_sendpage,
157 .splice_write = generic_splice_sendpage,
158 .splice_read = sock_splice_read,
162 * The protocol list. Each protocol is registered in here.
165 static DEFINE_SPINLOCK(net_family_lock);
166 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
170 * Move socket addresses back and forth across the kernel/user
171 * divide and look after the messy bits.
175 * move_addr_to_kernel - copy a socket address into kernel space
176 * @uaddr: Address in user space
177 * @kaddr: Address in kernel space
178 * @ulen: Length in user space
180 * The address is copied into kernel space. If the provided address is
181 * too long an error code of -EINVAL is returned. If the copy gives
182 * invalid addresses -EFAULT is returned. On a success 0 is returned.
185 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
187 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 if (copy_from_user(kaddr, uaddr, ulen))
193 return audit_sockaddr(ulen, kaddr);
197 * move_addr_to_user - copy an address to user space
198 * @kaddr: kernel space address
199 * @klen: length of address in kernel
200 * @uaddr: user space address
201 * @ulen: pointer to user length field
203 * The value pointed to by ulen on entry is the buffer length available.
204 * This is overwritten with the buffer space used. -EINVAL is returned
205 * if an overlong buffer is specified or a negative buffer size. -EFAULT
206 * is returned if either the buffer or the length field are not
208 * After copying the data up to the limit the user specifies, the true
209 * length of the data is written over the length limit the user
210 * specified. Zero is returned for a success.
213 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
214 void __user *uaddr, int __user *ulen)
219 BUG_ON(klen > sizeof(struct sockaddr_storage));
220 err = get_user(len, ulen);
228 if (audit_sockaddr(klen, kaddr))
230 if (copy_to_user(uaddr, kaddr, len))
234 * "fromlen shall refer to the value before truncation.."
237 return __put_user(klen, ulen);
240 static struct kmem_cache *sock_inode_cachep __ro_after_init;
242 static struct inode *sock_alloc_inode(struct super_block *sb)
244 struct socket_alloc *ei;
245 struct socket_wq *wq;
247 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
250 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
252 kmem_cache_free(sock_inode_cachep, ei);
255 init_waitqueue_head(&wq->wait);
256 wq->fasync_list = NULL;
258 RCU_INIT_POINTER(ei->socket.wq, wq);
260 ei->socket.state = SS_UNCONNECTED;
261 ei->socket.flags = 0;
262 ei->socket.ops = NULL;
263 ei->socket.sk = NULL;
264 ei->socket.file = NULL;
266 return &ei->vfs_inode;
269 static void sock_destroy_inode(struct inode *inode)
271 struct socket_alloc *ei;
272 struct socket_wq *wq;
274 ei = container_of(inode, struct socket_alloc, vfs_inode);
275 wq = rcu_dereference_protected(ei->socket.wq, 1);
277 kmem_cache_free(sock_inode_cachep, ei);
280 static void init_once(void *foo)
282 struct socket_alloc *ei = (struct socket_alloc *)foo;
284 inode_init_once(&ei->vfs_inode);
287 static void init_inodecache(void)
289 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
290 sizeof(struct socket_alloc),
292 (SLAB_HWCACHE_ALIGN |
293 SLAB_RECLAIM_ACCOUNT |
294 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
296 BUG_ON(sock_inode_cachep == NULL);
299 static const struct super_operations sockfs_ops = {
300 .alloc_inode = sock_alloc_inode,
301 .destroy_inode = sock_destroy_inode,
302 .statfs = simple_statfs,
306 * sockfs_dname() is called from d_path().
308 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
310 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
311 d_inode(dentry)->i_ino);
314 static const struct dentry_operations sockfs_dentry_operations = {
315 .d_dname = sockfs_dname,
318 static int sockfs_xattr_get(const struct xattr_handler *handler,
319 struct dentry *dentry, struct inode *inode,
320 const char *suffix, void *value, size_t size)
323 if (dentry->d_name.len + 1 > size)
325 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
327 return dentry->d_name.len + 1;
330 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
331 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
332 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
334 static const struct xattr_handler sockfs_xattr_handler = {
335 .name = XATTR_NAME_SOCKPROTONAME,
336 .get = sockfs_xattr_get,
339 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
340 struct dentry *dentry, struct inode *inode,
341 const char *suffix, const void *value,
342 size_t size, int flags)
344 /* Handled by LSM. */
348 static const struct xattr_handler sockfs_security_xattr_handler = {
349 .prefix = XATTR_SECURITY_PREFIX,
350 .set = sockfs_security_xattr_set,
353 static const struct xattr_handler *sockfs_xattr_handlers[] = {
354 &sockfs_xattr_handler,
355 &sockfs_security_xattr_handler,
359 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
360 int flags, const char *dev_name, void *data)
362 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
363 sockfs_xattr_handlers,
364 &sockfs_dentry_operations, SOCKFS_MAGIC);
367 static struct vfsmount *sock_mnt __read_mostly;
369 static struct file_system_type sock_fs_type = {
371 .mount = sockfs_mount,
372 .kill_sb = kill_anon_super,
376 * Obtains the first available file descriptor and sets it up for use.
378 * These functions create file structures and maps them to fd space
379 * of the current process. On success it returns file descriptor
380 * and file struct implicitly stored in sock->file.
381 * Note that another thread may close file descriptor before we return
382 * from this function. We use the fact that now we do not refer
383 * to socket after mapping. If one day we will need it, this
384 * function will increment ref. count on file by 1.
386 * In any case returned fd MAY BE not valid!
387 * This race condition is unavoidable
388 * with shared fd spaces, we cannot solve it inside kernel,
389 * but we take care of internal coherence yet.
392 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
397 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
399 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
400 O_RDWR | (flags & O_NONBLOCK),
408 file->private_data = sock;
411 EXPORT_SYMBOL(sock_alloc_file);
413 static int sock_map_fd(struct socket *sock, int flags)
415 struct file *newfile;
416 int fd = get_unused_fd_flags(flags);
417 if (unlikely(fd < 0)) {
422 newfile = sock_alloc_file(sock, flags, NULL);
423 if (likely(!IS_ERR(newfile))) {
424 fd_install(fd, newfile);
429 return PTR_ERR(newfile);
432 struct socket *sock_from_file(struct file *file, int *err)
434 if (file->f_op == &socket_file_ops)
435 return file->private_data; /* set in sock_map_fd */
440 EXPORT_SYMBOL(sock_from_file);
443 * sockfd_lookup - Go from a file number to its socket slot
445 * @err: pointer to an error code return
447 * The file handle passed in is locked and the socket it is bound
448 * to is returned. If an error occurs the err pointer is overwritten
449 * with a negative errno code and NULL is returned. The function checks
450 * for both invalid handles and passing a handle which is not a socket.
452 * On a success the socket object pointer is returned.
455 struct socket *sockfd_lookup(int fd, int *err)
466 sock = sock_from_file(file, err);
471 EXPORT_SYMBOL(sockfd_lookup);
473 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
475 struct fd f = fdget(fd);
480 sock = sock_from_file(f.file, err);
482 *fput_needed = f.flags;
490 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
496 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
506 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
511 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
520 int err = simple_setattr(dentry, iattr);
522 if (!err && (iattr->ia_valid & ATTR_UID)) {
523 struct socket *sock = SOCKET_I(d_inode(dentry));
526 sock->sk->sk_uid = iattr->ia_uid;
534 static const struct inode_operations sockfs_inode_ops = {
535 .listxattr = sockfs_listxattr,
536 .setattr = sockfs_setattr,
540 * sock_alloc - allocate a socket
542 * Allocate a new inode and socket object. The two are bound together
543 * and initialised. The socket is then returned. If we are out of inodes
547 struct socket *sock_alloc(void)
552 inode = new_inode_pseudo(sock_mnt->mnt_sb);
556 sock = SOCKET_I(inode);
558 inode->i_ino = get_next_ino();
559 inode->i_mode = S_IFSOCK | S_IRWXUGO;
560 inode->i_uid = current_fsuid();
561 inode->i_gid = current_fsgid();
562 inode->i_op = &sockfs_inode_ops;
566 EXPORT_SYMBOL(sock_alloc);
569 * sock_release - close a socket
570 * @sock: socket to close
572 * The socket is released from the protocol stack if it has a release
573 * callback, and the inode is then released if the socket is bound to
574 * an inode not a file.
577 static void __sock_release(struct socket *sock, struct inode *inode)
580 struct module *owner = sock->ops->owner;
584 sock->ops->release(sock);
591 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
592 pr_err("%s: fasync list not empty!\n", __func__);
595 iput(SOCK_INODE(sock));
601 void sock_release(struct socket *sock)
603 __sock_release(sock, NULL);
605 EXPORT_SYMBOL(sock_release);
607 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
609 u8 flags = *tx_flags;
611 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
612 flags |= SKBTX_HW_TSTAMP;
614 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
615 flags |= SKBTX_SW_TSTAMP;
617 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
618 flags |= SKBTX_SCHED_TSTAMP;
622 EXPORT_SYMBOL(__sock_tx_timestamp);
624 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
626 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
627 BUG_ON(ret == -EIOCBQUEUED);
631 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
633 int err = security_socket_sendmsg(sock, msg,
636 return err ?: sock_sendmsg_nosec(sock, msg);
638 EXPORT_SYMBOL(sock_sendmsg);
640 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
641 struct kvec *vec, size_t num, size_t size)
643 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
644 return sock_sendmsg(sock, msg);
646 EXPORT_SYMBOL(kernel_sendmsg);
648 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
649 struct kvec *vec, size_t num, size_t size)
651 struct socket *sock = sk->sk_socket;
653 if (!sock->ops->sendmsg_locked)
654 return sock_no_sendmsg_locked(sk, msg, size);
656 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
658 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
660 EXPORT_SYMBOL(kernel_sendmsg_locked);
662 static bool skb_is_err_queue(const struct sk_buff *skb)
664 /* pkt_type of skbs enqueued on the error queue are set to
665 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
666 * in recvmsg, since skbs received on a local socket will never
667 * have a pkt_type of PACKET_OUTGOING.
669 return skb->pkt_type == PACKET_OUTGOING;
672 /* On transmit, software and hardware timestamps are returned independently.
673 * As the two skb clones share the hardware timestamp, which may be updated
674 * before the software timestamp is received, a hardware TX timestamp may be
675 * returned only if there is no software TX timestamp. Ignore false software
676 * timestamps, which may be made in the __sock_recv_timestamp() call when the
677 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
678 * hardware timestamp.
680 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
682 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
685 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
687 struct scm_ts_pktinfo ts_pktinfo;
688 struct net_device *orig_dev;
690 if (!skb_mac_header_was_set(skb))
693 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
696 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
698 ts_pktinfo.if_index = orig_dev->ifindex;
701 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
702 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
703 sizeof(ts_pktinfo), &ts_pktinfo);
707 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
709 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
712 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
713 struct scm_timestamping tss;
714 int empty = 1, false_tstamp = 0;
715 struct skb_shared_hwtstamps *shhwtstamps =
718 /* Race occurred between timestamp enabling and packet
719 receiving. Fill in the current time for now. */
720 if (need_software_tstamp && skb->tstamp == 0) {
721 __net_timestamp(skb);
725 if (need_software_tstamp) {
726 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
728 skb_get_timestamp(skb, &tv);
729 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
733 skb_get_timestampns(skb, &ts);
734 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
739 memset(&tss, 0, sizeof(tss));
740 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
741 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
744 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
745 !skb_is_swtx_tstamp(skb, false_tstamp) &&
746 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
748 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
749 !skb_is_err_queue(skb))
750 put_ts_pktinfo(msg, skb);
753 put_cmsg(msg, SOL_SOCKET,
754 SCM_TIMESTAMPING, sizeof(tss), &tss);
756 if (skb_is_err_queue(skb) && skb->len &&
757 SKB_EXT_ERR(skb)->opt_stats)
758 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
759 skb->len, skb->data);
762 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
764 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
769 if (!sock_flag(sk, SOCK_WIFI_STATUS))
771 if (!skb->wifi_acked_valid)
774 ack = skb->wifi_acked;
776 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
778 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
780 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
783 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
784 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
785 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
788 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
791 sock_recv_timestamp(msg, sk, skb);
792 sock_recv_drops(msg, sk, skb);
794 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
796 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
799 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
802 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
804 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
806 return err ?: sock_recvmsg_nosec(sock, msg, flags);
808 EXPORT_SYMBOL(sock_recvmsg);
811 * kernel_recvmsg - Receive a message from a socket (kernel space)
812 * @sock: The socket to receive the message from
813 * @msg: Received message
814 * @vec: Input s/g array for message data
815 * @num: Size of input s/g array
816 * @size: Number of bytes to read
817 * @flags: Message flags (MSG_DONTWAIT, etc...)
819 * On return the msg structure contains the scatter/gather array passed in the
820 * vec argument. The array is modified so that it consists of the unfilled
821 * portion of the original array.
823 * The returned value is the total number of bytes received, or an error.
825 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
826 struct kvec *vec, size_t num, size_t size, int flags)
828 mm_segment_t oldfs = get_fs();
831 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
833 result = sock_recvmsg(sock, msg, flags);
837 EXPORT_SYMBOL(kernel_recvmsg);
839 static ssize_t sock_sendpage(struct file *file, struct page *page,
840 int offset, size_t size, loff_t *ppos, int more)
845 sock = file->private_data;
847 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
848 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
851 return kernel_sendpage(sock, page, offset, size, flags);
854 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
855 struct pipe_inode_info *pipe, size_t len,
858 struct socket *sock = file->private_data;
860 if (unlikely(!sock->ops->splice_read))
863 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
866 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
868 struct file *file = iocb->ki_filp;
869 struct socket *sock = file->private_data;
870 struct msghdr msg = {.msg_iter = *to,
874 if (file->f_flags & O_NONBLOCK)
875 msg.msg_flags = MSG_DONTWAIT;
877 if (iocb->ki_pos != 0)
880 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
883 res = sock_recvmsg(sock, &msg, msg.msg_flags);
888 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
890 struct file *file = iocb->ki_filp;
891 struct socket *sock = file->private_data;
892 struct msghdr msg = {.msg_iter = *from,
896 if (iocb->ki_pos != 0)
899 if (file->f_flags & O_NONBLOCK)
900 msg.msg_flags = MSG_DONTWAIT;
902 if (sock->type == SOCK_SEQPACKET)
903 msg.msg_flags |= MSG_EOR;
905 res = sock_sendmsg(sock, &msg);
906 *from = msg.msg_iter;
911 * Atomic setting of ioctl hooks to avoid race
912 * with module unload.
915 static DEFINE_MUTEX(br_ioctl_mutex);
916 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
918 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
920 mutex_lock(&br_ioctl_mutex);
921 br_ioctl_hook = hook;
922 mutex_unlock(&br_ioctl_mutex);
924 EXPORT_SYMBOL(brioctl_set);
926 static DEFINE_MUTEX(vlan_ioctl_mutex);
927 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
929 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
931 mutex_lock(&vlan_ioctl_mutex);
932 vlan_ioctl_hook = hook;
933 mutex_unlock(&vlan_ioctl_mutex);
935 EXPORT_SYMBOL(vlan_ioctl_set);
937 static DEFINE_MUTEX(dlci_ioctl_mutex);
938 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
940 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
942 mutex_lock(&dlci_ioctl_mutex);
943 dlci_ioctl_hook = hook;
944 mutex_unlock(&dlci_ioctl_mutex);
946 EXPORT_SYMBOL(dlci_ioctl_set);
948 static long sock_do_ioctl(struct net *net, struct socket *sock,
949 unsigned int cmd, unsigned long arg)
952 void __user *argp = (void __user *)arg;
954 err = sock->ops->ioctl(sock, cmd, arg);
957 * If this ioctl is unknown try to hand it down
960 if (err != -ENOIOCTLCMD)
963 if (cmd == SIOCGIFCONF) {
965 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
968 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
970 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
975 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
977 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
978 if (!err && need_copyout)
979 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
986 * With an ioctl, arg may well be a user mode pointer, but we don't know
987 * what to do with it - that's up to the protocol still.
990 struct ns_common *get_net_ns(struct ns_common *ns)
992 return &get_net(container_of(ns, struct net, ns))->ns;
994 EXPORT_SYMBOL_GPL(get_net_ns);
996 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1000 void __user *argp = (void __user *)arg;
1004 sock = file->private_data;
1007 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1010 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1012 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1013 if (!err && need_copyout)
1014 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1017 #ifdef CONFIG_WEXT_CORE
1018 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1019 err = wext_handle_ioctl(net, cmd, argp);
1026 if (get_user(pid, (int __user *)argp))
1028 err = f_setown(sock->file, pid, 1);
1032 err = put_user(f_getown(sock->file),
1033 (int __user *)argp);
1041 request_module("bridge");
1043 mutex_lock(&br_ioctl_mutex);
1045 err = br_ioctl_hook(net, cmd, argp);
1046 mutex_unlock(&br_ioctl_mutex);
1051 if (!vlan_ioctl_hook)
1052 request_module("8021q");
1054 mutex_lock(&vlan_ioctl_mutex);
1055 if (vlan_ioctl_hook)
1056 err = vlan_ioctl_hook(net, argp);
1057 mutex_unlock(&vlan_ioctl_mutex);
1062 if (!dlci_ioctl_hook)
1063 request_module("dlci");
1065 mutex_lock(&dlci_ioctl_mutex);
1066 if (dlci_ioctl_hook)
1067 err = dlci_ioctl_hook(cmd, argp);
1068 mutex_unlock(&dlci_ioctl_mutex);
1072 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1075 err = open_related_ns(&net->ns, get_net_ns);
1078 err = sock_do_ioctl(net, sock, cmd, arg);
1084 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1087 struct socket *sock = NULL;
1089 err = security_socket_create(family, type, protocol, 1);
1093 sock = sock_alloc();
1100 err = security_socket_post_create(sock, family, type, protocol, 1);
1112 EXPORT_SYMBOL(sock_create_lite);
1114 static struct wait_queue_head *sock_get_poll_head(struct file *file,
1117 struct socket *sock = file->private_data;
1119 if (!sock->ops->poll_mask)
1121 sock_poll_busy_loop(sock, events);
1122 return sk_sleep(sock->sk);
1125 static __poll_t sock_poll_mask(struct file *file, __poll_t events)
1127 struct socket *sock = file->private_data;
1130 * We need to be sure we are in sync with the socket flags modification.
1132 * This memory barrier is paired in the wq_has_sleeper.
1136 /* this socket can poll_ll so tell the system call */
1137 return sock->ops->poll_mask(sock, events) |
1138 (sk_can_busy_loop(sock->sk) ? POLL_BUSY_LOOP : 0);
1141 /* No kernel lock held - perfect */
1142 static __poll_t sock_poll(struct file *file, poll_table *wait)
1144 struct socket *sock = file->private_data;
1145 __poll_t events = poll_requested_events(wait), mask = 0;
1147 if (sock->ops->poll) {
1148 sock_poll_busy_loop(sock, events);
1149 mask = sock->ops->poll(file, sock, wait);
1150 } else if (sock->ops->poll_mask) {
1151 sock_poll_wait(file, sock_get_poll_head(file, events), wait);
1152 mask = sock->ops->poll_mask(sock, events);
1155 return mask | sock_poll_busy_flag(sock);
1158 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1160 struct socket *sock = file->private_data;
1162 return sock->ops->mmap(file, sock, vma);
1165 static int sock_close(struct inode *inode, struct file *filp)
1167 __sock_release(SOCKET_I(inode), inode);
1172 * Update the socket async list
1174 * Fasync_list locking strategy.
1176 * 1. fasync_list is modified only under process context socket lock
1177 * i.e. under semaphore.
1178 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1179 * or under socket lock
1182 static int sock_fasync(int fd, struct file *filp, int on)
1184 struct socket *sock = filp->private_data;
1185 struct sock *sk = sock->sk;
1186 struct socket_wq *wq;
1192 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1193 fasync_helper(fd, filp, on, &wq->fasync_list);
1195 if (!wq->fasync_list)
1196 sock_reset_flag(sk, SOCK_FASYNC);
1198 sock_set_flag(sk, SOCK_FASYNC);
1204 /* This function may be called only under rcu_lock */
1206 int sock_wake_async(struct socket_wq *wq, int how, int band)
1208 if (!wq || !wq->fasync_list)
1212 case SOCK_WAKE_WAITD:
1213 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1216 case SOCK_WAKE_SPACE:
1217 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1222 kill_fasync(&wq->fasync_list, SIGIO, band);
1225 kill_fasync(&wq->fasync_list, SIGURG, band);
1230 EXPORT_SYMBOL(sock_wake_async);
1232 int __sock_create(struct net *net, int family, int type, int protocol,
1233 struct socket **res, int kern)
1236 struct socket *sock;
1237 const struct net_proto_family *pf;
1240 * Check protocol is in range
1242 if (family < 0 || family >= NPROTO)
1243 return -EAFNOSUPPORT;
1244 if (type < 0 || type >= SOCK_MAX)
1249 This uglymoron is moved from INET layer to here to avoid
1250 deadlock in module load.
1252 if (family == PF_INET && type == SOCK_PACKET) {
1253 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1258 err = security_socket_create(family, type, protocol, kern);
1263 * Allocate the socket and allow the family to set things up. if
1264 * the protocol is 0, the family is instructed to select an appropriate
1267 sock = sock_alloc();
1269 net_warn_ratelimited("socket: no more sockets\n");
1270 return -ENFILE; /* Not exactly a match, but its the
1271 closest posix thing */
1276 #ifdef CONFIG_MODULES
1277 /* Attempt to load a protocol module if the find failed.
1279 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1280 * requested real, full-featured networking support upon configuration.
1281 * Otherwise module support will break!
1283 if (rcu_access_pointer(net_families[family]) == NULL)
1284 request_module("net-pf-%d", family);
1288 pf = rcu_dereference(net_families[family]);
1289 err = -EAFNOSUPPORT;
1294 * We will call the ->create function, that possibly is in a loadable
1295 * module, so we have to bump that loadable module refcnt first.
1297 if (!try_module_get(pf->owner))
1300 /* Now protected by module ref count */
1303 err = pf->create(net, sock, protocol, kern);
1305 goto out_module_put;
1308 * Now to bump the refcnt of the [loadable] module that owns this
1309 * socket at sock_release time we decrement its refcnt.
1311 if (!try_module_get(sock->ops->owner))
1312 goto out_module_busy;
1315 * Now that we're done with the ->create function, the [loadable]
1316 * module can have its refcnt decremented
1318 module_put(pf->owner);
1319 err = security_socket_post_create(sock, family, type, protocol, kern);
1321 goto out_sock_release;
1327 err = -EAFNOSUPPORT;
1330 module_put(pf->owner);
1337 goto out_sock_release;
1339 EXPORT_SYMBOL(__sock_create);
1341 int sock_create(int family, int type, int protocol, struct socket **res)
1343 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1345 EXPORT_SYMBOL(sock_create);
1347 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1349 return __sock_create(net, family, type, protocol, res, 1);
1351 EXPORT_SYMBOL(sock_create_kern);
1353 int __sys_socket(int family, int type, int protocol)
1356 struct socket *sock;
1359 /* Check the SOCK_* constants for consistency. */
1360 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1361 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1362 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1363 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1365 flags = type & ~SOCK_TYPE_MASK;
1366 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1368 type &= SOCK_TYPE_MASK;
1370 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1371 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1373 retval = sock_create(family, type, protocol, &sock);
1377 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1380 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1382 return __sys_socket(family, type, protocol);
1386 * Create a pair of connected sockets.
1389 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1391 struct socket *sock1, *sock2;
1393 struct file *newfile1, *newfile2;
1396 flags = type & ~SOCK_TYPE_MASK;
1397 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1399 type &= SOCK_TYPE_MASK;
1401 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1402 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1405 * reserve descriptors and make sure we won't fail
1406 * to return them to userland.
1408 fd1 = get_unused_fd_flags(flags);
1409 if (unlikely(fd1 < 0))
1412 fd2 = get_unused_fd_flags(flags);
1413 if (unlikely(fd2 < 0)) {
1418 err = put_user(fd1, &usockvec[0]);
1422 err = put_user(fd2, &usockvec[1]);
1427 * Obtain the first socket and check if the underlying protocol
1428 * supports the socketpair call.
1431 err = sock_create(family, type, protocol, &sock1);
1432 if (unlikely(err < 0))
1435 err = sock_create(family, type, protocol, &sock2);
1436 if (unlikely(err < 0)) {
1437 sock_release(sock1);
1441 err = security_socket_socketpair(sock1, sock2);
1442 if (unlikely(err)) {
1443 sock_release(sock2);
1444 sock_release(sock1);
1448 err = sock1->ops->socketpair(sock1, sock2);
1449 if (unlikely(err < 0)) {
1450 sock_release(sock2);
1451 sock_release(sock1);
1455 newfile1 = sock_alloc_file(sock1, flags, NULL);
1456 if (IS_ERR(newfile1)) {
1457 err = PTR_ERR(newfile1);
1458 sock_release(sock2);
1462 newfile2 = sock_alloc_file(sock2, flags, NULL);
1463 if (IS_ERR(newfile2)) {
1464 err = PTR_ERR(newfile2);
1469 audit_fd_pair(fd1, fd2);
1471 fd_install(fd1, newfile1);
1472 fd_install(fd2, newfile2);
1481 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1482 int __user *, usockvec)
1484 return __sys_socketpair(family, type, protocol, usockvec);
1488 * Bind a name to a socket. Nothing much to do here since it's
1489 * the protocol's responsibility to handle the local address.
1491 * We move the socket address to kernel space before we call
1492 * the protocol layer (having also checked the address is ok).
1495 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1497 struct socket *sock;
1498 struct sockaddr_storage address;
1499 int err, fput_needed;
1501 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1503 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1505 err = security_socket_bind(sock,
1506 (struct sockaddr *)&address,
1509 err = sock->ops->bind(sock,
1513 fput_light(sock->file, fput_needed);
1518 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1520 return __sys_bind(fd, umyaddr, addrlen);
1524 * Perform a listen. Basically, we allow the protocol to do anything
1525 * necessary for a listen, and if that works, we mark the socket as
1526 * ready for listening.
1529 int __sys_listen(int fd, int backlog)
1531 struct socket *sock;
1532 int err, fput_needed;
1535 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1537 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1538 if ((unsigned int)backlog > somaxconn)
1539 backlog = somaxconn;
1541 err = security_socket_listen(sock, backlog);
1543 err = sock->ops->listen(sock, backlog);
1545 fput_light(sock->file, fput_needed);
1550 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1552 return __sys_listen(fd, backlog);
1556 * For accept, we attempt to create a new socket, set up the link
1557 * with the client, wake up the client, then return the new
1558 * connected fd. We collect the address of the connector in kernel
1559 * space and move it to user at the very end. This is unclean because
1560 * we open the socket then return an error.
1562 * 1003.1g adds the ability to recvmsg() to query connection pending
1563 * status to recvmsg. We need to add that support in a way thats
1564 * clean when we restructure accept also.
1567 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1568 int __user *upeer_addrlen, int flags)
1570 struct socket *sock, *newsock;
1571 struct file *newfile;
1572 int err, len, newfd, fput_needed;
1573 struct sockaddr_storage address;
1575 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1578 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1579 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1581 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1586 newsock = sock_alloc();
1590 newsock->type = sock->type;
1591 newsock->ops = sock->ops;
1594 * We don't need try_module_get here, as the listening socket (sock)
1595 * has the protocol module (sock->ops->owner) held.
1597 __module_get(newsock->ops->owner);
1599 newfd = get_unused_fd_flags(flags);
1600 if (unlikely(newfd < 0)) {
1602 sock_release(newsock);
1605 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1606 if (IS_ERR(newfile)) {
1607 err = PTR_ERR(newfile);
1608 put_unused_fd(newfd);
1612 err = security_socket_accept(sock, newsock);
1616 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1620 if (upeer_sockaddr) {
1621 len = newsock->ops->getname(newsock,
1622 (struct sockaddr *)&address, 2);
1624 err = -ECONNABORTED;
1627 err = move_addr_to_user(&address,
1628 len, upeer_sockaddr, upeer_addrlen);
1633 /* File flags are not inherited via accept() unlike another OSes. */
1635 fd_install(newfd, newfile);
1639 fput_light(sock->file, fput_needed);
1644 put_unused_fd(newfd);
1648 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1649 int __user *, upeer_addrlen, int, flags)
1651 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1654 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1655 int __user *, upeer_addrlen)
1657 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1661 * Attempt to connect to a socket with the server address. The address
1662 * is in user space so we verify it is OK and move it to kernel space.
1664 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1667 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1668 * other SEQPACKET protocols that take time to connect() as it doesn't
1669 * include the -EINPROGRESS status for such sockets.
1672 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1674 struct socket *sock;
1675 struct sockaddr_storage address;
1676 int err, fput_needed;
1678 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1681 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1686 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1690 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1691 sock->file->f_flags);
1693 fput_light(sock->file, fput_needed);
1698 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1701 return __sys_connect(fd, uservaddr, addrlen);
1705 * Get the local address ('name') of a socket object. Move the obtained
1706 * name to user space.
1709 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1710 int __user *usockaddr_len)
1712 struct socket *sock;
1713 struct sockaddr_storage address;
1714 int err, fput_needed;
1716 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1720 err = security_socket_getsockname(sock);
1724 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1727 /* "err" is actually length in this case */
1728 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1731 fput_light(sock->file, fput_needed);
1736 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1737 int __user *, usockaddr_len)
1739 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1743 * Get the remote address ('name') of a socket object. Move the obtained
1744 * name to user space.
1747 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1748 int __user *usockaddr_len)
1750 struct socket *sock;
1751 struct sockaddr_storage address;
1752 int err, fput_needed;
1754 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1756 err = security_socket_getpeername(sock);
1758 fput_light(sock->file, fput_needed);
1762 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1764 /* "err" is actually length in this case */
1765 err = move_addr_to_user(&address, err, usockaddr,
1767 fput_light(sock->file, fput_needed);
1772 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1773 int __user *, usockaddr_len)
1775 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1779 * Send a datagram to a given address. We move the address into kernel
1780 * space and check the user space data area is readable before invoking
1783 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1784 struct sockaddr __user *addr, int addr_len)
1786 struct socket *sock;
1787 struct sockaddr_storage address;
1793 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1796 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1800 msg.msg_name = NULL;
1801 msg.msg_control = NULL;
1802 msg.msg_controllen = 0;
1803 msg.msg_namelen = 0;
1805 err = move_addr_to_kernel(addr, addr_len, &address);
1808 msg.msg_name = (struct sockaddr *)&address;
1809 msg.msg_namelen = addr_len;
1811 if (sock->file->f_flags & O_NONBLOCK)
1812 flags |= MSG_DONTWAIT;
1813 msg.msg_flags = flags;
1814 err = sock_sendmsg(sock, &msg);
1817 fput_light(sock->file, fput_needed);
1822 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1823 unsigned int, flags, struct sockaddr __user *, addr,
1826 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1830 * Send a datagram down a socket.
1833 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1834 unsigned int, flags)
1836 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1840 * Receive a frame from the socket and optionally record the address of the
1841 * sender. We verify the buffers are writable and if needed move the
1842 * sender address from kernel to user space.
1844 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1845 struct sockaddr __user *addr, int __user *addr_len)
1847 struct socket *sock;
1850 struct sockaddr_storage address;
1854 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1857 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1861 msg.msg_control = NULL;
1862 msg.msg_controllen = 0;
1863 /* Save some cycles and don't copy the address if not needed */
1864 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1865 /* We assume all kernel code knows the size of sockaddr_storage */
1866 msg.msg_namelen = 0;
1867 msg.msg_iocb = NULL;
1869 if (sock->file->f_flags & O_NONBLOCK)
1870 flags |= MSG_DONTWAIT;
1871 err = sock_recvmsg(sock, &msg, flags);
1873 if (err >= 0 && addr != NULL) {
1874 err2 = move_addr_to_user(&address,
1875 msg.msg_namelen, addr, addr_len);
1880 fput_light(sock->file, fput_needed);
1885 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1886 unsigned int, flags, struct sockaddr __user *, addr,
1887 int __user *, addr_len)
1889 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
1893 * Receive a datagram from a socket.
1896 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1897 unsigned int, flags)
1899 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1903 * Set a socket option. Because we don't know the option lengths we have
1904 * to pass the user mode parameter for the protocols to sort out.
1907 static int __sys_setsockopt(int fd, int level, int optname,
1908 char __user *optval, int optlen)
1910 int err, fput_needed;
1911 struct socket *sock;
1916 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1918 err = security_socket_setsockopt(sock, level, optname);
1922 if (level == SOL_SOCKET)
1924 sock_setsockopt(sock, level, optname, optval,
1928 sock->ops->setsockopt(sock, level, optname, optval,
1931 fput_light(sock->file, fput_needed);
1936 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1937 char __user *, optval, int, optlen)
1939 return __sys_setsockopt(fd, level, optname, optval, optlen);
1943 * Get a socket option. Because we don't know the option lengths we have
1944 * to pass a user mode parameter for the protocols to sort out.
1947 static int __sys_getsockopt(int fd, int level, int optname,
1948 char __user *optval, int __user *optlen)
1950 int err, fput_needed;
1951 struct socket *sock;
1953 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1955 err = security_socket_getsockopt(sock, level, optname);
1959 if (level == SOL_SOCKET)
1961 sock_getsockopt(sock, level, optname, optval,
1965 sock->ops->getsockopt(sock, level, optname, optval,
1968 fput_light(sock->file, fput_needed);
1973 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1974 char __user *, optval, int __user *, optlen)
1976 return __sys_getsockopt(fd, level, optname, optval, optlen);
1980 * Shutdown a socket.
1983 int __sys_shutdown(int fd, int how)
1985 int err, fput_needed;
1986 struct socket *sock;
1988 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1990 err = security_socket_shutdown(sock, how);
1992 err = sock->ops->shutdown(sock, how);
1993 fput_light(sock->file, fput_needed);
1998 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2000 return __sys_shutdown(fd, how);
2003 /* A couple of helpful macros for getting the address of the 32/64 bit
2004 * fields which are the same type (int / unsigned) on our platforms.
2006 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2007 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2008 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2010 struct used_address {
2011 struct sockaddr_storage name;
2012 unsigned int name_len;
2015 static int copy_msghdr_from_user(struct msghdr *kmsg,
2016 struct user_msghdr __user *umsg,
2017 struct sockaddr __user **save_addr,
2020 struct user_msghdr msg;
2023 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2026 kmsg->msg_control = (void __force *)msg.msg_control;
2027 kmsg->msg_controllen = msg.msg_controllen;
2028 kmsg->msg_flags = msg.msg_flags;
2030 kmsg->msg_namelen = msg.msg_namelen;
2032 kmsg->msg_namelen = 0;
2034 if (kmsg->msg_namelen < 0)
2037 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2038 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2041 *save_addr = msg.msg_name;
2043 if (msg.msg_name && kmsg->msg_namelen) {
2045 err = move_addr_to_kernel(msg.msg_name,
2052 kmsg->msg_name = NULL;
2053 kmsg->msg_namelen = 0;
2056 if (msg.msg_iovlen > UIO_MAXIOV)
2059 kmsg->msg_iocb = NULL;
2061 return import_iovec(save_addr ? READ : WRITE,
2062 msg.msg_iov, msg.msg_iovlen,
2063 UIO_FASTIOV, iov, &kmsg->msg_iter);
2066 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2067 struct msghdr *msg_sys, unsigned int flags,
2068 struct used_address *used_address,
2069 unsigned int allowed_msghdr_flags)
2071 struct compat_msghdr __user *msg_compat =
2072 (struct compat_msghdr __user *)msg;
2073 struct sockaddr_storage address;
2074 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2075 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2076 __aligned(sizeof(__kernel_size_t));
2077 /* 20 is size of ipv6_pktinfo */
2078 unsigned char *ctl_buf = ctl;
2082 msg_sys->msg_name = &address;
2084 if (MSG_CMSG_COMPAT & flags)
2085 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2087 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2093 if (msg_sys->msg_controllen > INT_MAX)
2095 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2096 ctl_len = msg_sys->msg_controllen;
2097 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2099 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2103 ctl_buf = msg_sys->msg_control;
2104 ctl_len = msg_sys->msg_controllen;
2105 } else if (ctl_len) {
2106 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2107 CMSG_ALIGN(sizeof(struct cmsghdr)));
2108 if (ctl_len > sizeof(ctl)) {
2109 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2110 if (ctl_buf == NULL)
2115 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2116 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2117 * checking falls down on this.
2119 if (copy_from_user(ctl_buf,
2120 (void __user __force *)msg_sys->msg_control,
2123 msg_sys->msg_control = ctl_buf;
2125 msg_sys->msg_flags = flags;
2127 if (sock->file->f_flags & O_NONBLOCK)
2128 msg_sys->msg_flags |= MSG_DONTWAIT;
2130 * If this is sendmmsg() and current destination address is same as
2131 * previously succeeded address, omit asking LSM's decision.
2132 * used_address->name_len is initialized to UINT_MAX so that the first
2133 * destination address never matches.
2135 if (used_address && msg_sys->msg_name &&
2136 used_address->name_len == msg_sys->msg_namelen &&
2137 !memcmp(&used_address->name, msg_sys->msg_name,
2138 used_address->name_len)) {
2139 err = sock_sendmsg_nosec(sock, msg_sys);
2142 err = sock_sendmsg(sock, msg_sys);
2144 * If this is sendmmsg() and sending to current destination address was
2145 * successful, remember it.
2147 if (used_address && err >= 0) {
2148 used_address->name_len = msg_sys->msg_namelen;
2149 if (msg_sys->msg_name)
2150 memcpy(&used_address->name, msg_sys->msg_name,
2151 used_address->name_len);
2156 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2163 * BSD sendmsg interface
2166 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2167 bool forbid_cmsg_compat)
2169 int fput_needed, err;
2170 struct msghdr msg_sys;
2171 struct socket *sock;
2173 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2176 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2180 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2182 fput_light(sock->file, fput_needed);
2187 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2189 return __sys_sendmsg(fd, msg, flags, true);
2193 * Linux sendmmsg interface
2196 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2197 unsigned int flags, bool forbid_cmsg_compat)
2199 int fput_needed, err, datagrams;
2200 struct socket *sock;
2201 struct mmsghdr __user *entry;
2202 struct compat_mmsghdr __user *compat_entry;
2203 struct msghdr msg_sys;
2204 struct used_address used_address;
2205 unsigned int oflags = flags;
2207 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2210 if (vlen > UIO_MAXIOV)
2215 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2219 used_address.name_len = UINT_MAX;
2221 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2225 while (datagrams < vlen) {
2226 if (datagrams == vlen - 1)
2229 if (MSG_CMSG_COMPAT & flags) {
2230 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2231 &msg_sys, flags, &used_address, MSG_EOR);
2234 err = __put_user(err, &compat_entry->msg_len);
2237 err = ___sys_sendmsg(sock,
2238 (struct user_msghdr __user *)entry,
2239 &msg_sys, flags, &used_address, MSG_EOR);
2242 err = put_user(err, &entry->msg_len);
2249 if (msg_data_left(&msg_sys))
2254 fput_light(sock->file, fput_needed);
2256 /* We only return an error if no datagrams were able to be sent */
2263 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2264 unsigned int, vlen, unsigned int, flags)
2266 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2269 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2270 struct msghdr *msg_sys, unsigned int flags, int nosec)
2272 struct compat_msghdr __user *msg_compat =
2273 (struct compat_msghdr __user *)msg;
2274 struct iovec iovstack[UIO_FASTIOV];
2275 struct iovec *iov = iovstack;
2276 unsigned long cmsg_ptr;
2280 /* kernel mode address */
2281 struct sockaddr_storage addr;
2283 /* user mode address pointers */
2284 struct sockaddr __user *uaddr;
2285 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2287 msg_sys->msg_name = &addr;
2289 if (MSG_CMSG_COMPAT & flags)
2290 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2292 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2296 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2297 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2299 /* We assume all kernel code knows the size of sockaddr_storage */
2300 msg_sys->msg_namelen = 0;
2302 if (sock->file->f_flags & O_NONBLOCK)
2303 flags |= MSG_DONTWAIT;
2304 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2309 if (uaddr != NULL) {
2310 err = move_addr_to_user(&addr,
2311 msg_sys->msg_namelen, uaddr,
2316 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2320 if (MSG_CMSG_COMPAT & flags)
2321 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2322 &msg_compat->msg_controllen);
2324 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2325 &msg->msg_controllen);
2336 * BSD recvmsg interface
2339 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2340 bool forbid_cmsg_compat)
2342 int fput_needed, err;
2343 struct msghdr msg_sys;
2344 struct socket *sock;
2346 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2349 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2353 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2355 fput_light(sock->file, fput_needed);
2360 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2361 unsigned int, flags)
2363 return __sys_recvmsg(fd, msg, flags, true);
2367 * Linux recvmmsg interface
2370 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2371 unsigned int flags, struct timespec *timeout)
2373 int fput_needed, err, datagrams;
2374 struct socket *sock;
2375 struct mmsghdr __user *entry;
2376 struct compat_mmsghdr __user *compat_entry;
2377 struct msghdr msg_sys;
2378 struct timespec64 end_time;
2379 struct timespec64 timeout64;
2382 poll_select_set_timeout(&end_time, timeout->tv_sec,
2388 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2392 if (likely(!(flags & MSG_ERRQUEUE))) {
2393 err = sock_error(sock->sk);
2401 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2403 while (datagrams < vlen) {
2405 * No need to ask LSM for more than the first datagram.
2407 if (MSG_CMSG_COMPAT & flags) {
2408 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2409 &msg_sys, flags & ~MSG_WAITFORONE,
2413 err = __put_user(err, &compat_entry->msg_len);
2416 err = ___sys_recvmsg(sock,
2417 (struct user_msghdr __user *)entry,
2418 &msg_sys, flags & ~MSG_WAITFORONE,
2422 err = put_user(err, &entry->msg_len);
2430 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2431 if (flags & MSG_WAITFORONE)
2432 flags |= MSG_DONTWAIT;
2435 ktime_get_ts64(&timeout64);
2436 *timeout = timespec64_to_timespec(
2437 timespec64_sub(end_time, timeout64));
2438 if (timeout->tv_sec < 0) {
2439 timeout->tv_sec = timeout->tv_nsec = 0;
2443 /* Timeout, return less than vlen datagrams */
2444 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2448 /* Out of band data, return right away */
2449 if (msg_sys.msg_flags & MSG_OOB)
2457 if (datagrams == 0) {
2463 * We may return less entries than requested (vlen) if the
2464 * sock is non block and there aren't enough datagrams...
2466 if (err != -EAGAIN) {
2468 * ... or if recvmsg returns an error after we
2469 * received some datagrams, where we record the
2470 * error to return on the next call or if the
2471 * app asks about it using getsockopt(SO_ERROR).
2473 sock->sk->sk_err = -err;
2476 fput_light(sock->file, fput_needed);
2481 static int do_sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2482 unsigned int vlen, unsigned int flags,
2483 struct timespec __user *timeout)
2486 struct timespec timeout_sys;
2488 if (flags & MSG_CMSG_COMPAT)
2492 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2494 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2497 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2499 if (datagrams > 0 &&
2500 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2501 datagrams = -EFAULT;
2506 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2507 unsigned int, vlen, unsigned int, flags,
2508 struct timespec __user *, timeout)
2510 return do_sys_recvmmsg(fd, mmsg, vlen, flags, timeout);
2513 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2514 /* Argument list sizes for sys_socketcall */
2515 #define AL(x) ((x) * sizeof(unsigned long))
2516 static const unsigned char nargs[21] = {
2517 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2518 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2519 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2526 * System call vectors.
2528 * Argument checking cleaned up. Saved 20% in size.
2529 * This function doesn't need to set the kernel lock because
2530 * it is set by the callees.
2533 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2535 unsigned long a[AUDITSC_ARGS];
2536 unsigned long a0, a1;
2540 if (call < 1 || call > SYS_SENDMMSG)
2544 if (len > sizeof(a))
2547 /* copy_from_user should be SMP safe. */
2548 if (copy_from_user(a, args, len))
2551 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2560 err = __sys_socket(a0, a1, a[2]);
2563 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2566 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2569 err = __sys_listen(a0, a1);
2572 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2573 (int __user *)a[2], 0);
2575 case SYS_GETSOCKNAME:
2577 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2578 (int __user *)a[2]);
2580 case SYS_GETPEERNAME:
2582 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2583 (int __user *)a[2]);
2585 case SYS_SOCKETPAIR:
2586 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2589 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2593 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2594 (struct sockaddr __user *)a[4], a[5]);
2597 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2601 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2602 (struct sockaddr __user *)a[4],
2603 (int __user *)a[5]);
2606 err = __sys_shutdown(a0, a1);
2608 case SYS_SETSOCKOPT:
2609 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2612 case SYS_GETSOCKOPT:
2614 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2615 (int __user *)a[4]);
2618 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2622 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2626 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2630 err = do_sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2631 a[3], (struct timespec __user *)a[4]);
2634 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2635 (int __user *)a[2], a[3]);
2644 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2647 * sock_register - add a socket protocol handler
2648 * @ops: description of protocol
2650 * This function is called by a protocol handler that wants to
2651 * advertise its address family, and have it linked into the
2652 * socket interface. The value ops->family corresponds to the
2653 * socket system call protocol family.
2655 int sock_register(const struct net_proto_family *ops)
2659 if (ops->family >= NPROTO) {
2660 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2664 spin_lock(&net_family_lock);
2665 if (rcu_dereference_protected(net_families[ops->family],
2666 lockdep_is_held(&net_family_lock)))
2669 rcu_assign_pointer(net_families[ops->family], ops);
2672 spin_unlock(&net_family_lock);
2674 pr_info("NET: Registered protocol family %d\n", ops->family);
2677 EXPORT_SYMBOL(sock_register);
2680 * sock_unregister - remove a protocol handler
2681 * @family: protocol family to remove
2683 * This function is called by a protocol handler that wants to
2684 * remove its address family, and have it unlinked from the
2685 * new socket creation.
2687 * If protocol handler is a module, then it can use module reference
2688 * counts to protect against new references. If protocol handler is not
2689 * a module then it needs to provide its own protection in
2690 * the ops->create routine.
2692 void sock_unregister(int family)
2694 BUG_ON(family < 0 || family >= NPROTO);
2696 spin_lock(&net_family_lock);
2697 RCU_INIT_POINTER(net_families[family], NULL);
2698 spin_unlock(&net_family_lock);
2702 pr_info("NET: Unregistered protocol family %d\n", family);
2704 EXPORT_SYMBOL(sock_unregister);
2706 bool sock_is_registered(int family)
2708 return family < NPROTO && rcu_access_pointer(net_families[family]);
2711 static int __init sock_init(void)
2715 * Initialize the network sysctl infrastructure.
2717 err = net_sysctl_init();
2722 * Initialize skbuff SLAB cache
2727 * Initialize the protocols module.
2732 err = register_filesystem(&sock_fs_type);
2735 sock_mnt = kern_mount(&sock_fs_type);
2736 if (IS_ERR(sock_mnt)) {
2737 err = PTR_ERR(sock_mnt);
2741 /* The real protocol initialization is performed in later initcalls.
2744 #ifdef CONFIG_NETFILTER
2745 err = netfilter_init();
2750 ptp_classifier_init();
2756 unregister_filesystem(&sock_fs_type);
2761 core_initcall(sock_init); /* early initcall */
2763 #ifdef CONFIG_PROC_FS
2764 void socket_seq_show(struct seq_file *seq)
2766 seq_printf(seq, "sockets: used %d\n",
2767 sock_inuse_get(seq->private));
2769 #endif /* CONFIG_PROC_FS */
2771 #ifdef CONFIG_COMPAT
2772 static int do_siocgstamp(struct net *net, struct socket *sock,
2773 unsigned int cmd, void __user *up)
2775 mm_segment_t old_fs = get_fs();
2780 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2783 err = compat_put_timeval(&ktv, up);
2788 static int do_siocgstampns(struct net *net, struct socket *sock,
2789 unsigned int cmd, void __user *up)
2791 mm_segment_t old_fs = get_fs();
2792 struct timespec kts;
2796 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2799 err = compat_put_timespec(&kts, up);
2804 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2806 struct compat_ifconf ifc32;
2810 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2813 ifc.ifc_len = ifc32.ifc_len;
2814 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2817 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2822 ifc32.ifc_len = ifc.ifc_len;
2823 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2829 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2831 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2832 bool convert_in = false, convert_out = false;
2833 size_t buf_size = 0;
2834 struct ethtool_rxnfc __user *rxnfc = NULL;
2836 u32 rule_cnt = 0, actual_rule_cnt;
2841 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2844 compat_rxnfc = compat_ptr(data);
2846 if (get_user(ethcmd, &compat_rxnfc->cmd))
2849 /* Most ethtool structures are defined without padding.
2850 * Unfortunately struct ethtool_rxnfc is an exception.
2855 case ETHTOOL_GRXCLSRLALL:
2856 /* Buffer size is variable */
2857 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2859 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2861 buf_size += rule_cnt * sizeof(u32);
2863 case ETHTOOL_GRXRINGS:
2864 case ETHTOOL_GRXCLSRLCNT:
2865 case ETHTOOL_GRXCLSRULE:
2866 case ETHTOOL_SRXCLSRLINS:
2869 case ETHTOOL_SRXCLSRLDEL:
2870 buf_size += sizeof(struct ethtool_rxnfc);
2872 rxnfc = compat_alloc_user_space(buf_size);
2876 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2879 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
2882 /* We expect there to be holes between fs.m_ext and
2883 * fs.ring_cookie and at the end of fs, but nowhere else.
2885 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2886 sizeof(compat_rxnfc->fs.m_ext) !=
2887 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2888 sizeof(rxnfc->fs.m_ext));
2890 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2891 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2892 offsetof(struct ethtool_rxnfc, fs.location) -
2893 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2895 if (copy_in_user(rxnfc, compat_rxnfc,
2896 (void __user *)(&rxnfc->fs.m_ext + 1) -
2897 (void __user *)rxnfc) ||
2898 copy_in_user(&rxnfc->fs.ring_cookie,
2899 &compat_rxnfc->fs.ring_cookie,
2900 (void __user *)(&rxnfc->fs.location + 1) -
2901 (void __user *)&rxnfc->fs.ring_cookie) ||
2902 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2903 sizeof(rxnfc->rule_cnt)))
2907 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
2912 if (copy_in_user(compat_rxnfc, rxnfc,
2913 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2914 (const void __user *)rxnfc) ||
2915 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2916 &rxnfc->fs.ring_cookie,
2917 (const void __user *)(&rxnfc->fs.location + 1) -
2918 (const void __user *)&rxnfc->fs.ring_cookie) ||
2919 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2920 sizeof(rxnfc->rule_cnt)))
2923 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2924 /* As an optimisation, we only copy the actual
2925 * number of rules that the underlying
2926 * function returned. Since Mallory might
2927 * change the rule count in user memory, we
2928 * check that it is less than the rule count
2929 * originally given (as the user buffer size),
2930 * which has been range-checked.
2932 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2934 if (actual_rule_cnt < rule_cnt)
2935 rule_cnt = actual_rule_cnt;
2936 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2937 &rxnfc->rule_locs[0],
2938 rule_cnt * sizeof(u32)))
2946 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2948 compat_uptr_t uptr32;
2953 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
2956 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2959 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
2960 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
2962 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
2964 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
2965 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
2971 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2972 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2973 struct compat_ifreq __user *u_ifreq32)
2978 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
2980 if (get_user(data32, &u_ifreq32->ifr_data))
2982 ifreq.ifr_data = compat_ptr(data32);
2984 return dev_ioctl(net, cmd, &ifreq, NULL);
2987 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2988 struct compat_ifreq __user *uifr32)
2991 struct compat_ifmap __user *uifmap32;
2994 uifmap32 = &uifr32->ifr_ifru.ifru_map;
2995 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2996 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2997 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2998 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2999 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3000 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3001 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3005 err = dev_ioctl(net, cmd, &ifr, NULL);
3007 if (cmd == SIOCGIFMAP && !err) {
3008 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3009 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3010 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3011 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3012 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3013 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3014 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3023 struct sockaddr rt_dst; /* target address */
3024 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3025 struct sockaddr rt_genmask; /* target network mask (IP) */
3026 unsigned short rt_flags;
3029 unsigned char rt_tos;
3030 unsigned char rt_class;
3032 short rt_metric; /* +1 for binary compatibility! */
3033 /* char * */ u32 rt_dev; /* forcing the device at add */
3034 u32 rt_mtu; /* per route MTU/Window */
3035 u32 rt_window; /* Window clamping */
3036 unsigned short rt_irtt; /* Initial RTT */
3039 struct in6_rtmsg32 {
3040 struct in6_addr rtmsg_dst;
3041 struct in6_addr rtmsg_src;
3042 struct in6_addr rtmsg_gateway;
3052 static int routing_ioctl(struct net *net, struct socket *sock,
3053 unsigned int cmd, void __user *argp)
3057 struct in6_rtmsg r6;
3061 mm_segment_t old_fs = get_fs();
3063 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3064 struct in6_rtmsg32 __user *ur6 = argp;
3065 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3066 3 * sizeof(struct in6_addr));
3067 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3068 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3069 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3070 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3071 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3072 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3073 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3077 struct rtentry32 __user *ur4 = argp;
3078 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3079 3 * sizeof(struct sockaddr));
3080 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3081 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3082 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3083 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3084 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3085 ret |= get_user(rtdev, &(ur4->rt_dev));
3087 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3088 r4.rt_dev = (char __user __force *)devname;
3102 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3109 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3110 * for some operations; this forces use of the newer bridge-utils that
3111 * use compatible ioctls
3113 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3117 if (get_user(tmp, argp))
3119 if (tmp == BRCTL_GET_VERSION)
3120 return BRCTL_VERSION + 1;
3124 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3125 unsigned int cmd, unsigned long arg)
3127 void __user *argp = compat_ptr(arg);
3128 struct sock *sk = sock->sk;
3129 struct net *net = sock_net(sk);
3131 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3132 return compat_ifr_data_ioctl(net, cmd, argp);
3137 return old_bridge_ioctl(argp);
3139 return compat_dev_ifconf(net, argp);
3141 return ethtool_ioctl(net, argp);
3143 return compat_siocwandev(net, argp);
3146 return compat_sioc_ifmap(net, cmd, argp);
3149 return routing_ioctl(net, sock, cmd, argp);
3151 return do_siocgstamp(net, sock, cmd, argp);
3153 return do_siocgstampns(net, sock, cmd, argp);
3154 case SIOCBONDSLAVEINFOQUERY:
3155 case SIOCBONDINFOQUERY:
3158 return compat_ifr_data_ioctl(net, cmd, argp);
3171 return sock_ioctl(file, cmd, arg);
3188 case SIOCSIFHWBROADCAST:
3190 case SIOCGIFBRDADDR:
3191 case SIOCSIFBRDADDR:
3192 case SIOCGIFDSTADDR:
3193 case SIOCSIFDSTADDR:
3194 case SIOCGIFNETMASK:
3195 case SIOCSIFNETMASK:
3210 case SIOCBONDENSLAVE:
3211 case SIOCBONDRELEASE:
3212 case SIOCBONDSETHWADDR:
3213 case SIOCBONDCHANGEACTIVE:
3215 return sock_do_ioctl(net, sock, cmd, arg);
3218 return -ENOIOCTLCMD;
3221 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3224 struct socket *sock = file->private_data;
3225 int ret = -ENOIOCTLCMD;
3232 if (sock->ops->compat_ioctl)
3233 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3235 if (ret == -ENOIOCTLCMD &&
3236 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3237 ret = compat_wext_handle_ioctl(net, cmd, arg);
3239 if (ret == -ENOIOCTLCMD)
3240 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3246 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3248 return sock->ops->bind(sock, addr, addrlen);
3250 EXPORT_SYMBOL(kernel_bind);
3252 int kernel_listen(struct socket *sock, int backlog)
3254 return sock->ops->listen(sock, backlog);
3256 EXPORT_SYMBOL(kernel_listen);
3258 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3260 struct sock *sk = sock->sk;
3263 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3268 err = sock->ops->accept(sock, *newsock, flags, true);
3270 sock_release(*newsock);
3275 (*newsock)->ops = sock->ops;
3276 __module_get((*newsock)->ops->owner);
3281 EXPORT_SYMBOL(kernel_accept);
3283 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3286 return sock->ops->connect(sock, addr, addrlen, flags);
3288 EXPORT_SYMBOL(kernel_connect);
3290 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3292 return sock->ops->getname(sock, addr, 0);
3294 EXPORT_SYMBOL(kernel_getsockname);
3296 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3298 return sock->ops->getname(sock, addr, 1);
3300 EXPORT_SYMBOL(kernel_getpeername);
3302 int kernel_getsockopt(struct socket *sock, int level, int optname,
3303 char *optval, int *optlen)
3305 mm_segment_t oldfs = get_fs();
3306 char __user *uoptval;
3307 int __user *uoptlen;
3310 uoptval = (char __user __force *) optval;
3311 uoptlen = (int __user __force *) optlen;
3314 if (level == SOL_SOCKET)
3315 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3317 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3322 EXPORT_SYMBOL(kernel_getsockopt);
3324 int kernel_setsockopt(struct socket *sock, int level, int optname,
3325 char *optval, unsigned int optlen)
3327 mm_segment_t oldfs = get_fs();
3328 char __user *uoptval;
3331 uoptval = (char __user __force *) optval;
3334 if (level == SOL_SOCKET)
3335 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3337 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3342 EXPORT_SYMBOL(kernel_setsockopt);
3344 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3345 size_t size, int flags)
3347 if (sock->ops->sendpage)
3348 return sock->ops->sendpage(sock, page, offset, size, flags);
3350 return sock_no_sendpage(sock, page, offset, size, flags);
3352 EXPORT_SYMBOL(kernel_sendpage);
3354 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3355 size_t size, int flags)
3357 struct socket *sock = sk->sk_socket;
3359 if (sock->ops->sendpage_locked)
3360 return sock->ops->sendpage_locked(sk, page, offset, size,
3363 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3365 EXPORT_SYMBOL(kernel_sendpage_locked);
3367 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3369 return sock->ops->shutdown(sock, how);
3371 EXPORT_SYMBOL(kernel_sock_shutdown);
3373 /* This routine returns the IP overhead imposed by a socket i.e.
3374 * the length of the underlying IP header, depending on whether
3375 * this is an IPv4 or IPv6 socket and the length from IP options turned
3376 * on at the socket. Assumes that the caller has a lock on the socket.
3378 u32 kernel_sock_ip_overhead(struct sock *sk)
3380 struct inet_sock *inet;
3381 struct ip_options_rcu *opt;
3383 #if IS_ENABLED(CONFIG_IPV6)
3384 struct ipv6_pinfo *np;
3385 struct ipv6_txoptions *optv6 = NULL;
3386 #endif /* IS_ENABLED(CONFIG_IPV6) */
3391 switch (sk->sk_family) {
3394 overhead += sizeof(struct iphdr);
3395 opt = rcu_dereference_protected(inet->inet_opt,
3396 sock_owned_by_user(sk));
3398 overhead += opt->opt.optlen;
3400 #if IS_ENABLED(CONFIG_IPV6)
3403 overhead += sizeof(struct ipv6hdr);
3405 optv6 = rcu_dereference_protected(np->opt,
3406 sock_owned_by_user(sk));
3408 overhead += (optv6->opt_flen + optv6->opt_nflen);
3410 #endif /* IS_ENABLED(CONFIG_IPV6) */
3411 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3415 EXPORT_SYMBOL(kernel_sock_ip_overhead);