2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 * Added support for runtime switching of the policy type
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
65 #include "conditional.h"
73 int selinux_policycap_netpeer;
74 int selinux_policycap_openperm;
75 int selinux_policycap_alwaysnetwork;
77 static DEFINE_RWLOCK(policy_rwlock);
79 static struct sidtab sidtab;
80 struct policydb policydb;
84 * The largest sequence number that has been used when
85 * providing an access decision to the access vector cache.
86 * The sequence number only changes when a policy change
89 static u32 latest_granting;
91 /* Forward declaration. */
92 static int context_struct_to_string(struct context *context, char **scontext,
95 static void context_struct_compute_av(struct context *scontext,
96 struct context *tcontext,
98 struct av_decision *avd,
99 struct extended_perms *xperms);
101 struct selinux_mapping {
102 u16 value; /* policy value */
104 u32 perms[sizeof(u32) * 8];
107 static struct selinux_mapping *current_mapping;
108 static u16 current_mapping_size;
110 static int selinux_set_mapping(struct policydb *pol,
111 struct security_class_mapping *map,
112 struct selinux_mapping **out_map_p,
115 struct selinux_mapping *out_map = NULL;
116 size_t size = sizeof(struct selinux_mapping);
119 bool print_unknown_handle = false;
121 /* Find number of classes in the input mapping */
128 /* Allocate space for the class records, plus one for class zero */
129 out_map = kcalloc(++i, size, GFP_ATOMIC);
133 /* Store the raw class and permission values */
135 while (map[j].name) {
136 struct security_class_mapping *p_in = map + (j++);
137 struct selinux_mapping *p_out = out_map + j;
139 /* An empty class string skips ahead */
140 if (!strcmp(p_in->name, "")) {
141 p_out->num_perms = 0;
145 p_out->value = string_to_security_class(pol, p_in->name);
148 "SELinux: Class %s not defined in policy.\n",
150 if (pol->reject_unknown)
152 p_out->num_perms = 0;
153 print_unknown_handle = true;
158 while (p_in->perms && p_in->perms[k]) {
159 /* An empty permission string skips ahead */
160 if (!*p_in->perms[k]) {
164 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
166 if (!p_out->perms[k]) {
168 "SELinux: Permission %s in class %s not defined in policy.\n",
169 p_in->perms[k], p_in->name);
170 if (pol->reject_unknown)
172 print_unknown_handle = true;
177 p_out->num_perms = k;
180 if (print_unknown_handle)
181 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
182 pol->allow_unknown ? "allowed" : "denied");
184 *out_map_p = out_map;
193 * Get real, policy values from mapped values
196 static u16 unmap_class(u16 tclass)
198 if (tclass < current_mapping_size)
199 return current_mapping[tclass].value;
205 * Get kernel value for class from its policy value
207 static u16 map_class(u16 pol_value)
211 for (i = 1; i < current_mapping_size; i++) {
212 if (current_mapping[i].value == pol_value)
216 return SECCLASS_NULL;
219 static void map_decision(u16 tclass, struct av_decision *avd,
222 if (tclass < current_mapping_size) {
223 unsigned i, n = current_mapping[tclass].num_perms;
226 for (i = 0, result = 0; i < n; i++) {
227 if (avd->allowed & current_mapping[tclass].perms[i])
229 if (allow_unknown && !current_mapping[tclass].perms[i])
232 avd->allowed = result;
234 for (i = 0, result = 0; i < n; i++)
235 if (avd->auditallow & current_mapping[tclass].perms[i])
237 avd->auditallow = result;
239 for (i = 0, result = 0; i < n; i++) {
240 if (avd->auditdeny & current_mapping[tclass].perms[i])
242 if (!allow_unknown && !current_mapping[tclass].perms[i])
246 * In case the kernel has a bug and requests a permission
247 * between num_perms and the maximum permission number, we
248 * should audit that denial
250 for (; i < (sizeof(u32)*8); i++)
252 avd->auditdeny = result;
256 int security_mls_enabled(void)
258 return policydb.mls_enabled;
262 * Return the boolean value of a constraint expression
263 * when it is applied to the specified source and target
266 * xcontext is a special beast... It is used by the validatetrans rules
267 * only. For these rules, scontext is the context before the transition,
268 * tcontext is the context after the transition, and xcontext is the context
269 * of the process performing the transition. All other callers of
270 * constraint_expr_eval should pass in NULL for xcontext.
272 static int constraint_expr_eval(struct context *scontext,
273 struct context *tcontext,
274 struct context *xcontext,
275 struct constraint_expr *cexpr)
279 struct role_datum *r1, *r2;
280 struct mls_level *l1, *l2;
281 struct constraint_expr *e;
282 int s[CEXPR_MAXDEPTH];
285 for (e = cexpr; e; e = e->next) {
286 switch (e->expr_type) {
302 if (sp == (CEXPR_MAXDEPTH - 1))
306 val1 = scontext->user;
307 val2 = tcontext->user;
310 val1 = scontext->type;
311 val2 = tcontext->type;
314 val1 = scontext->role;
315 val2 = tcontext->role;
316 r1 = policydb.role_val_to_struct[val1 - 1];
317 r2 = policydb.role_val_to_struct[val2 - 1];
320 s[++sp] = ebitmap_get_bit(&r1->dominates,
324 s[++sp] = ebitmap_get_bit(&r2->dominates,
328 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
330 !ebitmap_get_bit(&r2->dominates,
338 l1 = &(scontext->range.level[0]);
339 l2 = &(tcontext->range.level[0]);
342 l1 = &(scontext->range.level[0]);
343 l2 = &(tcontext->range.level[1]);
346 l1 = &(scontext->range.level[1]);
347 l2 = &(tcontext->range.level[0]);
350 l1 = &(scontext->range.level[1]);
351 l2 = &(tcontext->range.level[1]);
354 l1 = &(scontext->range.level[0]);
355 l2 = &(scontext->range.level[1]);
358 l1 = &(tcontext->range.level[0]);
359 l2 = &(tcontext->range.level[1]);
364 s[++sp] = mls_level_eq(l1, l2);
367 s[++sp] = !mls_level_eq(l1, l2);
370 s[++sp] = mls_level_dom(l1, l2);
373 s[++sp] = mls_level_dom(l2, l1);
376 s[++sp] = mls_level_incomp(l2, l1);
390 s[++sp] = (val1 == val2);
393 s[++sp] = (val1 != val2);
401 if (sp == (CEXPR_MAXDEPTH-1))
404 if (e->attr & CEXPR_TARGET)
406 else if (e->attr & CEXPR_XTARGET) {
413 if (e->attr & CEXPR_USER)
415 else if (e->attr & CEXPR_ROLE)
417 else if (e->attr & CEXPR_TYPE)
426 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
429 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
447 * security_dump_masked_av - dumps masked permissions during
448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
450 static int dump_masked_av_helper(void *k, void *d, void *args)
452 struct perm_datum *pdatum = d;
453 char **permission_names = args;
455 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
457 permission_names[pdatum->value - 1] = (char *)k;
462 static void security_dump_masked_av(struct context *scontext,
463 struct context *tcontext,
468 struct common_datum *common_dat;
469 struct class_datum *tclass_dat;
470 struct audit_buffer *ab;
472 char *scontext_name = NULL;
473 char *tcontext_name = NULL;
474 char *permission_names[32];
477 bool need_comma = false;
482 tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
483 tclass_dat = policydb.class_val_to_struct[tclass - 1];
484 common_dat = tclass_dat->comdatum;
486 /* init permission_names */
488 hashtab_map(common_dat->permissions.table,
489 dump_masked_av_helper, permission_names) < 0)
492 if (hashtab_map(tclass_dat->permissions.table,
493 dump_masked_av_helper, permission_names) < 0)
496 /* get scontext/tcontext in text form */
497 if (context_struct_to_string(scontext,
498 &scontext_name, &length) < 0)
501 if (context_struct_to_string(tcontext,
502 &tcontext_name, &length) < 0)
505 /* audit a message */
506 ab = audit_log_start(current->audit_context,
507 GFP_ATOMIC, AUDIT_SELINUX_ERR);
511 audit_log_format(ab, "op=security_compute_av reason=%s "
512 "scontext=%s tcontext=%s tclass=%s perms=",
513 reason, scontext_name, tcontext_name, tclass_name);
515 for (index = 0; index < 32; index++) {
516 u32 mask = (1 << index);
518 if ((mask & permissions) == 0)
521 audit_log_format(ab, "%s%s",
522 need_comma ? "," : "",
523 permission_names[index]
524 ? permission_names[index] : "????");
529 /* release scontext/tcontext */
530 kfree(tcontext_name);
531 kfree(scontext_name);
537 * security_boundary_permission - drops violated permissions
538 * on boundary constraint.
540 static void type_attribute_bounds_av(struct context *scontext,
541 struct context *tcontext,
543 struct av_decision *avd)
545 struct context lo_scontext;
546 struct context lo_tcontext;
547 struct av_decision lo_avd;
548 struct type_datum *source;
549 struct type_datum *target;
552 source = flex_array_get_ptr(policydb.type_val_to_struct_array,
556 target = flex_array_get_ptr(policydb.type_val_to_struct_array,
560 if (source->bounds) {
561 memset(&lo_avd, 0, sizeof(lo_avd));
563 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
564 lo_scontext.type = source->bounds;
566 context_struct_compute_av(&lo_scontext,
571 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
572 return; /* no masked permission */
573 masked = ~lo_avd.allowed & avd->allowed;
576 if (target->bounds) {
577 memset(&lo_avd, 0, sizeof(lo_avd));
579 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
580 lo_tcontext.type = target->bounds;
582 context_struct_compute_av(scontext,
587 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
588 return; /* no masked permission */
589 masked = ~lo_avd.allowed & avd->allowed;
592 if (source->bounds && target->bounds) {
593 memset(&lo_avd, 0, sizeof(lo_avd));
595 * lo_scontext and lo_tcontext are already
599 context_struct_compute_av(&lo_scontext,
604 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
605 return; /* no masked permission */
606 masked = ~lo_avd.allowed & avd->allowed;
610 /* mask violated permissions */
611 avd->allowed &= ~masked;
613 /* audit masked permissions */
614 security_dump_masked_av(scontext, tcontext,
615 tclass, masked, "bounds");
620 * flag which drivers have permissions
621 * only looking for ioctl based extended permssions
623 void services_compute_xperms_drivers(
624 struct extended_perms *xperms,
625 struct avtab_node *node)
629 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
630 /* if one or more driver has all permissions allowed */
631 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
632 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
633 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
634 /* if allowing permissions within a driver */
635 security_xperm_set(xperms->drivers.p,
636 node->datum.u.xperms->driver);
639 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
640 if (node->key.specified & AVTAB_XPERMS_ALLOWED)
645 * Compute access vectors and extended permissions based on a context
646 * structure pair for the permissions in a particular class.
648 static void context_struct_compute_av(struct context *scontext,
649 struct context *tcontext,
651 struct av_decision *avd,
652 struct extended_perms *xperms)
654 struct constraint_node *constraint;
655 struct role_allow *ra;
656 struct avtab_key avkey;
657 struct avtab_node *node;
658 struct class_datum *tclass_datum;
659 struct ebitmap *sattr, *tattr;
660 struct ebitmap_node *snode, *tnode;
665 avd->auditdeny = 0xffffffff;
667 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
671 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
672 if (printk_ratelimit())
673 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
677 tclass_datum = policydb.class_val_to_struct[tclass - 1];
680 * If a specific type enforcement rule was defined for
681 * this permission check, then use it.
683 avkey.target_class = tclass;
684 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
685 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
687 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
689 ebitmap_for_each_positive_bit(sattr, snode, i) {
690 ebitmap_for_each_positive_bit(tattr, tnode, j) {
691 avkey.source_type = i + 1;
692 avkey.target_type = j + 1;
693 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
695 node = avtab_search_node_next(node, avkey.specified)) {
696 if (node->key.specified == AVTAB_ALLOWED)
697 avd->allowed |= node->datum.u.data;
698 else if (node->key.specified == AVTAB_AUDITALLOW)
699 avd->auditallow |= node->datum.u.data;
700 else if (node->key.specified == AVTAB_AUDITDENY)
701 avd->auditdeny &= node->datum.u.data;
702 else if (xperms && (node->key.specified & AVTAB_XPERMS))
703 services_compute_xperms_drivers(xperms, node);
706 /* Check conditional av table for additional permissions */
707 cond_compute_av(&policydb.te_cond_avtab, &avkey,
714 * Remove any permissions prohibited by a constraint (this includes
717 constraint = tclass_datum->constraints;
719 if ((constraint->permissions & (avd->allowed)) &&
720 !constraint_expr_eval(scontext, tcontext, NULL,
722 avd->allowed &= ~(constraint->permissions);
724 constraint = constraint->next;
728 * If checking process transition permission and the
729 * role is changing, then check the (current_role, new_role)
732 if (tclass == policydb.process_class &&
733 (avd->allowed & policydb.process_trans_perms) &&
734 scontext->role != tcontext->role) {
735 for (ra = policydb.role_allow; ra; ra = ra->next) {
736 if (scontext->role == ra->role &&
737 tcontext->role == ra->new_role)
741 avd->allowed &= ~policydb.process_trans_perms;
745 * If the given source and target types have boundary
746 * constraint, lazy checks have to mask any violated
747 * permission and notice it to userspace via audit.
749 type_attribute_bounds_av(scontext, tcontext,
753 static int security_validtrans_handle_fail(struct context *ocontext,
754 struct context *ncontext,
755 struct context *tcontext,
758 char *o = NULL, *n = NULL, *t = NULL;
759 u32 olen, nlen, tlen;
761 if (context_struct_to_string(ocontext, &o, &olen))
763 if (context_struct_to_string(ncontext, &n, &nlen))
765 if (context_struct_to_string(tcontext, &t, &tlen))
767 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
768 "op=security_validate_transition seresult=denied"
769 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
770 o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
776 if (!selinux_enforcing)
781 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
784 struct context *ocontext;
785 struct context *ncontext;
786 struct context *tcontext;
787 struct class_datum *tclass_datum;
788 struct constraint_node *constraint;
795 read_lock(&policy_rwlock);
797 tclass = unmap_class(orig_tclass);
799 if (!tclass || tclass > policydb.p_classes.nprim) {
800 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
805 tclass_datum = policydb.class_val_to_struct[tclass - 1];
807 ocontext = sidtab_search(&sidtab, oldsid);
809 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
815 ncontext = sidtab_search(&sidtab, newsid);
817 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
823 tcontext = sidtab_search(&sidtab, tasksid);
825 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
831 constraint = tclass_datum->validatetrans;
833 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
835 rc = security_validtrans_handle_fail(ocontext, ncontext,
839 constraint = constraint->next;
843 read_unlock(&policy_rwlock);
848 * security_bounded_transition - check whether the given
849 * transition is directed to bounded, or not.
850 * It returns 0, if @newsid is bounded by @oldsid.
851 * Otherwise, it returns error code.
853 * @oldsid : current security identifier
854 * @newsid : destinated security identifier
856 int security_bounded_transition(u32 old_sid, u32 new_sid)
858 struct context *old_context, *new_context;
859 struct type_datum *type;
863 read_lock(&policy_rwlock);
866 old_context = sidtab_search(&sidtab, old_sid);
868 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
874 new_context = sidtab_search(&sidtab, new_sid);
876 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
882 /* type/domain unchanged */
883 if (old_context->type == new_context->type)
886 index = new_context->type;
888 type = flex_array_get_ptr(policydb.type_val_to_struct_array,
892 /* not bounded anymore */
897 /* @newsid is bounded by @oldsid */
899 if (type->bounds == old_context->type)
902 index = type->bounds;
906 char *old_name = NULL;
907 char *new_name = NULL;
910 if (!context_struct_to_string(old_context,
911 &old_name, &length) &&
912 !context_struct_to_string(new_context,
913 &new_name, &length)) {
914 audit_log(current->audit_context,
915 GFP_ATOMIC, AUDIT_SELINUX_ERR,
916 "op=security_bounded_transition "
918 "oldcontext=%s newcontext=%s",
925 read_unlock(&policy_rwlock);
930 static void avd_init(struct av_decision *avd)
934 avd->auditdeny = 0xffffffff;
935 avd->seqno = latest_granting;
939 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
940 struct avtab_node *node)
944 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
945 if (xpermd->driver != node->datum.u.xperms->driver)
947 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
948 if (!security_xperm_test(node->datum.u.xperms->perms.p,
955 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
956 xpermd->used |= XPERMS_ALLOWED;
957 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
958 memset(xpermd->allowed->p, 0xff,
959 sizeof(xpermd->allowed->p));
961 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
962 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
963 xpermd->allowed->p[i] |=
964 node->datum.u.xperms->perms.p[i];
966 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
967 xpermd->used |= XPERMS_AUDITALLOW;
968 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
969 memset(xpermd->auditallow->p, 0xff,
970 sizeof(xpermd->auditallow->p));
972 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
973 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
974 xpermd->auditallow->p[i] |=
975 node->datum.u.xperms->perms.p[i];
977 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
978 xpermd->used |= XPERMS_DONTAUDIT;
979 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
980 memset(xpermd->dontaudit->p, 0xff,
981 sizeof(xpermd->dontaudit->p));
983 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
984 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
985 xpermd->dontaudit->p[i] |=
986 node->datum.u.xperms->perms.p[i];
993 void security_compute_xperms_decision(u32 ssid,
997 struct extended_perms_decision *xpermd)
1000 struct context *scontext, *tcontext;
1001 struct avtab_key avkey;
1002 struct avtab_node *node;
1003 struct ebitmap *sattr, *tattr;
1004 struct ebitmap_node *snode, *tnode;
1007 xpermd->driver = driver;
1009 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1010 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1011 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1013 read_lock(&policy_rwlock);
1014 if (!ss_initialized)
1017 scontext = sidtab_search(&sidtab, ssid);
1019 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1024 tcontext = sidtab_search(&sidtab, tsid);
1026 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1031 tclass = unmap_class(orig_tclass);
1032 if (unlikely(orig_tclass && !tclass)) {
1033 if (policydb.allow_unknown)
1039 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1040 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1044 avkey.target_class = tclass;
1045 avkey.specified = AVTAB_XPERMS;
1046 sattr = flex_array_get(policydb.type_attr_map_array,
1047 scontext->type - 1);
1049 tattr = flex_array_get(policydb.type_attr_map_array,
1050 tcontext->type - 1);
1052 ebitmap_for_each_positive_bit(sattr, snode, i) {
1053 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1054 avkey.source_type = i + 1;
1055 avkey.target_type = j + 1;
1056 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
1058 node = avtab_search_node_next(node, avkey.specified))
1059 services_compute_xperms_decision(xpermd, node);
1061 cond_compute_xperms(&policydb.te_cond_avtab,
1066 read_unlock(&policy_rwlock);
1069 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1074 * security_compute_av - Compute access vector decisions.
1075 * @ssid: source security identifier
1076 * @tsid: target security identifier
1077 * @tclass: target security class
1078 * @avd: access vector decisions
1079 * @xperms: extended permissions
1081 * Compute a set of access vector decisions based on the
1082 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1084 void security_compute_av(u32 ssid,
1087 struct av_decision *avd,
1088 struct extended_perms *xperms)
1091 struct context *scontext = NULL, *tcontext = NULL;
1093 read_lock(&policy_rwlock);
1096 if (!ss_initialized)
1099 scontext = sidtab_search(&sidtab, ssid);
1101 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1106 /* permissive domain? */
1107 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1108 avd->flags |= AVD_FLAGS_PERMISSIVE;
1110 tcontext = sidtab_search(&sidtab, tsid);
1112 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1117 tclass = unmap_class(orig_tclass);
1118 if (unlikely(orig_tclass && !tclass)) {
1119 if (policydb.allow_unknown)
1123 context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1124 map_decision(orig_tclass, avd, policydb.allow_unknown);
1126 read_unlock(&policy_rwlock);
1129 avd->allowed = 0xffffffff;
1133 void security_compute_av_user(u32 ssid,
1136 struct av_decision *avd)
1138 struct context *scontext = NULL, *tcontext = NULL;
1140 read_lock(&policy_rwlock);
1142 if (!ss_initialized)
1145 scontext = sidtab_search(&sidtab, ssid);
1147 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1152 /* permissive domain? */
1153 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1154 avd->flags |= AVD_FLAGS_PERMISSIVE;
1156 tcontext = sidtab_search(&sidtab, tsid);
1158 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1163 if (unlikely(!tclass)) {
1164 if (policydb.allow_unknown)
1169 context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
1171 read_unlock(&policy_rwlock);
1174 avd->allowed = 0xffffffff;
1179 * Write the security context string representation of
1180 * the context structure `context' into a dynamically
1181 * allocated string of the correct size. Set `*scontext'
1182 * to point to this string and set `*scontext_len' to
1183 * the length of the string.
1185 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1194 *scontext_len = context->len;
1196 *scontext = kstrdup(context->str, GFP_ATOMIC);
1203 /* Compute the size of the context. */
1204 *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1205 *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1206 *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1207 *scontext_len += mls_compute_context_len(context);
1212 /* Allocate space for the context; caller must free this space. */
1213 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1216 *scontext = scontextp;
1219 * Copy the user name, role name and type name into the context.
1221 sprintf(scontextp, "%s:%s:%s",
1222 sym_name(&policydb, SYM_USERS, context->user - 1),
1223 sym_name(&policydb, SYM_ROLES, context->role - 1),
1224 sym_name(&policydb, SYM_TYPES, context->type - 1));
1225 scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1226 1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1227 1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1229 mls_sid_to_context(context, &scontextp);
1236 #include "initial_sid_to_string.h"
1238 const char *security_get_initial_sid_context(u32 sid)
1240 if (unlikely(sid > SECINITSID_NUM))
1242 return initial_sid_to_string[sid];
1245 static int security_sid_to_context_core(u32 sid, char **scontext,
1246 u32 *scontext_len, int force)
1248 struct context *context;
1255 if (!ss_initialized) {
1256 if (sid <= SECINITSID_NUM) {
1259 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1262 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1267 strcpy(scontextp, initial_sid_to_string[sid]);
1268 *scontext = scontextp;
1271 printk(KERN_ERR "SELinux: %s: called before initial "
1272 "load_policy on unknown SID %d\n", __func__, sid);
1276 read_lock(&policy_rwlock);
1278 context = sidtab_search_force(&sidtab, sid);
1280 context = sidtab_search(&sidtab, sid);
1282 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1287 rc = context_struct_to_string(context, scontext, scontext_len);
1289 read_unlock(&policy_rwlock);
1296 * security_sid_to_context - Obtain a context for a given SID.
1297 * @sid: security identifier, SID
1298 * @scontext: security context
1299 * @scontext_len: length in bytes
1301 * Write the string representation of the context associated with @sid
1302 * into a dynamically allocated string of the correct size. Set @scontext
1303 * to point to this string and set @scontext_len to the length of the string.
1305 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1307 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1310 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1312 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1316 * Caveat: Mutates scontext.
1318 static int string_to_context_struct(struct policydb *pol,
1319 struct sidtab *sidtabp,
1322 struct context *ctx,
1325 struct role_datum *role;
1326 struct type_datum *typdatum;
1327 struct user_datum *usrdatum;
1328 char *scontextp, *p, oldc;
1333 /* Parse the security context. */
1336 scontextp = (char *) scontext;
1338 /* Extract the user. */
1340 while (*p && *p != ':')
1348 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1352 ctx->user = usrdatum->value;
1356 while (*p && *p != ':')
1364 role = hashtab_search(pol->p_roles.table, scontextp);
1367 ctx->role = role->value;
1371 while (*p && *p != ':')
1376 typdatum = hashtab_search(pol->p_types.table, scontextp);
1377 if (!typdatum || typdatum->attribute)
1380 ctx->type = typdatum->value;
1382 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1387 if ((p - scontext) < scontext_len)
1390 /* Check the validity of the new context. */
1391 if (!policydb_context_isvalid(pol, ctx))
1396 context_destroy(ctx);
1400 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1401 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1404 char *scontext2, *str = NULL;
1405 struct context context;
1408 /* An empty security context is never valid. */
1412 if (!ss_initialized) {
1415 for (i = 1; i < SECINITSID_NUM; i++) {
1416 if (!strcmp(initial_sid_to_string[i], scontext)) {
1421 *sid = SECINITSID_KERNEL;
1426 /* Copy the string so that we can modify the copy as we parse it. */
1427 scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1430 memcpy(scontext2, scontext, scontext_len);
1431 scontext2[scontext_len] = 0;
1434 /* Save another copy for storing in uninterpreted form */
1436 str = kstrdup(scontext2, gfp_flags);
1441 read_lock(&policy_rwlock);
1442 rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1443 scontext_len, &context, def_sid);
1444 if (rc == -EINVAL && force) {
1446 context.len = scontext_len;
1450 rc = sidtab_context_to_sid(&sidtab, &context, sid);
1451 context_destroy(&context);
1453 read_unlock(&policy_rwlock);
1461 * security_context_to_sid - Obtain a SID for a given security context.
1462 * @scontext: security context
1463 * @scontext_len: length in bytes
1464 * @sid: security identifier, SID
1465 * @gfp: context for the allocation
1467 * Obtains a SID associated with the security context that
1468 * has the string representation specified by @scontext.
1469 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1470 * memory is available, or 0 on success.
1472 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1475 return security_context_to_sid_core(scontext, scontext_len,
1476 sid, SECSID_NULL, gfp, 0);
1480 * security_context_to_sid_default - Obtain a SID for a given security context,
1481 * falling back to specified default if needed.
1483 * @scontext: security context
1484 * @scontext_len: length in bytes
1485 * @sid: security identifier, SID
1486 * @def_sid: default SID to assign on error
1488 * Obtains a SID associated with the security context that
1489 * has the string representation specified by @scontext.
1490 * The default SID is passed to the MLS layer to be used to allow
1491 * kernel labeling of the MLS field if the MLS field is not present
1492 * (for upgrading to MLS without full relabel).
1493 * Implicitly forces adding of the context even if it cannot be mapped yet.
1494 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1495 * memory is available, or 0 on success.
1497 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1498 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1500 return security_context_to_sid_core(scontext, scontext_len,
1501 sid, def_sid, gfp_flags, 1);
1504 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1507 return security_context_to_sid_core(scontext, scontext_len,
1508 sid, SECSID_NULL, GFP_KERNEL, 1);
1511 static int compute_sid_handle_invalid_context(
1512 struct context *scontext,
1513 struct context *tcontext,
1515 struct context *newcontext)
1517 char *s = NULL, *t = NULL, *n = NULL;
1518 u32 slen, tlen, nlen;
1520 if (context_struct_to_string(scontext, &s, &slen))
1522 if (context_struct_to_string(tcontext, &t, &tlen))
1524 if (context_struct_to_string(newcontext, &n, &nlen))
1526 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1527 "op=security_compute_sid invalid_context=%s"
1531 n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1536 if (!selinux_enforcing)
1541 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1542 u32 stype, u32 ttype, u16 tclass,
1543 const char *objname)
1545 struct filename_trans ft;
1546 struct filename_trans_datum *otype;
1549 * Most filename trans rules are going to live in specific directories
1550 * like /dev or /var/run. This bitmap will quickly skip rule searches
1551 * if the ttype does not contain any rules.
1553 if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1561 otype = hashtab_search(p->filename_trans, &ft);
1563 newcontext->type = otype->otype;
1566 static int security_compute_sid(u32 ssid,
1570 const char *objname,
1574 struct class_datum *cladatum = NULL;
1575 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1576 struct role_trans *roletr = NULL;
1577 struct avtab_key avkey;
1578 struct avtab_datum *avdatum;
1579 struct avtab_node *node;
1584 if (!ss_initialized) {
1585 switch (orig_tclass) {
1586 case SECCLASS_PROCESS: /* kernel value */
1596 context_init(&newcontext);
1598 read_lock(&policy_rwlock);
1601 tclass = unmap_class(orig_tclass);
1602 sock = security_is_socket_class(orig_tclass);
1604 tclass = orig_tclass;
1605 sock = security_is_socket_class(map_class(tclass));
1608 scontext = sidtab_search(&sidtab, ssid);
1610 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1615 tcontext = sidtab_search(&sidtab, tsid);
1617 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1623 if (tclass && tclass <= policydb.p_classes.nprim)
1624 cladatum = policydb.class_val_to_struct[tclass - 1];
1626 /* Set the user identity. */
1627 switch (specified) {
1628 case AVTAB_TRANSITION:
1630 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1631 newcontext.user = tcontext->user;
1633 /* notice this gets both DEFAULT_SOURCE and unset */
1634 /* Use the process user identity. */
1635 newcontext.user = scontext->user;
1639 /* Use the related object owner. */
1640 newcontext.user = tcontext->user;
1644 /* Set the role to default values. */
1645 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1646 newcontext.role = scontext->role;
1647 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1648 newcontext.role = tcontext->role;
1650 if ((tclass == policydb.process_class) || (sock == true))
1651 newcontext.role = scontext->role;
1653 newcontext.role = OBJECT_R_VAL;
1656 /* Set the type to default values. */
1657 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1658 newcontext.type = scontext->type;
1659 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1660 newcontext.type = tcontext->type;
1662 if ((tclass == policydb.process_class) || (sock == true)) {
1663 /* Use the type of process. */
1664 newcontext.type = scontext->type;
1666 /* Use the type of the related object. */
1667 newcontext.type = tcontext->type;
1671 /* Look for a type transition/member/change rule. */
1672 avkey.source_type = scontext->type;
1673 avkey.target_type = tcontext->type;
1674 avkey.target_class = tclass;
1675 avkey.specified = specified;
1676 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1678 /* If no permanent rule, also check for enabled conditional rules */
1680 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1681 for (; node; node = avtab_search_node_next(node, specified)) {
1682 if (node->key.specified & AVTAB_ENABLED) {
1683 avdatum = &node->datum;
1690 /* Use the type from the type transition/member/change rule. */
1691 newcontext.type = avdatum->u.data;
1694 /* if we have a objname this is a file trans check so check those rules */
1696 filename_compute_type(&policydb, &newcontext, scontext->type,
1697 tcontext->type, tclass, objname);
1699 /* Check for class-specific changes. */
1700 if (specified & AVTAB_TRANSITION) {
1701 /* Look for a role transition rule. */
1702 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1703 if ((roletr->role == scontext->role) &&
1704 (roletr->type == tcontext->type) &&
1705 (roletr->tclass == tclass)) {
1706 /* Use the role transition rule. */
1707 newcontext.role = roletr->new_role;
1713 /* Set the MLS attributes.
1714 This is done last because it may allocate memory. */
1715 rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1720 /* Check the validity of the context. */
1721 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1722 rc = compute_sid_handle_invalid_context(scontext,
1729 /* Obtain the sid for the context. */
1730 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1732 read_unlock(&policy_rwlock);
1733 context_destroy(&newcontext);
1739 * security_transition_sid - Compute the SID for a new subject/object.
1740 * @ssid: source security identifier
1741 * @tsid: target security identifier
1742 * @tclass: target security class
1743 * @out_sid: security identifier for new subject/object
1745 * Compute a SID to use for labeling a new subject or object in the
1746 * class @tclass based on a SID pair (@ssid, @tsid).
1747 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1748 * if insufficient memory is available, or %0 if the new SID was
1749 * computed successfully.
1751 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1752 const struct qstr *qstr, u32 *out_sid)
1754 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1755 qstr ? qstr->name : NULL, out_sid, true);
1758 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1759 const char *objname, u32 *out_sid)
1761 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1762 objname, out_sid, false);
1766 * security_member_sid - Compute the SID for member selection.
1767 * @ssid: source security identifier
1768 * @tsid: target security identifier
1769 * @tclass: target security class
1770 * @out_sid: security identifier for selected member
1772 * Compute a SID to use when selecting a member of a polyinstantiated
1773 * object of class @tclass based on a SID pair (@ssid, @tsid).
1774 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1775 * if insufficient memory is available, or %0 if the SID was
1776 * computed successfully.
1778 int security_member_sid(u32 ssid,
1783 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1788 * security_change_sid - Compute the SID for object relabeling.
1789 * @ssid: source security identifier
1790 * @tsid: target security identifier
1791 * @tclass: target security class
1792 * @out_sid: security identifier for selected member
1794 * Compute a SID to use for relabeling an object of class @tclass
1795 * based on a SID pair (@ssid, @tsid).
1796 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1797 * if insufficient memory is available, or %0 if the SID was
1798 * computed successfully.
1800 int security_change_sid(u32 ssid,
1805 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1809 /* Clone the SID into the new SID table. */
1810 static int clone_sid(u32 sid,
1811 struct context *context,
1814 struct sidtab *s = arg;
1816 if (sid > SECINITSID_NUM)
1817 return sidtab_insert(s, sid, context);
1822 static inline int convert_context_handle_invalid_context(struct context *context)
1827 if (selinux_enforcing)
1830 if (!context_struct_to_string(context, &s, &len)) {
1831 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s);
1837 struct convert_context_args {
1838 struct policydb *oldp;
1839 struct policydb *newp;
1843 * Convert the values in the security context
1844 * structure `c' from the values specified
1845 * in the policy `p->oldp' to the values specified
1846 * in the policy `p->newp'. Verify that the
1847 * context is valid under the new policy.
1849 static int convert_context(u32 key,
1853 struct convert_context_args *args;
1854 struct context oldc;
1855 struct ocontext *oc;
1856 struct mls_range *range;
1857 struct role_datum *role;
1858 struct type_datum *typdatum;
1859 struct user_datum *usrdatum;
1864 if (key <= SECINITSID_NUM)
1873 s = kstrdup(c->str, GFP_KERNEL);
1877 rc = string_to_context_struct(args->newp, NULL, s,
1878 c->len, &ctx, SECSID_NULL);
1881 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n",
1883 /* Replace string with mapped representation. */
1885 memcpy(c, &ctx, sizeof(*c));
1887 } else if (rc == -EINVAL) {
1888 /* Retain string representation for later mapping. */
1892 /* Other error condition, e.g. ENOMEM. */
1893 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n",
1899 rc = context_cpy(&oldc, c);
1903 /* Convert the user. */
1905 usrdatum = hashtab_search(args->newp->p_users.table,
1906 sym_name(args->oldp, SYM_USERS, c->user - 1));
1909 c->user = usrdatum->value;
1911 /* Convert the role. */
1913 role = hashtab_search(args->newp->p_roles.table,
1914 sym_name(args->oldp, SYM_ROLES, c->role - 1));
1917 c->role = role->value;
1919 /* Convert the type. */
1921 typdatum = hashtab_search(args->newp->p_types.table,
1922 sym_name(args->oldp, SYM_TYPES, c->type - 1));
1925 c->type = typdatum->value;
1927 /* Convert the MLS fields if dealing with MLS policies */
1928 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1929 rc = mls_convert_context(args->oldp, args->newp, c);
1932 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1934 * Switching between MLS and non-MLS policy:
1935 * free any storage used by the MLS fields in the
1936 * context for all existing entries in the sidtab.
1938 mls_context_destroy(c);
1939 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1941 * Switching between non-MLS and MLS policy:
1942 * ensure that the MLS fields of the context for all
1943 * existing entries in the sidtab are filled in with a
1944 * suitable default value, likely taken from one of the
1947 oc = args->newp->ocontexts[OCON_ISID];
1948 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1952 printk(KERN_ERR "SELinux: unable to look up"
1953 " the initial SIDs list\n");
1956 range = &oc->context[0].range;
1957 rc = mls_range_set(c, range);
1962 /* Check the validity of the new context. */
1963 if (!policydb_context_isvalid(args->newp, c)) {
1964 rc = convert_context_handle_invalid_context(&oldc);
1969 context_destroy(&oldc);
1975 /* Map old representation to string and save it. */
1976 rc = context_struct_to_string(&oldc, &s, &len);
1979 context_destroy(&oldc);
1983 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n",
1989 static void security_load_policycaps(void)
1991 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1992 POLICYDB_CAPABILITY_NETPEER);
1993 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1994 POLICYDB_CAPABILITY_OPENPERM);
1995 selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
1996 POLICYDB_CAPABILITY_ALWAYSNETWORK);
1999 static int security_preserve_bools(struct policydb *p);
2002 * security_load_policy - Load a security policy configuration.
2003 * @data: binary policy data
2004 * @len: length of data in bytes
2006 * Load a new set of security policy configuration data,
2007 * validate it and convert the SID table as necessary.
2008 * This function will flush the access vector cache after
2009 * loading the new policy.
2011 int security_load_policy(void *data, size_t len)
2013 struct policydb *oldpolicydb, *newpolicydb;
2014 struct sidtab oldsidtab, newsidtab;
2015 struct selinux_mapping *oldmap, *map = NULL;
2016 struct convert_context_args args;
2020 struct policy_file file = { data, len }, *fp = &file;
2022 oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2027 newpolicydb = oldpolicydb + 1;
2029 if (!ss_initialized) {
2031 rc = policydb_read(&policydb, fp);
2033 avtab_cache_destroy();
2038 rc = selinux_set_mapping(&policydb, secclass_map,
2040 ¤t_mapping_size);
2042 policydb_destroy(&policydb);
2043 avtab_cache_destroy();
2047 rc = policydb_load_isids(&policydb, &sidtab);
2049 policydb_destroy(&policydb);
2050 avtab_cache_destroy();
2054 security_load_policycaps();
2056 seqno = ++latest_granting;
2057 selinux_complete_init();
2058 avc_ss_reset(seqno);
2059 selnl_notify_policyload(seqno);
2060 selinux_status_update_policyload(seqno);
2061 selinux_netlbl_cache_invalidate();
2062 selinux_xfrm_notify_policyload();
2067 sidtab_hash_eval(&sidtab, "sids");
2070 rc = policydb_read(newpolicydb, fp);
2074 newpolicydb->len = len;
2075 /* If switching between different policy types, log MLS status */
2076 if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2077 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2078 else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2079 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2081 rc = policydb_load_isids(newpolicydb, &newsidtab);
2083 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
2084 policydb_destroy(newpolicydb);
2088 rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2092 rc = security_preserve_bools(newpolicydb);
2094 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
2098 /* Clone the SID table. */
2099 sidtab_shutdown(&sidtab);
2101 rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2106 * Convert the internal representations of contexts
2107 * in the new SID table.
2109 args.oldp = &policydb;
2110 args.newp = newpolicydb;
2111 rc = sidtab_map(&newsidtab, convert_context, &args);
2113 printk(KERN_ERR "SELinux: unable to convert the internal"
2114 " representation of contexts in the new SID"
2119 /* Save the old policydb and SID table to free later. */
2120 memcpy(oldpolicydb, &policydb, sizeof(policydb));
2121 sidtab_set(&oldsidtab, &sidtab);
2123 /* Install the new policydb and SID table. */
2124 write_lock_irq(&policy_rwlock);
2125 memcpy(&policydb, newpolicydb, sizeof(policydb));
2126 sidtab_set(&sidtab, &newsidtab);
2127 security_load_policycaps();
2128 oldmap = current_mapping;
2129 current_mapping = map;
2130 current_mapping_size = map_size;
2131 seqno = ++latest_granting;
2132 write_unlock_irq(&policy_rwlock);
2134 /* Free the old policydb and SID table. */
2135 policydb_destroy(oldpolicydb);
2136 sidtab_destroy(&oldsidtab);
2139 avc_ss_reset(seqno);
2140 selnl_notify_policyload(seqno);
2141 selinux_status_update_policyload(seqno);
2142 selinux_netlbl_cache_invalidate();
2143 selinux_xfrm_notify_policyload();
2150 sidtab_destroy(&newsidtab);
2151 policydb_destroy(newpolicydb);
2158 size_t security_policydb_len(void)
2162 read_lock(&policy_rwlock);
2164 read_unlock(&policy_rwlock);
2170 * security_port_sid - Obtain the SID for a port.
2171 * @protocol: protocol number
2172 * @port: port number
2173 * @out_sid: security identifier
2175 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2180 read_lock(&policy_rwlock);
2182 c = policydb.ocontexts[OCON_PORT];
2184 if (c->u.port.protocol == protocol &&
2185 c->u.port.low_port <= port &&
2186 c->u.port.high_port >= port)
2193 rc = sidtab_context_to_sid(&sidtab,
2199 *out_sid = c->sid[0];
2201 *out_sid = SECINITSID_PORT;
2205 read_unlock(&policy_rwlock);
2210 * security_netif_sid - Obtain the SID for a network interface.
2211 * @name: interface name
2212 * @if_sid: interface SID
2214 int security_netif_sid(char *name, u32 *if_sid)
2219 read_lock(&policy_rwlock);
2221 c = policydb.ocontexts[OCON_NETIF];
2223 if (strcmp(name, c->u.name) == 0)
2229 if (!c->sid[0] || !c->sid[1]) {
2230 rc = sidtab_context_to_sid(&sidtab,
2235 rc = sidtab_context_to_sid(&sidtab,
2241 *if_sid = c->sid[0];
2243 *if_sid = SECINITSID_NETIF;
2246 read_unlock(&policy_rwlock);
2250 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2254 for (i = 0; i < 4; i++)
2255 if (addr[i] != (input[i] & mask[i])) {
2264 * security_node_sid - Obtain the SID for a node (host).
2265 * @domain: communication domain aka address family
2267 * @addrlen: address length in bytes
2268 * @out_sid: security identifier
2270 int security_node_sid(u16 domain,
2278 read_lock(&policy_rwlock);
2285 if (addrlen != sizeof(u32))
2288 addr = *((u32 *)addrp);
2290 c = policydb.ocontexts[OCON_NODE];
2292 if (c->u.node.addr == (addr & c->u.node.mask))
2301 if (addrlen != sizeof(u64) * 2)
2303 c = policydb.ocontexts[OCON_NODE6];
2305 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2314 *out_sid = SECINITSID_NODE;
2320 rc = sidtab_context_to_sid(&sidtab,
2326 *out_sid = c->sid[0];
2328 *out_sid = SECINITSID_NODE;
2333 read_unlock(&policy_rwlock);
2340 * security_get_user_sids - Obtain reachable SIDs for a user.
2341 * @fromsid: starting SID
2342 * @username: username
2343 * @sids: array of reachable SIDs for user
2344 * @nel: number of elements in @sids
2346 * Generate the set of SIDs for legal security contexts
2347 * for a given user that can be reached by @fromsid.
2348 * Set *@sids to point to a dynamically allocated
2349 * array containing the set of SIDs. Set *@nel to the
2350 * number of elements in the array.
2353 int security_get_user_sids(u32 fromsid,
2358 struct context *fromcon, usercon;
2359 u32 *mysids = NULL, *mysids2, sid;
2360 u32 mynel = 0, maxnel = SIDS_NEL;
2361 struct user_datum *user;
2362 struct role_datum *role;
2363 struct ebitmap_node *rnode, *tnode;
2369 if (!ss_initialized)
2372 read_lock(&policy_rwlock);
2374 context_init(&usercon);
2377 fromcon = sidtab_search(&sidtab, fromsid);
2382 user = hashtab_search(policydb.p_users.table, username);
2386 usercon.user = user->value;
2389 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2393 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2394 role = policydb.role_val_to_struct[i];
2395 usercon.role = i + 1;
2396 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2397 usercon.type = j + 1;
2399 if (mls_setup_user_range(fromcon, user, &usercon))
2402 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2405 if (mynel < maxnel) {
2406 mysids[mynel++] = sid;
2410 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2413 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2416 mysids[mynel++] = sid;
2422 read_unlock(&policy_rwlock);
2429 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2434 for (i = 0, j = 0; i < mynel; i++) {
2435 struct av_decision dummy_avd;
2436 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2437 SECCLASS_PROCESS, /* kernel value */
2438 PROCESS__TRANSITION, AVC_STRICT,
2441 mysids2[j++] = mysids[i];
2453 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2454 * @fstype: filesystem type
2455 * @path: path from root of mount
2456 * @sclass: file security class
2457 * @sid: SID for path
2459 * Obtain a SID to use for a file in a filesystem that
2460 * cannot support xattr or use a fixed labeling behavior like
2461 * transition SIDs or task SIDs.
2463 * The caller must acquire the policy_rwlock before calling this function.
2465 static inline int __security_genfs_sid(const char *fstype,
2472 struct genfs *genfs;
2476 while (path[0] == '/' && path[1] == '/')
2479 sclass = unmap_class(orig_sclass);
2480 *sid = SECINITSID_UNLABELED;
2482 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2483 cmp = strcmp(fstype, genfs->fstype);
2492 for (c = genfs->head; c; c = c->next) {
2493 len = strlen(c->u.name);
2494 if ((!c->v.sclass || sclass == c->v.sclass) &&
2495 (strncmp(c->u.name, path, len) == 0))
2504 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2516 * security_genfs_sid - Obtain a SID for a file in a filesystem
2517 * @fstype: filesystem type
2518 * @path: path from root of mount
2519 * @sclass: file security class
2520 * @sid: SID for path
2522 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2525 int security_genfs_sid(const char *fstype,
2532 read_lock(&policy_rwlock);
2533 retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2534 read_unlock(&policy_rwlock);
2539 * security_fs_use - Determine how to handle labeling for a filesystem.
2540 * @sb: superblock in question
2542 int security_fs_use(struct super_block *sb)
2546 struct superblock_security_struct *sbsec = sb->s_security;
2547 const char *fstype = sb->s_type->name;
2549 read_lock(&policy_rwlock);
2551 c = policydb.ocontexts[OCON_FSUSE];
2553 if (strcmp(fstype, c->u.name) == 0)
2559 sbsec->behavior = c->v.behavior;
2561 rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2566 sbsec->sid = c->sid[0];
2568 rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2571 sbsec->behavior = SECURITY_FS_USE_NONE;
2574 sbsec->behavior = SECURITY_FS_USE_GENFS;
2579 read_unlock(&policy_rwlock);
2583 int security_get_bools(int *len, char ***names, int **values)
2587 read_lock(&policy_rwlock);
2592 *len = policydb.p_bools.nprim;
2597 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2602 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2606 for (i = 0; i < *len; i++) {
2609 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2610 name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2613 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
2617 strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2618 (*names)[i][name_len - 1] = 0;
2622 read_unlock(&policy_rwlock);
2626 for (i = 0; i < *len; i++)
2634 int security_set_bools(int len, int *values)
2637 int lenp, seqno = 0;
2638 struct cond_node *cur;
2640 write_lock_irq(&policy_rwlock);
2643 lenp = policydb.p_bools.nprim;
2647 for (i = 0; i < len; i++) {
2648 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2649 audit_log(current->audit_context, GFP_ATOMIC,
2650 AUDIT_MAC_CONFIG_CHANGE,
2651 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2652 sym_name(&policydb, SYM_BOOLS, i),
2654 policydb.bool_val_to_struct[i]->state,
2655 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2656 audit_get_sessionid(current));
2659 policydb.bool_val_to_struct[i]->state = 1;
2661 policydb.bool_val_to_struct[i]->state = 0;
2664 for (cur = policydb.cond_list; cur; cur = cur->next) {
2665 rc = evaluate_cond_node(&policydb, cur);
2670 seqno = ++latest_granting;
2673 write_unlock_irq(&policy_rwlock);
2675 avc_ss_reset(seqno);
2676 selnl_notify_policyload(seqno);
2677 selinux_status_update_policyload(seqno);
2678 selinux_xfrm_notify_policyload();
2683 int security_get_bool_value(int bool)
2688 read_lock(&policy_rwlock);
2691 len = policydb.p_bools.nprim;
2695 rc = policydb.bool_val_to_struct[bool]->state;
2697 read_unlock(&policy_rwlock);
2701 static int security_preserve_bools(struct policydb *p)
2703 int rc, nbools = 0, *bvalues = NULL, i;
2704 char **bnames = NULL;
2705 struct cond_bool_datum *booldatum;
2706 struct cond_node *cur;
2708 rc = security_get_bools(&nbools, &bnames, &bvalues);
2711 for (i = 0; i < nbools; i++) {
2712 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2714 booldatum->state = bvalues[i];
2716 for (cur = p->cond_list; cur; cur = cur->next) {
2717 rc = evaluate_cond_node(p, cur);
2724 for (i = 0; i < nbools; i++)
2733 * security_sid_mls_copy() - computes a new sid based on the given
2734 * sid and the mls portion of mls_sid.
2736 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2738 struct context *context1;
2739 struct context *context2;
2740 struct context newcon;
2746 if (!ss_initialized || !policydb.mls_enabled) {
2751 context_init(&newcon);
2753 read_lock(&policy_rwlock);
2756 context1 = sidtab_search(&sidtab, sid);
2758 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2764 context2 = sidtab_search(&sidtab, mls_sid);
2766 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2771 newcon.user = context1->user;
2772 newcon.role = context1->role;
2773 newcon.type = context1->type;
2774 rc = mls_context_cpy(&newcon, context2);
2778 /* Check the validity of the new context. */
2779 if (!policydb_context_isvalid(&policydb, &newcon)) {
2780 rc = convert_context_handle_invalid_context(&newcon);
2782 if (!context_struct_to_string(&newcon, &s, &len)) {
2783 audit_log(current->audit_context,
2784 GFP_ATOMIC, AUDIT_SELINUX_ERR,
2785 "op=security_sid_mls_copy "
2786 "invalid_context=%s", s);
2793 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2795 read_unlock(&policy_rwlock);
2796 context_destroy(&newcon);
2802 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2803 * @nlbl_sid: NetLabel SID
2804 * @nlbl_type: NetLabel labeling protocol type
2805 * @xfrm_sid: XFRM SID
2808 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2809 * resolved into a single SID it is returned via @peer_sid and the function
2810 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2811 * returns a negative value. A table summarizing the behavior is below:
2813 * | function return | @sid
2814 * ------------------------------+-----------------+-----------------
2815 * no peer labels | 0 | SECSID_NULL
2816 * single peer label | 0 | <peer_label>
2817 * multiple, consistent labels | 0 | <peer_label>
2818 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2821 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2826 struct context *nlbl_ctx;
2827 struct context *xfrm_ctx;
2829 *peer_sid = SECSID_NULL;
2831 /* handle the common (which also happens to be the set of easy) cases
2832 * right away, these two if statements catch everything involving a
2833 * single or absent peer SID/label */
2834 if (xfrm_sid == SECSID_NULL) {
2835 *peer_sid = nlbl_sid;
2838 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2839 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2841 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2842 *peer_sid = xfrm_sid;
2846 /* we don't need to check ss_initialized here since the only way both
2847 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2848 * security server was initialized and ss_initialized was true */
2849 if (!policydb.mls_enabled)
2852 read_lock(&policy_rwlock);
2855 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2857 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2858 __func__, nlbl_sid);
2862 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2864 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2865 __func__, xfrm_sid);
2868 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2872 /* at present NetLabel SIDs/labels really only carry MLS
2873 * information so if the MLS portion of the NetLabel SID
2874 * matches the MLS portion of the labeled XFRM SID/label
2875 * then pass along the XFRM SID as it is the most
2877 *peer_sid = xfrm_sid;
2879 read_unlock(&policy_rwlock);
2883 static int get_classes_callback(void *k, void *d, void *args)
2885 struct class_datum *datum = d;
2886 char *name = k, **classes = args;
2887 int value = datum->value - 1;
2889 classes[value] = kstrdup(name, GFP_ATOMIC);
2890 if (!classes[value])
2896 int security_get_classes(char ***classes, int *nclasses)
2900 read_lock(&policy_rwlock);
2903 *nclasses = policydb.p_classes.nprim;
2904 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2908 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2912 for (i = 0; i < *nclasses; i++)
2913 kfree((*classes)[i]);
2918 read_unlock(&policy_rwlock);
2922 static int get_permissions_callback(void *k, void *d, void *args)
2924 struct perm_datum *datum = d;
2925 char *name = k, **perms = args;
2926 int value = datum->value - 1;
2928 perms[value] = kstrdup(name, GFP_ATOMIC);
2935 int security_get_permissions(char *class, char ***perms, int *nperms)
2938 struct class_datum *match;
2940 read_lock(&policy_rwlock);
2943 match = hashtab_search(policydb.p_classes.table, class);
2945 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
2951 *nperms = match->permissions.nprim;
2952 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2956 if (match->comdatum) {
2957 rc = hashtab_map(match->comdatum->permissions.table,
2958 get_permissions_callback, *perms);
2963 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2969 read_unlock(&policy_rwlock);
2973 read_unlock(&policy_rwlock);
2974 for (i = 0; i < *nperms; i++)
2980 int security_get_reject_unknown(void)
2982 return policydb.reject_unknown;
2985 int security_get_allow_unknown(void)
2987 return policydb.allow_unknown;
2991 * security_policycap_supported - Check for a specific policy capability
2992 * @req_cap: capability
2995 * This function queries the currently loaded policy to see if it supports the
2996 * capability specified by @req_cap. Returns true (1) if the capability is
2997 * supported, false (0) if it isn't supported.
3000 int security_policycap_supported(unsigned int req_cap)
3004 read_lock(&policy_rwlock);
3005 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
3006 read_unlock(&policy_rwlock);
3011 struct selinux_audit_rule {
3013 struct context au_ctxt;
3016 void selinux_audit_rule_free(void *vrule)
3018 struct selinux_audit_rule *rule = vrule;
3021 context_destroy(&rule->au_ctxt);
3026 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3028 struct selinux_audit_rule *tmprule;
3029 struct role_datum *roledatum;
3030 struct type_datum *typedatum;
3031 struct user_datum *userdatum;
3032 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3037 if (!ss_initialized)
3041 case AUDIT_SUBJ_USER:
3042 case AUDIT_SUBJ_ROLE:
3043 case AUDIT_SUBJ_TYPE:
3044 case AUDIT_OBJ_USER:
3045 case AUDIT_OBJ_ROLE:
3046 case AUDIT_OBJ_TYPE:
3047 /* only 'equals' and 'not equals' fit user, role, and type */
3048 if (op != Audit_equal && op != Audit_not_equal)
3051 case AUDIT_SUBJ_SEN:
3052 case AUDIT_SUBJ_CLR:
3053 case AUDIT_OBJ_LEV_LOW:
3054 case AUDIT_OBJ_LEV_HIGH:
3055 /* we do not allow a range, indicated by the presence of '-' */
3056 if (strchr(rulestr, '-'))
3060 /* only the above fields are valid */
3064 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3068 context_init(&tmprule->au_ctxt);
3070 read_lock(&policy_rwlock);
3072 tmprule->au_seqno = latest_granting;
3075 case AUDIT_SUBJ_USER:
3076 case AUDIT_OBJ_USER:
3078 userdatum = hashtab_search(policydb.p_users.table, rulestr);
3081 tmprule->au_ctxt.user = userdatum->value;
3083 case AUDIT_SUBJ_ROLE:
3084 case AUDIT_OBJ_ROLE:
3086 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3089 tmprule->au_ctxt.role = roledatum->value;
3091 case AUDIT_SUBJ_TYPE:
3092 case AUDIT_OBJ_TYPE:
3094 typedatum = hashtab_search(policydb.p_types.table, rulestr);
3097 tmprule->au_ctxt.type = typedatum->value;
3099 case AUDIT_SUBJ_SEN:
3100 case AUDIT_SUBJ_CLR:
3101 case AUDIT_OBJ_LEV_LOW:
3102 case AUDIT_OBJ_LEV_HIGH:
3103 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
3110 read_unlock(&policy_rwlock);
3113 selinux_audit_rule_free(tmprule);
3122 /* Check to see if the rule contains any selinux fields */
3123 int selinux_audit_rule_known(struct audit_krule *rule)
3127 for (i = 0; i < rule->field_count; i++) {
3128 struct audit_field *f = &rule->fields[i];
3130 case AUDIT_SUBJ_USER:
3131 case AUDIT_SUBJ_ROLE:
3132 case AUDIT_SUBJ_TYPE:
3133 case AUDIT_SUBJ_SEN:
3134 case AUDIT_SUBJ_CLR:
3135 case AUDIT_OBJ_USER:
3136 case AUDIT_OBJ_ROLE:
3137 case AUDIT_OBJ_TYPE:
3138 case AUDIT_OBJ_LEV_LOW:
3139 case AUDIT_OBJ_LEV_HIGH:
3147 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3148 struct audit_context *actx)
3150 struct context *ctxt;
3151 struct mls_level *level;
3152 struct selinux_audit_rule *rule = vrule;
3155 if (unlikely(!rule)) {
3156 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3160 read_lock(&policy_rwlock);
3162 if (rule->au_seqno < latest_granting) {
3167 ctxt = sidtab_search(&sidtab, sid);
3168 if (unlikely(!ctxt)) {
3169 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3175 /* a field/op pair that is not caught here will simply fall through
3178 case AUDIT_SUBJ_USER:
3179 case AUDIT_OBJ_USER:
3182 match = (ctxt->user == rule->au_ctxt.user);
3184 case Audit_not_equal:
3185 match = (ctxt->user != rule->au_ctxt.user);
3189 case AUDIT_SUBJ_ROLE:
3190 case AUDIT_OBJ_ROLE:
3193 match = (ctxt->role == rule->au_ctxt.role);
3195 case Audit_not_equal:
3196 match = (ctxt->role != rule->au_ctxt.role);
3200 case AUDIT_SUBJ_TYPE:
3201 case AUDIT_OBJ_TYPE:
3204 match = (ctxt->type == rule->au_ctxt.type);
3206 case Audit_not_equal:
3207 match = (ctxt->type != rule->au_ctxt.type);
3211 case AUDIT_SUBJ_SEN:
3212 case AUDIT_SUBJ_CLR:
3213 case AUDIT_OBJ_LEV_LOW:
3214 case AUDIT_OBJ_LEV_HIGH:
3215 level = ((field == AUDIT_SUBJ_SEN ||
3216 field == AUDIT_OBJ_LEV_LOW) ?
3217 &ctxt->range.level[0] : &ctxt->range.level[1]);
3220 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3223 case Audit_not_equal:
3224 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3228 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3230 !mls_level_eq(&rule->au_ctxt.range.level[0],
3234 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3238 match = (mls_level_dom(level,
3239 &rule->au_ctxt.range.level[0]) &&
3240 !mls_level_eq(level,
3241 &rule->au_ctxt.range.level[0]));
3244 match = mls_level_dom(level,