2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
55 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
61 #include "coalesced_mmio.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
119 #define KVM_COMPAT(c) .compat_ioctl = (c)
121 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
122 unsigned long arg) { return -EINVAL; }
123 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl
125 static int hardware_enable_all(void);
126 static void hardware_disable_all(void);
128 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
130 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
132 __visible bool kvm_rebooting;
133 EXPORT_SYMBOL_GPL(kvm_rebooting);
135 static bool largepages_enabled = true;
137 #define KVM_EVENT_CREATE_VM 0
138 #define KVM_EVENT_DESTROY_VM 1
139 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
140 static unsigned long long kvm_createvm_count;
141 static unsigned long long kvm_active_vms;
143 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
144 unsigned long start, unsigned long end, bool blockable)
149 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
152 return PageReserved(pfn_to_page(pfn));
158 * Switches to specified vcpu, until a matching vcpu_put()
160 void vcpu_load(struct kvm_vcpu *vcpu)
163 preempt_notifier_register(&vcpu->preempt_notifier);
164 kvm_arch_vcpu_load(vcpu, cpu);
167 EXPORT_SYMBOL_GPL(vcpu_load);
169 void vcpu_put(struct kvm_vcpu *vcpu)
172 kvm_arch_vcpu_put(vcpu);
173 preempt_notifier_unregister(&vcpu->preempt_notifier);
176 EXPORT_SYMBOL_GPL(vcpu_put);
178 /* TODO: merge with kvm_arch_vcpu_should_kick */
179 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
181 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
184 * We need to wait for the VCPU to reenable interrupts and get out of
185 * READING_SHADOW_PAGE_TABLES mode.
187 if (req & KVM_REQUEST_WAIT)
188 return mode != OUTSIDE_GUEST_MODE;
191 * Need to kick a running VCPU, but otherwise there is nothing to do.
193 return mode == IN_GUEST_MODE;
196 static void ack_flush(void *_completed)
200 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
203 cpus = cpu_online_mask;
205 if (cpumask_empty(cpus))
208 smp_call_function_many(cpus, ack_flush, NULL, wait);
212 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
213 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
216 struct kvm_vcpu *vcpu;
221 kvm_for_each_vcpu(i, vcpu, kvm) {
222 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
225 kvm_make_request(req, vcpu);
228 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
231 if (tmp != NULL && cpu != -1 && cpu != me &&
232 kvm_request_needs_ipi(vcpu, req))
233 __cpumask_set_cpu(cpu, tmp);
236 called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
242 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
247 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
249 called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
251 free_cpumask_var(cpus);
255 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
256 void kvm_flush_remote_tlbs(struct kvm *kvm)
259 * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
260 * kvm_make_all_cpus_request.
262 long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
265 * We want to publish modifications to the page tables before reading
266 * mode. Pairs with a memory barrier in arch-specific code.
267 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
268 * and smp_mb in walk_shadow_page_lockless_begin/end.
269 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
271 * There is already an smp_mb__after_atomic() before
272 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
275 if (!kvm_arch_flush_remote_tlb(kvm)
276 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
277 ++kvm->stat.remote_tlb_flush;
278 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
280 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
283 void kvm_reload_remote_mmus(struct kvm *kvm)
285 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
288 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
293 mutex_init(&vcpu->mutex);
298 init_swait_queue_head(&vcpu->wq);
299 kvm_async_pf_vcpu_init(vcpu);
302 INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
304 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
309 vcpu->run = page_address(page);
311 kvm_vcpu_set_in_spin_loop(vcpu, false);
312 kvm_vcpu_set_dy_eligible(vcpu, false);
313 vcpu->preempted = false;
315 r = kvm_arch_vcpu_init(vcpu);
321 free_page((unsigned long)vcpu->run);
325 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
327 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
330 * no need for rcu_read_lock as VCPU_RUN is the only place that
331 * will change the vcpu->pid pointer and on uninit all file
332 * descriptors are already gone.
334 put_pid(rcu_dereference_protected(vcpu->pid, 1));
335 kvm_arch_vcpu_uninit(vcpu);
336 free_page((unsigned long)vcpu->run);
338 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
340 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
341 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
343 return container_of(mn, struct kvm, mmu_notifier);
346 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long address,
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
354 idx = srcu_read_lock(&kvm->srcu);
355 spin_lock(&kvm->mmu_lock);
356 kvm->mmu_notifier_seq++;
357 kvm_set_spte_hva(kvm, address, pte);
358 spin_unlock(&kvm->mmu_lock);
359 srcu_read_unlock(&kvm->srcu, idx);
362 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
363 struct mm_struct *mm,
368 struct kvm *kvm = mmu_notifier_to_kvm(mn);
369 int need_tlb_flush = 0, idx;
372 idx = srcu_read_lock(&kvm->srcu);
373 spin_lock(&kvm->mmu_lock);
375 * The count increase must become visible at unlock time as no
376 * spte can be established without taking the mmu_lock and
377 * count is also read inside the mmu_lock critical section.
379 kvm->mmu_notifier_count++;
380 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
381 need_tlb_flush |= kvm->tlbs_dirty;
382 /* we've to flush the tlb before the pages can be freed */
384 kvm_flush_remote_tlbs(kvm);
386 spin_unlock(&kvm->mmu_lock);
388 ret = kvm_arch_mmu_notifier_invalidate_range(kvm, start, end, blockable);
390 srcu_read_unlock(&kvm->srcu, idx);
395 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
396 struct mm_struct *mm,
400 struct kvm *kvm = mmu_notifier_to_kvm(mn);
402 spin_lock(&kvm->mmu_lock);
404 * This sequence increase will notify the kvm page fault that
405 * the page that is going to be mapped in the spte could have
408 kvm->mmu_notifier_seq++;
411 * The above sequence increase must be visible before the
412 * below count decrease, which is ensured by the smp_wmb above
413 * in conjunction with the smp_rmb in mmu_notifier_retry().
415 kvm->mmu_notifier_count--;
416 spin_unlock(&kvm->mmu_lock);
418 BUG_ON(kvm->mmu_notifier_count < 0);
421 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
422 struct mm_struct *mm,
426 struct kvm *kvm = mmu_notifier_to_kvm(mn);
429 idx = srcu_read_lock(&kvm->srcu);
430 spin_lock(&kvm->mmu_lock);
432 young = kvm_age_hva(kvm, start, end);
434 kvm_flush_remote_tlbs(kvm);
436 spin_unlock(&kvm->mmu_lock);
437 srcu_read_unlock(&kvm->srcu, idx);
442 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
443 struct mm_struct *mm,
447 struct kvm *kvm = mmu_notifier_to_kvm(mn);
450 idx = srcu_read_lock(&kvm->srcu);
451 spin_lock(&kvm->mmu_lock);
453 * Even though we do not flush TLB, this will still adversely
454 * affect performance on pre-Haswell Intel EPT, where there is
455 * no EPT Access Bit to clear so that we have to tear down EPT
456 * tables instead. If we find this unacceptable, we can always
457 * add a parameter to kvm_age_hva so that it effectively doesn't
458 * do anything on clear_young.
460 * Also note that currently we never issue secondary TLB flushes
461 * from clear_young, leaving this job up to the regular system
462 * cadence. If we find this inaccurate, we might come up with a
463 * more sophisticated heuristic later.
465 young = kvm_age_hva(kvm, start, end);
466 spin_unlock(&kvm->mmu_lock);
467 srcu_read_unlock(&kvm->srcu, idx);
472 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
473 struct mm_struct *mm,
474 unsigned long address)
476 struct kvm *kvm = mmu_notifier_to_kvm(mn);
479 idx = srcu_read_lock(&kvm->srcu);
480 spin_lock(&kvm->mmu_lock);
481 young = kvm_test_age_hva(kvm, address);
482 spin_unlock(&kvm->mmu_lock);
483 srcu_read_unlock(&kvm->srcu, idx);
488 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
489 struct mm_struct *mm)
491 struct kvm *kvm = mmu_notifier_to_kvm(mn);
494 idx = srcu_read_lock(&kvm->srcu);
495 kvm_arch_flush_shadow_all(kvm);
496 srcu_read_unlock(&kvm->srcu, idx);
499 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
500 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
501 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
502 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
503 .clear_young = kvm_mmu_notifier_clear_young,
504 .test_young = kvm_mmu_notifier_test_young,
505 .change_pte = kvm_mmu_notifier_change_pte,
506 .release = kvm_mmu_notifier_release,
509 static int kvm_init_mmu_notifier(struct kvm *kvm)
511 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
512 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
515 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
517 static int kvm_init_mmu_notifier(struct kvm *kvm)
522 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
524 static struct kvm_memslots *kvm_alloc_memslots(void)
527 struct kvm_memslots *slots;
529 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
533 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
534 slots->id_to_index[i] = slots->memslots[i].id = i;
539 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
541 if (!memslot->dirty_bitmap)
544 kvfree(memslot->dirty_bitmap);
545 memslot->dirty_bitmap = NULL;
549 * Free any memory in @free but not in @dont.
551 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
552 struct kvm_memory_slot *dont)
554 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
555 kvm_destroy_dirty_bitmap(free);
557 kvm_arch_free_memslot(kvm, free, dont);
562 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
564 struct kvm_memory_slot *memslot;
569 kvm_for_each_memslot(memslot, slots)
570 kvm_free_memslot(kvm, memslot, NULL);
575 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
579 if (!kvm->debugfs_dentry)
582 debugfs_remove_recursive(kvm->debugfs_dentry);
584 if (kvm->debugfs_stat_data) {
585 for (i = 0; i < kvm_debugfs_num_entries; i++)
586 kfree(kvm->debugfs_stat_data[i]);
587 kfree(kvm->debugfs_stat_data);
591 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
593 char dir_name[ITOA_MAX_LEN * 2];
594 struct kvm_stat_data *stat_data;
595 struct kvm_stats_debugfs_item *p;
597 if (!debugfs_initialized())
600 snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
601 kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
603 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
604 sizeof(*kvm->debugfs_stat_data),
606 if (!kvm->debugfs_stat_data)
609 for (p = debugfs_entries; p->name; p++) {
610 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
614 stat_data->kvm = kvm;
615 stat_data->offset = p->offset;
616 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
617 debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
618 stat_data, stat_fops_per_vm[p->kind]);
623 static struct kvm *kvm_create_vm(unsigned long type)
626 struct kvm *kvm = kvm_arch_alloc_vm();
629 return ERR_PTR(-ENOMEM);
631 spin_lock_init(&kvm->mmu_lock);
633 kvm->mm = current->mm;
634 kvm_eventfd_init(kvm);
635 mutex_init(&kvm->lock);
636 mutex_init(&kvm->irq_lock);
637 mutex_init(&kvm->slots_lock);
638 refcount_set(&kvm->users_count, 1);
639 INIT_LIST_HEAD(&kvm->devices);
641 r = kvm_arch_init_vm(kvm, type);
643 goto out_err_no_disable;
645 r = hardware_enable_all();
647 goto out_err_no_disable;
649 #ifdef CONFIG_HAVE_KVM_IRQFD
650 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
653 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
656 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
657 struct kvm_memslots *slots = kvm_alloc_memslots();
659 goto out_err_no_srcu;
661 * Generations must be different for each address space.
662 * Init kvm generation close to the maximum to easily test the
663 * code of handling generation number wrap-around.
665 slots->generation = i * 2 - 150;
666 rcu_assign_pointer(kvm->memslots[i], slots);
669 if (init_srcu_struct(&kvm->srcu))
670 goto out_err_no_srcu;
671 if (init_srcu_struct(&kvm->irq_srcu))
672 goto out_err_no_irq_srcu;
673 for (i = 0; i < KVM_NR_BUSES; i++) {
674 rcu_assign_pointer(kvm->buses[i],
675 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
680 r = kvm_init_mmu_notifier(kvm);
684 spin_lock(&kvm_lock);
685 list_add(&kvm->vm_list, &vm_list);
686 spin_unlock(&kvm_lock);
688 preempt_notifier_inc();
693 cleanup_srcu_struct(&kvm->irq_srcu);
695 cleanup_srcu_struct(&kvm->srcu);
697 hardware_disable_all();
699 refcount_set(&kvm->users_count, 0);
700 for (i = 0; i < KVM_NR_BUSES; i++)
701 kfree(kvm_get_bus(kvm, i));
702 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
703 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
704 kvm_arch_free_vm(kvm);
709 static void kvm_destroy_devices(struct kvm *kvm)
711 struct kvm_device *dev, *tmp;
714 * We do not need to take the kvm->lock here, because nobody else
715 * has a reference to the struct kvm at this point and therefore
716 * cannot access the devices list anyhow.
718 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
719 list_del(&dev->vm_node);
720 dev->ops->destroy(dev);
724 static void kvm_destroy_vm(struct kvm *kvm)
727 struct mm_struct *mm = kvm->mm;
729 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
730 kvm_destroy_vm_debugfs(kvm);
731 kvm_arch_sync_events(kvm);
732 spin_lock(&kvm_lock);
733 list_del(&kvm->vm_list);
734 spin_unlock(&kvm_lock);
735 kvm_free_irq_routing(kvm);
736 for (i = 0; i < KVM_NR_BUSES; i++) {
737 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
740 kvm_io_bus_destroy(bus);
741 kvm->buses[i] = NULL;
743 kvm_coalesced_mmio_free(kvm);
744 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
745 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
747 kvm_arch_flush_shadow_all(kvm);
749 kvm_arch_destroy_vm(kvm);
750 kvm_destroy_devices(kvm);
751 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
752 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
753 cleanup_srcu_struct(&kvm->irq_srcu);
754 cleanup_srcu_struct(&kvm->srcu);
755 kvm_arch_free_vm(kvm);
756 preempt_notifier_dec();
757 hardware_disable_all();
761 void kvm_get_kvm(struct kvm *kvm)
763 refcount_inc(&kvm->users_count);
765 EXPORT_SYMBOL_GPL(kvm_get_kvm);
767 void kvm_put_kvm(struct kvm *kvm)
769 if (refcount_dec_and_test(&kvm->users_count))
772 EXPORT_SYMBOL_GPL(kvm_put_kvm);
775 static int kvm_vm_release(struct inode *inode, struct file *filp)
777 struct kvm *kvm = filp->private_data;
779 kvm_irqfd_release(kvm);
786 * Allocation size is twice as large as the actual dirty bitmap size.
787 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
789 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
791 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
793 memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
794 if (!memslot->dirty_bitmap)
801 * Insert memslot and re-sort memslots based on their GFN,
802 * so binary search could be used to lookup GFN.
803 * Sorting algorithm takes advantage of having initially
804 * sorted array and known changed memslot position.
806 static void update_memslots(struct kvm_memslots *slots,
807 struct kvm_memory_slot *new,
808 enum kvm_mr_change change)
811 int i = slots->id_to_index[id];
812 struct kvm_memory_slot *mslots = slots->memslots;
814 WARN_ON(mslots[i].id != id);
818 WARN_ON(mslots[i].npages || !new->npages);
822 WARN_ON(new->npages || !mslots[i].npages);
828 while (i < KVM_MEM_SLOTS_NUM - 1 &&
829 new->base_gfn <= mslots[i + 1].base_gfn) {
830 if (!mslots[i + 1].npages)
832 mslots[i] = mslots[i + 1];
833 slots->id_to_index[mslots[i].id] = i;
838 * The ">=" is needed when creating a slot with base_gfn == 0,
839 * so that it moves before all those with base_gfn == npages == 0.
841 * On the other hand, if new->npages is zero, the above loop has
842 * already left i pointing to the beginning of the empty part of
843 * mslots, and the ">=" would move the hole backwards in this
844 * case---which is wrong. So skip the loop when deleting a slot.
848 new->base_gfn >= mslots[i - 1].base_gfn) {
849 mslots[i] = mslots[i - 1];
850 slots->id_to_index[mslots[i].id] = i;
854 WARN_ON_ONCE(i != slots->used_slots);
857 slots->id_to_index[mslots[i].id] = i;
860 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
862 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
864 #ifdef __KVM_HAVE_READONLY_MEM
865 valid_flags |= KVM_MEM_READONLY;
868 if (mem->flags & ~valid_flags)
874 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
875 int as_id, struct kvm_memslots *slots)
877 struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
880 * Set the low bit in the generation, which disables SPTE caching
881 * until the end of synchronize_srcu_expedited.
883 WARN_ON(old_memslots->generation & 1);
884 slots->generation = old_memslots->generation + 1;
886 rcu_assign_pointer(kvm->memslots[as_id], slots);
887 synchronize_srcu_expedited(&kvm->srcu);
890 * Increment the new memslot generation a second time. This prevents
891 * vm exits that race with memslot updates from caching a memslot
892 * generation that will (potentially) be valid forever.
894 * Generations must be unique even across address spaces. We do not need
895 * a global counter for that, instead the generation space is evenly split
896 * across address spaces. For example, with two address spaces, address
897 * space 0 will use generations 0, 4, 8, ... while * address space 1 will
898 * use generations 2, 6, 10, 14, ...
900 slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
902 kvm_arch_memslots_updated(kvm, slots);
908 * Allocate some memory and give it an address in the guest physical address
911 * Discontiguous memory is allowed, mostly for framebuffers.
913 * Must be called holding kvm->slots_lock for write.
915 int __kvm_set_memory_region(struct kvm *kvm,
916 const struct kvm_userspace_memory_region *mem)
920 unsigned long npages;
921 struct kvm_memory_slot *slot;
922 struct kvm_memory_slot old, new;
923 struct kvm_memslots *slots = NULL, *old_memslots;
925 enum kvm_mr_change change;
927 r = check_memory_region_flags(mem);
932 as_id = mem->slot >> 16;
935 /* General sanity checks */
936 if (mem->memory_size & (PAGE_SIZE - 1))
938 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
940 /* We can read the guest memory with __xxx_user() later on. */
941 if ((id < KVM_USER_MEM_SLOTS) &&
942 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
943 !access_ok(VERIFY_WRITE,
944 (void __user *)(unsigned long)mem->userspace_addr,
947 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
949 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
952 slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
953 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
954 npages = mem->memory_size >> PAGE_SHIFT;
956 if (npages > KVM_MEM_MAX_NR_PAGES)
962 new.base_gfn = base_gfn;
964 new.flags = mem->flags;
968 change = KVM_MR_CREATE;
969 else { /* Modify an existing slot. */
970 if ((mem->userspace_addr != old.userspace_addr) ||
971 (npages != old.npages) ||
972 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
975 if (base_gfn != old.base_gfn)
976 change = KVM_MR_MOVE;
977 else if (new.flags != old.flags)
978 change = KVM_MR_FLAGS_ONLY;
979 else { /* Nothing to change. */
988 change = KVM_MR_DELETE;
993 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
994 /* Check for overlaps */
996 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
999 if (!((base_gfn + npages <= slot->base_gfn) ||
1000 (base_gfn >= slot->base_gfn + slot->npages)))
1005 /* Free page dirty bitmap if unneeded */
1006 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1007 new.dirty_bitmap = NULL;
1010 if (change == KVM_MR_CREATE) {
1011 new.userspace_addr = mem->userspace_addr;
1013 if (kvm_arch_create_memslot(kvm, &new, npages))
1017 /* Allocate page dirty bitmap if needed */
1018 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1019 if (kvm_create_dirty_bitmap(&new) < 0)
1023 slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1026 memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1028 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1029 slot = id_to_memslot(slots, id);
1030 slot->flags |= KVM_MEMSLOT_INVALID;
1032 old_memslots = install_new_memslots(kvm, as_id, slots);
1034 /* From this point no new shadow pages pointing to a deleted,
1035 * or moved, memslot will be created.
1037 * validation of sp->gfn happens in:
1038 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1039 * - kvm_is_visible_gfn (mmu_check_roots)
1041 kvm_arch_flush_shadow_memslot(kvm, slot);
1044 * We can re-use the old_memslots from above, the only difference
1045 * from the currently installed memslots is the invalid flag. This
1046 * will get overwritten by update_memslots anyway.
1048 slots = old_memslots;
1051 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1055 /* actual memory is freed via old in kvm_free_memslot below */
1056 if (change == KVM_MR_DELETE) {
1057 new.dirty_bitmap = NULL;
1058 memset(&new.arch, 0, sizeof(new.arch));
1061 update_memslots(slots, &new, change);
1062 old_memslots = install_new_memslots(kvm, as_id, slots);
1064 kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1066 kvm_free_memslot(kvm, &old, &new);
1067 kvfree(old_memslots);
1073 kvm_free_memslot(kvm, &new, &old);
1077 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1079 int kvm_set_memory_region(struct kvm *kvm,
1080 const struct kvm_userspace_memory_region *mem)
1084 mutex_lock(&kvm->slots_lock);
1085 r = __kvm_set_memory_region(kvm, mem);
1086 mutex_unlock(&kvm->slots_lock);
1089 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1091 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1092 struct kvm_userspace_memory_region *mem)
1094 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1097 return kvm_set_memory_region(kvm, mem);
1100 int kvm_get_dirty_log(struct kvm *kvm,
1101 struct kvm_dirty_log *log, int *is_dirty)
1103 struct kvm_memslots *slots;
1104 struct kvm_memory_slot *memslot;
1107 unsigned long any = 0;
1109 as_id = log->slot >> 16;
1110 id = (u16)log->slot;
1111 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1114 slots = __kvm_memslots(kvm, as_id);
1115 memslot = id_to_memslot(slots, id);
1116 if (!memslot->dirty_bitmap)
1119 n = kvm_dirty_bitmap_bytes(memslot);
1121 for (i = 0; !any && i < n/sizeof(long); ++i)
1122 any = memslot->dirty_bitmap[i];
1124 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1131 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1133 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1135 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1136 * are dirty write protect them for next write.
1137 * @kvm: pointer to kvm instance
1138 * @log: slot id and address to which we copy the log
1139 * @is_dirty: flag set if any page is dirty
1141 * We need to keep it in mind that VCPU threads can write to the bitmap
1142 * concurrently. So, to avoid losing track of dirty pages we keep the
1145 * 1. Take a snapshot of the bit and clear it if needed.
1146 * 2. Write protect the corresponding page.
1147 * 3. Copy the snapshot to the userspace.
1148 * 4. Upon return caller flushes TLB's if needed.
1150 * Between 2 and 4, the guest may write to the page using the remaining TLB
1151 * entry. This is not a problem because the page is reported dirty using
1152 * the snapshot taken before and step 4 ensures that writes done after
1153 * exiting to userspace will be logged for the next call.
1156 int kvm_get_dirty_log_protect(struct kvm *kvm,
1157 struct kvm_dirty_log *log, bool *is_dirty)
1159 struct kvm_memslots *slots;
1160 struct kvm_memory_slot *memslot;
1163 unsigned long *dirty_bitmap;
1164 unsigned long *dirty_bitmap_buffer;
1166 as_id = log->slot >> 16;
1167 id = (u16)log->slot;
1168 if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1171 slots = __kvm_memslots(kvm, as_id);
1172 memslot = id_to_memslot(slots, id);
1174 dirty_bitmap = memslot->dirty_bitmap;
1178 n = kvm_dirty_bitmap_bytes(memslot);
1180 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1181 memset(dirty_bitmap_buffer, 0, n);
1183 spin_lock(&kvm->mmu_lock);
1185 for (i = 0; i < n / sizeof(long); i++) {
1189 if (!dirty_bitmap[i])
1194 mask = xchg(&dirty_bitmap[i], 0);
1195 dirty_bitmap_buffer[i] = mask;
1198 offset = i * BITS_PER_LONG;
1199 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1204 spin_unlock(&kvm->mmu_lock);
1205 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1209 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1212 bool kvm_largepages_enabled(void)
1214 return largepages_enabled;
1217 void kvm_disable_largepages(void)
1219 largepages_enabled = false;
1221 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1223 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1225 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1227 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1229 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1231 return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1234 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1236 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1238 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1239 memslot->flags & KVM_MEMSLOT_INVALID)
1244 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1246 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1248 struct vm_area_struct *vma;
1249 unsigned long addr, size;
1253 addr = gfn_to_hva(kvm, gfn);
1254 if (kvm_is_error_hva(addr))
1257 down_read(¤t->mm->mmap_sem);
1258 vma = find_vma(current->mm, addr);
1262 size = vma_kernel_pagesize(vma);
1265 up_read(¤t->mm->mmap_sem);
1270 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1272 return slot->flags & KVM_MEM_READONLY;
1275 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1276 gfn_t *nr_pages, bool write)
1278 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1279 return KVM_HVA_ERR_BAD;
1281 if (memslot_is_readonly(slot) && write)
1282 return KVM_HVA_ERR_RO_BAD;
1285 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1287 return __gfn_to_hva_memslot(slot, gfn);
1290 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1293 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1296 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1299 return gfn_to_hva_many(slot, gfn, NULL);
1301 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1303 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1305 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1307 EXPORT_SYMBOL_GPL(gfn_to_hva);
1309 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1311 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1313 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1316 * Return the hva of a @gfn and the R/W attribute if possible.
1318 * @slot: the kvm_memory_slot which contains @gfn
1319 * @gfn: the gfn to be translated
1320 * @writable: used to return the read/write attribute of the @slot if the hva
1321 * is valid and @writable is not NULL
1323 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1324 gfn_t gfn, bool *writable)
1326 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1328 if (!kvm_is_error_hva(hva) && writable)
1329 *writable = !memslot_is_readonly(slot);
1334 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1336 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1338 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1341 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1343 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1345 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1348 static inline int check_user_page_hwpoison(unsigned long addr)
1350 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1352 rc = get_user_pages(addr, 1, flags, NULL, NULL);
1353 return rc == -EHWPOISON;
1357 * The fast path to get the writable pfn which will be stored in @pfn,
1358 * true indicates success, otherwise false is returned. It's also the
1359 * only part that runs if we can are in atomic context.
1361 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1362 bool *writable, kvm_pfn_t *pfn)
1364 struct page *page[1];
1368 * Fast pin a writable pfn only if it is a write fault request
1369 * or the caller allows to map a writable pfn for a read fault
1372 if (!(write_fault || writable))
1375 npages = __get_user_pages_fast(addr, 1, 1, page);
1377 *pfn = page_to_pfn(page[0]);
1388 * The slow path to get the pfn of the specified host virtual address,
1389 * 1 indicates success, -errno is returned if error is detected.
1391 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1392 bool *writable, kvm_pfn_t *pfn)
1394 unsigned int flags = FOLL_HWPOISON;
1401 *writable = write_fault;
1404 flags |= FOLL_WRITE;
1406 flags |= FOLL_NOWAIT;
1408 npages = get_user_pages_unlocked(addr, 1, &page, flags);
1412 /* map read fault as writable if possible */
1413 if (unlikely(!write_fault) && writable) {
1416 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1422 *pfn = page_to_pfn(page);
1426 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1428 if (unlikely(!(vma->vm_flags & VM_READ)))
1431 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1437 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1438 unsigned long addr, bool *async,
1439 bool write_fault, bool *writable,
1445 r = follow_pfn(vma, addr, &pfn);
1448 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1449 * not call the fault handler, so do it here.
1451 bool unlocked = false;
1452 r = fixup_user_fault(current, current->mm, addr,
1453 (write_fault ? FAULT_FLAG_WRITE : 0),
1460 r = follow_pfn(vma, addr, &pfn);
1470 * Get a reference here because callers of *hva_to_pfn* and
1471 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1472 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
1473 * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1474 * simply do nothing for reserved pfns.
1476 * Whoever called remap_pfn_range is also going to call e.g.
1477 * unmap_mapping_range before the underlying pages are freed,
1478 * causing a call to our MMU notifier.
1487 * Pin guest page in memory and return its pfn.
1488 * @addr: host virtual address which maps memory to the guest
1489 * @atomic: whether this function can sleep
1490 * @async: whether this function need to wait IO complete if the
1491 * host page is not in the memory
1492 * @write_fault: whether we should get a writable host page
1493 * @writable: whether it allows to map a writable host page for !@write_fault
1495 * The function will map a writable host page for these two cases:
1496 * 1): @write_fault = true
1497 * 2): @write_fault = false && @writable, @writable will tell the caller
1498 * whether the mapping is writable.
1500 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1501 bool write_fault, bool *writable)
1503 struct vm_area_struct *vma;
1507 /* we can do it either atomically or asynchronously, not both */
1508 BUG_ON(atomic && async);
1510 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1514 return KVM_PFN_ERR_FAULT;
1516 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1520 down_read(¤t->mm->mmap_sem);
1521 if (npages == -EHWPOISON ||
1522 (!async && check_user_page_hwpoison(addr))) {
1523 pfn = KVM_PFN_ERR_HWPOISON;
1528 vma = find_vma_intersection(current->mm, addr, addr + 1);
1531 pfn = KVM_PFN_ERR_FAULT;
1532 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1533 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1537 pfn = KVM_PFN_ERR_FAULT;
1539 if (async && vma_is_valid(vma, write_fault))
1541 pfn = KVM_PFN_ERR_FAULT;
1544 up_read(¤t->mm->mmap_sem);
1548 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1549 bool atomic, bool *async, bool write_fault,
1552 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1554 if (addr == KVM_HVA_ERR_RO_BAD) {
1557 return KVM_PFN_ERR_RO_FAULT;
1560 if (kvm_is_error_hva(addr)) {
1563 return KVM_PFN_NOSLOT;
1566 /* Do not map writable pfn in the readonly memslot. */
1567 if (writable && memslot_is_readonly(slot)) {
1572 return hva_to_pfn(addr, atomic, async, write_fault,
1575 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1577 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1580 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1581 write_fault, writable);
1583 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1585 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1587 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1589 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1591 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1593 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1595 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1597 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1599 return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1601 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1603 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1605 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1607 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1609 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1611 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1613 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1615 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1617 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1619 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1621 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1622 struct page **pages, int nr_pages)
1627 addr = gfn_to_hva_many(slot, gfn, &entry);
1628 if (kvm_is_error_hva(addr))
1631 if (entry < nr_pages)
1634 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1636 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1638 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1640 if (is_error_noslot_pfn(pfn))
1641 return KVM_ERR_PTR_BAD_PAGE;
1643 if (kvm_is_reserved_pfn(pfn)) {
1645 return KVM_ERR_PTR_BAD_PAGE;
1648 return pfn_to_page(pfn);
1651 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1655 pfn = gfn_to_pfn(kvm, gfn);
1657 return kvm_pfn_to_page(pfn);
1659 EXPORT_SYMBOL_GPL(gfn_to_page);
1661 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1665 pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1667 return kvm_pfn_to_page(pfn);
1669 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1671 void kvm_release_page_clean(struct page *page)
1673 WARN_ON(is_error_page(page));
1675 kvm_release_pfn_clean(page_to_pfn(page));
1677 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1679 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1681 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1682 put_page(pfn_to_page(pfn));
1684 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1686 void kvm_release_page_dirty(struct page *page)
1688 WARN_ON(is_error_page(page));
1690 kvm_release_pfn_dirty(page_to_pfn(page));
1692 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1694 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1696 kvm_set_pfn_dirty(pfn);
1697 kvm_release_pfn_clean(pfn);
1699 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1701 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1703 if (!kvm_is_reserved_pfn(pfn)) {
1704 struct page *page = pfn_to_page(pfn);
1706 if (!PageReserved(page))
1710 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1712 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1714 if (!kvm_is_reserved_pfn(pfn))
1715 mark_page_accessed(pfn_to_page(pfn));
1717 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1719 void kvm_get_pfn(kvm_pfn_t pfn)
1721 if (!kvm_is_reserved_pfn(pfn))
1722 get_page(pfn_to_page(pfn));
1724 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1726 static int next_segment(unsigned long len, int offset)
1728 if (len > PAGE_SIZE - offset)
1729 return PAGE_SIZE - offset;
1734 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1735 void *data, int offset, int len)
1740 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1741 if (kvm_is_error_hva(addr))
1743 r = __copy_from_user(data, (void __user *)addr + offset, len);
1749 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1752 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1754 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1756 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1758 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1759 int offset, int len)
1761 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1763 return __kvm_read_guest_page(slot, gfn, data, offset, len);
1765 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1767 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1769 gfn_t gfn = gpa >> PAGE_SHIFT;
1771 int offset = offset_in_page(gpa);
1774 while ((seg = next_segment(len, offset)) != 0) {
1775 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1785 EXPORT_SYMBOL_GPL(kvm_read_guest);
1787 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1789 gfn_t gfn = gpa >> PAGE_SHIFT;
1791 int offset = offset_in_page(gpa);
1794 while ((seg = next_segment(len, offset)) != 0) {
1795 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1805 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1807 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1808 void *data, int offset, unsigned long len)
1813 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1814 if (kvm_is_error_hva(addr))
1816 pagefault_disable();
1817 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1824 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1827 gfn_t gfn = gpa >> PAGE_SHIFT;
1828 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1829 int offset = offset_in_page(gpa);
1831 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1833 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1835 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1836 void *data, unsigned long len)
1838 gfn_t gfn = gpa >> PAGE_SHIFT;
1839 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1840 int offset = offset_in_page(gpa);
1842 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1844 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1846 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1847 const void *data, int offset, int len)
1852 addr = gfn_to_hva_memslot(memslot, gfn);
1853 if (kvm_is_error_hva(addr))
1855 r = __copy_to_user((void __user *)addr + offset, data, len);
1858 mark_page_dirty_in_slot(memslot, gfn);
1862 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1863 const void *data, int offset, int len)
1865 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1867 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1869 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1871 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1872 const void *data, int offset, int len)
1874 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1876 return __kvm_write_guest_page(slot, gfn, data, offset, len);
1878 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1880 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1883 gfn_t gfn = gpa >> PAGE_SHIFT;
1885 int offset = offset_in_page(gpa);
1888 while ((seg = next_segment(len, offset)) != 0) {
1889 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1899 EXPORT_SYMBOL_GPL(kvm_write_guest);
1901 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1904 gfn_t gfn = gpa >> PAGE_SHIFT;
1906 int offset = offset_in_page(gpa);
1909 while ((seg = next_segment(len, offset)) != 0) {
1910 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1920 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1922 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1923 struct gfn_to_hva_cache *ghc,
1924 gpa_t gpa, unsigned long len)
1926 int offset = offset_in_page(gpa);
1927 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1928 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1929 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1930 gfn_t nr_pages_avail;
1933 ghc->generation = slots->generation;
1935 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1936 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1937 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1941 * If the requested region crosses two memslots, we still
1942 * verify that the entire region is valid here.
1944 while (start_gfn <= end_gfn) {
1946 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1947 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1949 if (kvm_is_error_hva(ghc->hva))
1951 start_gfn += nr_pages_avail;
1953 /* Use the slow path for cross page reads and writes. */
1954 ghc->memslot = NULL;
1959 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1960 gpa_t gpa, unsigned long len)
1962 struct kvm_memslots *slots = kvm_memslots(kvm);
1963 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1965 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1967 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1968 void *data, int offset, unsigned long len)
1970 struct kvm_memslots *slots = kvm_memslots(kvm);
1972 gpa_t gpa = ghc->gpa + offset;
1974 BUG_ON(len + offset > ghc->len);
1976 if (slots->generation != ghc->generation)
1977 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1979 if (unlikely(!ghc->memslot))
1980 return kvm_write_guest(kvm, gpa, data, len);
1982 if (kvm_is_error_hva(ghc->hva))
1985 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1988 mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1992 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1994 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1995 void *data, unsigned long len)
1997 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1999 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2001 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2002 void *data, unsigned long len)
2004 struct kvm_memslots *slots = kvm_memslots(kvm);
2007 BUG_ON(len > ghc->len);
2009 if (slots->generation != ghc->generation)
2010 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2012 if (unlikely(!ghc->memslot))
2013 return kvm_read_guest(kvm, ghc->gpa, data, len);
2015 if (kvm_is_error_hva(ghc->hva))
2018 r = __copy_from_user(data, (void __user *)ghc->hva, len);
2024 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2026 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2028 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2030 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2032 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2034 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2036 gfn_t gfn = gpa >> PAGE_SHIFT;
2038 int offset = offset_in_page(gpa);
2041 while ((seg = next_segment(len, offset)) != 0) {
2042 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2051 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2053 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2056 if (memslot && memslot->dirty_bitmap) {
2057 unsigned long rel_gfn = gfn - memslot->base_gfn;
2059 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2063 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2065 struct kvm_memory_slot *memslot;
2067 memslot = gfn_to_memslot(kvm, gfn);
2068 mark_page_dirty_in_slot(memslot, gfn);
2070 EXPORT_SYMBOL_GPL(mark_page_dirty);
2072 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2074 struct kvm_memory_slot *memslot;
2076 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2077 mark_page_dirty_in_slot(memslot, gfn);
2079 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2081 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2083 if (!vcpu->sigset_active)
2087 * This does a lockless modification of ->real_blocked, which is fine
2088 * because, only current can change ->real_blocked and all readers of
2089 * ->real_blocked don't care as long ->real_blocked is always a subset
2092 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
2095 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2097 if (!vcpu->sigset_active)
2100 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
2101 sigemptyset(¤t->real_blocked);
2104 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2106 unsigned int old, val, grow;
2108 old = val = vcpu->halt_poll_ns;
2109 grow = READ_ONCE(halt_poll_ns_grow);
2111 if (val == 0 && grow)
2116 if (val > halt_poll_ns)
2119 vcpu->halt_poll_ns = val;
2120 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2123 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2125 unsigned int old, val, shrink;
2127 old = val = vcpu->halt_poll_ns;
2128 shrink = READ_ONCE(halt_poll_ns_shrink);
2134 vcpu->halt_poll_ns = val;
2135 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2138 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2141 int idx = srcu_read_lock(&vcpu->kvm->srcu);
2143 if (kvm_arch_vcpu_runnable(vcpu)) {
2144 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2147 if (kvm_cpu_has_pending_timer(vcpu))
2149 if (signal_pending(current))
2154 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2159 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2161 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2164 DECLARE_SWAITQUEUE(wait);
2165 bool waited = false;
2168 start = cur = ktime_get();
2169 if (vcpu->halt_poll_ns) {
2170 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2172 ++vcpu->stat.halt_attempted_poll;
2175 * This sets KVM_REQ_UNHALT if an interrupt
2178 if (kvm_vcpu_check_block(vcpu) < 0) {
2179 ++vcpu->stat.halt_successful_poll;
2180 if (!vcpu_valid_wakeup(vcpu))
2181 ++vcpu->stat.halt_poll_invalid;
2185 } while (single_task_running() && ktime_before(cur, stop));
2188 kvm_arch_vcpu_blocking(vcpu);
2191 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2193 if (kvm_vcpu_check_block(vcpu) < 0)
2200 finish_swait(&vcpu->wq, &wait);
2203 kvm_arch_vcpu_unblocking(vcpu);
2205 block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2207 if (!vcpu_valid_wakeup(vcpu))
2208 shrink_halt_poll_ns(vcpu);
2209 else if (halt_poll_ns) {
2210 if (block_ns <= vcpu->halt_poll_ns)
2212 /* we had a long block, shrink polling */
2213 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2214 shrink_halt_poll_ns(vcpu);
2215 /* we had a short halt and our poll time is too small */
2216 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2217 block_ns < halt_poll_ns)
2218 grow_halt_poll_ns(vcpu);
2220 vcpu->halt_poll_ns = 0;
2222 trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2223 kvm_arch_vcpu_block_finish(vcpu);
2225 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2227 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2229 struct swait_queue_head *wqp;
2231 wqp = kvm_arch_vcpu_wq(vcpu);
2232 if (swq_has_sleeper(wqp)) {
2234 ++vcpu->stat.halt_wakeup;
2240 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2244 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2246 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2249 int cpu = vcpu->cpu;
2251 if (kvm_vcpu_wake_up(vcpu))
2255 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2256 if (kvm_arch_vcpu_should_kick(vcpu))
2257 smp_send_reschedule(cpu);
2260 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2261 #endif /* !CONFIG_S390 */
2263 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2266 struct task_struct *task = NULL;
2270 pid = rcu_dereference(target->pid);
2272 task = get_pid_task(pid, PIDTYPE_PID);
2276 ret = yield_to(task, 1);
2277 put_task_struct(task);
2281 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2284 * Helper that checks whether a VCPU is eligible for directed yield.
2285 * Most eligible candidate to yield is decided by following heuristics:
2287 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2288 * (preempted lock holder), indicated by @in_spin_loop.
2289 * Set at the beiginning and cleared at the end of interception/PLE handler.
2291 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2292 * chance last time (mostly it has become eligible now since we have probably
2293 * yielded to lockholder in last iteration. This is done by toggling
2294 * @dy_eligible each time a VCPU checked for eligibility.)
2296 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2297 * to preempted lock-holder could result in wrong VCPU selection and CPU
2298 * burning. Giving priority for a potential lock-holder increases lock
2301 * Since algorithm is based on heuristics, accessing another VCPU data without
2302 * locking does not harm. It may result in trying to yield to same VCPU, fail
2303 * and continue with next VCPU and so on.
2305 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2307 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2310 eligible = !vcpu->spin_loop.in_spin_loop ||
2311 vcpu->spin_loop.dy_eligible;
2313 if (vcpu->spin_loop.in_spin_loop)
2314 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2322 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2324 struct kvm *kvm = me->kvm;
2325 struct kvm_vcpu *vcpu;
2326 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2332 kvm_vcpu_set_in_spin_loop(me, true);
2334 * We boost the priority of a VCPU that is runnable but not
2335 * currently running, because it got preempted by something
2336 * else and called schedule in __vcpu_run. Hopefully that
2337 * VCPU is holding the lock that we need and will release it.
2338 * We approximate round-robin by starting at the last boosted VCPU.
2340 for (pass = 0; pass < 2 && !yielded && try; pass++) {
2341 kvm_for_each_vcpu(i, vcpu, kvm) {
2342 if (!pass && i <= last_boosted_vcpu) {
2343 i = last_boosted_vcpu;
2345 } else if (pass && i > last_boosted_vcpu)
2347 if (!READ_ONCE(vcpu->preempted))
2351 if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2353 if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2355 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2358 yielded = kvm_vcpu_yield_to(vcpu);
2360 kvm->last_boosted_vcpu = i;
2362 } else if (yielded < 0) {
2369 kvm_vcpu_set_in_spin_loop(me, false);
2371 /* Ensure vcpu is not eligible during next spinloop */
2372 kvm_vcpu_set_dy_eligible(me, false);
2374 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2376 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2378 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2381 if (vmf->pgoff == 0)
2382 page = virt_to_page(vcpu->run);
2384 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2385 page = virt_to_page(vcpu->arch.pio_data);
2387 #ifdef CONFIG_KVM_MMIO
2388 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2389 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2392 return kvm_arch_vcpu_fault(vcpu, vmf);
2398 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2399 .fault = kvm_vcpu_fault,
2402 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2404 vma->vm_ops = &kvm_vcpu_vm_ops;
2408 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2410 struct kvm_vcpu *vcpu = filp->private_data;
2412 debugfs_remove_recursive(vcpu->debugfs_dentry);
2413 kvm_put_kvm(vcpu->kvm);
2417 static struct file_operations kvm_vcpu_fops = {
2418 .release = kvm_vcpu_release,
2419 .unlocked_ioctl = kvm_vcpu_ioctl,
2420 .mmap = kvm_vcpu_mmap,
2421 .llseek = noop_llseek,
2422 KVM_COMPAT(kvm_vcpu_compat_ioctl),
2426 * Allocates an inode for the vcpu.
2428 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2430 char name[8 + 1 + ITOA_MAX_LEN + 1];
2432 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2433 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2436 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2438 char dir_name[ITOA_MAX_LEN * 2];
2441 if (!kvm_arch_has_vcpu_debugfs())
2444 if (!debugfs_initialized())
2447 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2448 vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2449 vcpu->kvm->debugfs_dentry);
2450 if (!vcpu->debugfs_dentry)
2453 ret = kvm_arch_create_vcpu_debugfs(vcpu);
2455 debugfs_remove_recursive(vcpu->debugfs_dentry);
2463 * Creates some virtual cpus. Good luck creating more than one.
2465 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2468 struct kvm_vcpu *vcpu;
2470 if (id >= KVM_MAX_VCPU_ID)
2473 mutex_lock(&kvm->lock);
2474 if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2475 mutex_unlock(&kvm->lock);
2479 kvm->created_vcpus++;
2480 mutex_unlock(&kvm->lock);
2482 vcpu = kvm_arch_vcpu_create(kvm, id);
2485 goto vcpu_decrement;
2488 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2490 r = kvm_arch_vcpu_setup(vcpu);
2494 r = kvm_create_vcpu_debugfs(vcpu);
2498 mutex_lock(&kvm->lock);
2499 if (kvm_get_vcpu_by_id(kvm, id)) {
2501 goto unlock_vcpu_destroy;
2504 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2506 /* Now it's all set up, let userspace reach it */
2508 r = create_vcpu_fd(vcpu);
2511 goto unlock_vcpu_destroy;
2514 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2517 * Pairs with smp_rmb() in kvm_get_vcpu. Write kvm->vcpus
2518 * before kvm->online_vcpu's incremented value.
2521 atomic_inc(&kvm->online_vcpus);
2523 mutex_unlock(&kvm->lock);
2524 kvm_arch_vcpu_postcreate(vcpu);
2527 unlock_vcpu_destroy:
2528 mutex_unlock(&kvm->lock);
2529 debugfs_remove_recursive(vcpu->debugfs_dentry);
2531 kvm_arch_vcpu_destroy(vcpu);
2533 mutex_lock(&kvm->lock);
2534 kvm->created_vcpus--;
2535 mutex_unlock(&kvm->lock);
2539 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2542 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2543 vcpu->sigset_active = 1;
2544 vcpu->sigset = *sigset;
2546 vcpu->sigset_active = 0;
2550 static long kvm_vcpu_ioctl(struct file *filp,
2551 unsigned int ioctl, unsigned long arg)
2553 struct kvm_vcpu *vcpu = filp->private_data;
2554 void __user *argp = (void __user *)arg;
2556 struct kvm_fpu *fpu = NULL;
2557 struct kvm_sregs *kvm_sregs = NULL;
2559 if (vcpu->kvm->mm != current->mm)
2562 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2566 * Some architectures have vcpu ioctls that are asynchronous to vcpu
2567 * execution; mutex_lock() would break them.
2569 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2570 if (r != -ENOIOCTLCMD)
2573 if (mutex_lock_killable(&vcpu->mutex))
2581 oldpid = rcu_access_pointer(vcpu->pid);
2582 if (unlikely(oldpid != task_pid(current))) {
2583 /* The thread running this VCPU changed. */
2586 r = kvm_arch_vcpu_run_pid_change(vcpu);
2590 newpid = get_task_pid(current, PIDTYPE_PID);
2591 rcu_assign_pointer(vcpu->pid, newpid);
2596 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2597 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2600 case KVM_GET_REGS: {
2601 struct kvm_regs *kvm_regs;
2604 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2607 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2611 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2618 case KVM_SET_REGS: {
2619 struct kvm_regs *kvm_regs;
2622 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2623 if (IS_ERR(kvm_regs)) {
2624 r = PTR_ERR(kvm_regs);
2627 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2631 case KVM_GET_SREGS: {
2632 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2636 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2640 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2645 case KVM_SET_SREGS: {
2646 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2647 if (IS_ERR(kvm_sregs)) {
2648 r = PTR_ERR(kvm_sregs);
2652 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2655 case KVM_GET_MP_STATE: {
2656 struct kvm_mp_state mp_state;
2658 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2662 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2667 case KVM_SET_MP_STATE: {
2668 struct kvm_mp_state mp_state;
2671 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2673 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2676 case KVM_TRANSLATE: {
2677 struct kvm_translation tr;
2680 if (copy_from_user(&tr, argp, sizeof(tr)))
2682 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2686 if (copy_to_user(argp, &tr, sizeof(tr)))
2691 case KVM_SET_GUEST_DEBUG: {
2692 struct kvm_guest_debug dbg;
2695 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2697 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2700 case KVM_SET_SIGNAL_MASK: {
2701 struct kvm_signal_mask __user *sigmask_arg = argp;
2702 struct kvm_signal_mask kvm_sigmask;
2703 sigset_t sigset, *p;
2708 if (copy_from_user(&kvm_sigmask, argp,
2709 sizeof(kvm_sigmask)))
2712 if (kvm_sigmask.len != sizeof(sigset))
2715 if (copy_from_user(&sigset, sigmask_arg->sigset,
2720 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2724 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2728 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2732 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2738 fpu = memdup_user(argp, sizeof(*fpu));
2744 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2748 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2751 mutex_unlock(&vcpu->mutex);
2757 #ifdef CONFIG_KVM_COMPAT
2758 static long kvm_vcpu_compat_ioctl(struct file *filp,
2759 unsigned int ioctl, unsigned long arg)
2761 struct kvm_vcpu *vcpu = filp->private_data;
2762 void __user *argp = compat_ptr(arg);
2765 if (vcpu->kvm->mm != current->mm)
2769 case KVM_SET_SIGNAL_MASK: {
2770 struct kvm_signal_mask __user *sigmask_arg = argp;
2771 struct kvm_signal_mask kvm_sigmask;
2776 if (copy_from_user(&kvm_sigmask, argp,
2777 sizeof(kvm_sigmask)))
2780 if (kvm_sigmask.len != sizeof(compat_sigset_t))
2783 if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2785 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2787 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2791 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2799 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2800 int (*accessor)(struct kvm_device *dev,
2801 struct kvm_device_attr *attr),
2804 struct kvm_device_attr attr;
2809 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2812 return accessor(dev, &attr);
2815 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2818 struct kvm_device *dev = filp->private_data;
2821 case KVM_SET_DEVICE_ATTR:
2822 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2823 case KVM_GET_DEVICE_ATTR:
2824 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2825 case KVM_HAS_DEVICE_ATTR:
2826 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2828 if (dev->ops->ioctl)
2829 return dev->ops->ioctl(dev, ioctl, arg);
2835 static int kvm_device_release(struct inode *inode, struct file *filp)
2837 struct kvm_device *dev = filp->private_data;
2838 struct kvm *kvm = dev->kvm;
2844 static const struct file_operations kvm_device_fops = {
2845 .unlocked_ioctl = kvm_device_ioctl,
2846 .release = kvm_device_release,
2847 KVM_COMPAT(kvm_device_ioctl),
2850 struct kvm_device *kvm_device_from_filp(struct file *filp)
2852 if (filp->f_op != &kvm_device_fops)
2855 return filp->private_data;
2858 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2859 #ifdef CONFIG_KVM_MPIC
2860 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2861 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2865 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2867 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2870 if (kvm_device_ops_table[type] != NULL)
2873 kvm_device_ops_table[type] = ops;
2877 void kvm_unregister_device_ops(u32 type)
2879 if (kvm_device_ops_table[type] != NULL)
2880 kvm_device_ops_table[type] = NULL;
2883 static int kvm_ioctl_create_device(struct kvm *kvm,
2884 struct kvm_create_device *cd)
2886 struct kvm_device_ops *ops = NULL;
2887 struct kvm_device *dev;
2888 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2891 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2894 ops = kvm_device_ops_table[cd->type];
2901 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2908 mutex_lock(&kvm->lock);
2909 ret = ops->create(dev, cd->type);
2911 mutex_unlock(&kvm->lock);
2915 list_add(&dev->vm_node, &kvm->devices);
2916 mutex_unlock(&kvm->lock);
2921 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2923 mutex_lock(&kvm->lock);
2924 list_del(&dev->vm_node);
2925 mutex_unlock(&kvm->lock);
2935 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2938 case KVM_CAP_USER_MEMORY:
2939 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2940 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2941 case KVM_CAP_INTERNAL_ERROR_DATA:
2942 #ifdef CONFIG_HAVE_KVM_MSI
2943 case KVM_CAP_SIGNAL_MSI:
2945 #ifdef CONFIG_HAVE_KVM_IRQFD
2947 case KVM_CAP_IRQFD_RESAMPLE:
2949 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2950 case KVM_CAP_CHECK_EXTENSION_VM:
2952 #ifdef CONFIG_KVM_MMIO
2953 case KVM_CAP_COALESCED_MMIO:
2954 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2955 case KVM_CAP_COALESCED_PIO:
2958 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2959 case KVM_CAP_IRQ_ROUTING:
2960 return KVM_MAX_IRQ_ROUTES;
2962 #if KVM_ADDRESS_SPACE_NUM > 1
2963 case KVM_CAP_MULTI_ADDRESS_SPACE:
2964 return KVM_ADDRESS_SPACE_NUM;
2966 case KVM_CAP_MAX_VCPU_ID:
2967 return KVM_MAX_VCPU_ID;
2971 return kvm_vm_ioctl_check_extension(kvm, arg);
2974 static long kvm_vm_ioctl(struct file *filp,
2975 unsigned int ioctl, unsigned long arg)
2977 struct kvm *kvm = filp->private_data;
2978 void __user *argp = (void __user *)arg;
2981 if (kvm->mm != current->mm)
2984 case KVM_CREATE_VCPU:
2985 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2987 case KVM_SET_USER_MEMORY_REGION: {
2988 struct kvm_userspace_memory_region kvm_userspace_mem;
2991 if (copy_from_user(&kvm_userspace_mem, argp,
2992 sizeof(kvm_userspace_mem)))
2995 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2998 case KVM_GET_DIRTY_LOG: {
2999 struct kvm_dirty_log log;
3002 if (copy_from_user(&log, argp, sizeof(log)))
3004 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3007 #ifdef CONFIG_KVM_MMIO
3008 case KVM_REGISTER_COALESCED_MMIO: {
3009 struct kvm_coalesced_mmio_zone zone;
3012 if (copy_from_user(&zone, argp, sizeof(zone)))
3014 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3017 case KVM_UNREGISTER_COALESCED_MMIO: {
3018 struct kvm_coalesced_mmio_zone zone;
3021 if (copy_from_user(&zone, argp, sizeof(zone)))
3023 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3028 struct kvm_irqfd data;
3031 if (copy_from_user(&data, argp, sizeof(data)))
3033 r = kvm_irqfd(kvm, &data);
3036 case KVM_IOEVENTFD: {
3037 struct kvm_ioeventfd data;
3040 if (copy_from_user(&data, argp, sizeof(data)))
3042 r = kvm_ioeventfd(kvm, &data);
3045 #ifdef CONFIG_HAVE_KVM_MSI
3046 case KVM_SIGNAL_MSI: {
3050 if (copy_from_user(&msi, argp, sizeof(msi)))
3052 r = kvm_send_userspace_msi(kvm, &msi);
3056 #ifdef __KVM_HAVE_IRQ_LINE
3057 case KVM_IRQ_LINE_STATUS:
3058 case KVM_IRQ_LINE: {
3059 struct kvm_irq_level irq_event;
3062 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3065 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3066 ioctl == KVM_IRQ_LINE_STATUS);
3071 if (ioctl == KVM_IRQ_LINE_STATUS) {
3072 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3080 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3081 case KVM_SET_GSI_ROUTING: {
3082 struct kvm_irq_routing routing;
3083 struct kvm_irq_routing __user *urouting;
3084 struct kvm_irq_routing_entry *entries = NULL;
3087 if (copy_from_user(&routing, argp, sizeof(routing)))
3090 if (!kvm_arch_can_set_irq_routing(kvm))
3092 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3098 entries = vmalloc(array_size(sizeof(*entries),
3104 if (copy_from_user(entries, urouting->entries,
3105 routing.nr * sizeof(*entries)))
3106 goto out_free_irq_routing;
3108 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3110 out_free_irq_routing:
3114 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3115 case KVM_CREATE_DEVICE: {
3116 struct kvm_create_device cd;
3119 if (copy_from_user(&cd, argp, sizeof(cd)))
3122 r = kvm_ioctl_create_device(kvm, &cd);
3127 if (copy_to_user(argp, &cd, sizeof(cd)))
3133 case KVM_CHECK_EXTENSION:
3134 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3137 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3143 #ifdef CONFIG_KVM_COMPAT
3144 struct compat_kvm_dirty_log {
3148 compat_uptr_t dirty_bitmap; /* one bit per page */
3153 static long kvm_vm_compat_ioctl(struct file *filp,
3154 unsigned int ioctl, unsigned long arg)
3156 struct kvm *kvm = filp->private_data;
3159 if (kvm->mm != current->mm)
3162 case KVM_GET_DIRTY_LOG: {
3163 struct compat_kvm_dirty_log compat_log;
3164 struct kvm_dirty_log log;
3166 if (copy_from_user(&compat_log, (void __user *)arg,
3167 sizeof(compat_log)))
3169 log.slot = compat_log.slot;
3170 log.padding1 = compat_log.padding1;
3171 log.padding2 = compat_log.padding2;
3172 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3174 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3178 r = kvm_vm_ioctl(filp, ioctl, arg);
3184 static struct file_operations kvm_vm_fops = {
3185 .release = kvm_vm_release,
3186 .unlocked_ioctl = kvm_vm_ioctl,
3187 .llseek = noop_llseek,
3188 KVM_COMPAT(kvm_vm_compat_ioctl),
3191 static int kvm_dev_ioctl_create_vm(unsigned long type)
3197 kvm = kvm_create_vm(type);
3199 return PTR_ERR(kvm);
3200 #ifdef CONFIG_KVM_MMIO
3201 r = kvm_coalesced_mmio_init(kvm);
3205 r = get_unused_fd_flags(O_CLOEXEC);
3209 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3217 * Don't call kvm_put_kvm anymore at this point; file->f_op is
3218 * already set, with ->release() being kvm_vm_release(). In error
3219 * cases it will be called by the final fput(file) and will take
3220 * care of doing kvm_put_kvm(kvm).
3222 if (kvm_create_vm_debugfs(kvm, r) < 0) {
3227 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3229 fd_install(r, file);
3237 static long kvm_dev_ioctl(struct file *filp,
3238 unsigned int ioctl, unsigned long arg)
3243 case KVM_GET_API_VERSION:
3246 r = KVM_API_VERSION;
3249 r = kvm_dev_ioctl_create_vm(arg);
3251 case KVM_CHECK_EXTENSION:
3252 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3254 case KVM_GET_VCPU_MMAP_SIZE:
3257 r = PAGE_SIZE; /* struct kvm_run */
3259 r += PAGE_SIZE; /* pio data page */
3261 #ifdef CONFIG_KVM_MMIO
3262 r += PAGE_SIZE; /* coalesced mmio ring page */
3265 case KVM_TRACE_ENABLE:
3266 case KVM_TRACE_PAUSE:
3267 case KVM_TRACE_DISABLE:
3271 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3277 static struct file_operations kvm_chardev_ops = {
3278 .unlocked_ioctl = kvm_dev_ioctl,
3279 .llseek = noop_llseek,
3280 KVM_COMPAT(kvm_dev_ioctl),
3283 static struct miscdevice kvm_dev = {
3289 static void hardware_enable_nolock(void *junk)
3291 int cpu = raw_smp_processor_id();
3294 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3297 cpumask_set_cpu(cpu, cpus_hardware_enabled);
3299 r = kvm_arch_hardware_enable();
3302 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3303 atomic_inc(&hardware_enable_failed);
3304 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3308 static int kvm_starting_cpu(unsigned int cpu)
3310 raw_spin_lock(&kvm_count_lock);
3311 if (kvm_usage_count)
3312 hardware_enable_nolock(NULL);
3313 raw_spin_unlock(&kvm_count_lock);
3317 static void hardware_disable_nolock(void *junk)
3319 int cpu = raw_smp_processor_id();
3321 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3323 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3324 kvm_arch_hardware_disable();
3327 static int kvm_dying_cpu(unsigned int cpu)
3329 raw_spin_lock(&kvm_count_lock);
3330 if (kvm_usage_count)
3331 hardware_disable_nolock(NULL);
3332 raw_spin_unlock(&kvm_count_lock);
3336 static void hardware_disable_all_nolock(void)
3338 BUG_ON(!kvm_usage_count);
3341 if (!kvm_usage_count)
3342 on_each_cpu(hardware_disable_nolock, NULL, 1);
3345 static void hardware_disable_all(void)
3347 raw_spin_lock(&kvm_count_lock);
3348 hardware_disable_all_nolock();
3349 raw_spin_unlock(&kvm_count_lock);
3352 static int hardware_enable_all(void)
3356 raw_spin_lock(&kvm_count_lock);
3359 if (kvm_usage_count == 1) {
3360 atomic_set(&hardware_enable_failed, 0);
3361 on_each_cpu(hardware_enable_nolock, NULL, 1);
3363 if (atomic_read(&hardware_enable_failed)) {
3364 hardware_disable_all_nolock();
3369 raw_spin_unlock(&kvm_count_lock);
3374 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3378 * Some (well, at least mine) BIOSes hang on reboot if
3381 * And Intel TXT required VMX off for all cpu when system shutdown.
3383 pr_info("kvm: exiting hardware virtualization\n");
3384 kvm_rebooting = true;
3385 on_each_cpu(hardware_disable_nolock, NULL, 1);
3389 static struct notifier_block kvm_reboot_notifier = {
3390 .notifier_call = kvm_reboot,
3394 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3398 for (i = 0; i < bus->dev_count; i++) {
3399 struct kvm_io_device *pos = bus->range[i].dev;
3401 kvm_iodevice_destructor(pos);
3406 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3407 const struct kvm_io_range *r2)
3409 gpa_t addr1 = r1->addr;
3410 gpa_t addr2 = r2->addr;
3415 /* If r2->len == 0, match the exact address. If r2->len != 0,
3416 * accept any overlapping write. Any order is acceptable for
3417 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3418 * we process all of them.
3431 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3433 return kvm_io_bus_cmp(p1, p2);
3436 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3437 gpa_t addr, int len)
3439 struct kvm_io_range *range, key;
3442 key = (struct kvm_io_range) {
3447 range = bsearch(&key, bus->range, bus->dev_count,
3448 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3452 off = range - bus->range;
3454 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3460 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3461 struct kvm_io_range *range, const void *val)
3465 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3469 while (idx < bus->dev_count &&
3470 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3471 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3480 /* kvm_io_bus_write - called under kvm->slots_lock */
3481 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3482 int len, const void *val)
3484 struct kvm_io_bus *bus;
3485 struct kvm_io_range range;
3488 range = (struct kvm_io_range) {
3493 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3496 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3497 return r < 0 ? r : 0;
3500 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3501 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3502 gpa_t addr, int len, const void *val, long cookie)
3504 struct kvm_io_bus *bus;
3505 struct kvm_io_range range;
3507 range = (struct kvm_io_range) {
3512 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3516 /* First try the device referenced by cookie. */
3517 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3518 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3519 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3524 * cookie contained garbage; fall back to search and return the
3525 * correct cookie value.
3527 return __kvm_io_bus_write(vcpu, bus, &range, val);
3530 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3531 struct kvm_io_range *range, void *val)
3535 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3539 while (idx < bus->dev_count &&
3540 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3541 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3549 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3551 /* kvm_io_bus_read - called under kvm->slots_lock */
3552 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3555 struct kvm_io_bus *bus;
3556 struct kvm_io_range range;
3559 range = (struct kvm_io_range) {
3564 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3567 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3568 return r < 0 ? r : 0;
3572 /* Caller must hold slots_lock. */
3573 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3574 int len, struct kvm_io_device *dev)
3577 struct kvm_io_bus *new_bus, *bus;
3578 struct kvm_io_range range;
3580 bus = kvm_get_bus(kvm, bus_idx);
3584 /* exclude ioeventfd which is limited by maximum fd */
3585 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3588 new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3589 sizeof(struct kvm_io_range)), GFP_KERNEL);
3593 range = (struct kvm_io_range) {
3599 for (i = 0; i < bus->dev_count; i++)
3600 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3603 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3604 new_bus->dev_count++;