# Kdevelop4
*.kdev4
+
+#Automatically generated by ASN.1 compiler
+net/ipv4/netfilter/nf_nat_snmp_basic-asn1.c
+net/ipv4/netfilter/nf_nat_snmp_basic-asn1.h
--- /dev/null
+What: /sys/devices/platform/dock.N/docked
+Date: Dec, 2006
+KernelVersion: 2.6.19
+Contact: linux-acpi@vger.kernel.org
+Description:
+ (RO) Value 1 or 0 indicates whether the software believes the
+ laptop is docked in a docking station.
+
+What: /sys/devices/platform/dock.N/undock
+Date: Dec, 2006
+KernelVersion: 2.6.19
+Contact: linux-acpi@vger.kernel.org
+Description:
+ (WO) Writing to this file causes the software to initiate an
+ undock request to the firmware.
+
+What: /sys/devices/platform/dock.N/uid
+Date: Feb, 2007
+KernelVersion: v2.6.21
+Contact: linux-acpi@vger.kernel.org
+Description:
+ (RO) Displays the docking station the laptop is docked to.
+
+What: /sys/devices/platform/dock.N/flags
+Date: May, 2007
+KernelVersion: v2.6.21
+Contact: linux-acpi@vger.kernel.org
+Description:
+ (RO) Show dock station flags, useful for checking if undock
+ request has been made by the user (from the immediate_undock
+ option).
+
+What: /sys/devices/platform/dock.N/type
+Date: Aug, 2008
+KernelVersion: v2.6.27
+Contact: linux-acpi@vger.kernel.org
+Description:
+ (RO) Display the dock station type- dock_station, ata_bay or
+ battery_bay.
What: /sys/devices/system/cpu/cpuidle/current_driver
/sys/devices/system/cpu/cpuidle/current_governer_ro
+ /sys/devices/system/cpu/cpuidle/available_governors
+ /sys/devices/system/cpu/cpuidle/current_governor
Date: September 2007
Contact: Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description: Discover cpuidle policy and mechanism
Idle policy (governor) is differentiated from idle mechanism
(driver)
- current_driver: displays current idle mechanism
+ current_driver: (RO) displays current idle mechanism
- current_governor_ro: displays current idle policy
+ current_governor_ro: (RO) displays current idle policy
+
+ With the cpuidle_sysfs_switch boot option enabled (meant for
+ developer testing), the following three attributes are visible
+ instead:
+
+ current_driver: same as described above
+
+ available_governors: (RO) displays a space separated list of
+ available governors
+
+ current_governor: (RW) displays current idle policy. Users can
+ switch the governor at runtime by writing to this file.
See files in Documentation/cpuidle/ for more information.
+What: /sys/devices/system/cpu/cpuX/cpuidle/stateN/name
+ /sys/devices/system/cpu/cpuX/cpuidle/stateN/latency
+ /sys/devices/system/cpu/cpuX/cpuidle/stateN/power
+ /sys/devices/system/cpu/cpuX/cpuidle/stateN/time
+ /sys/devices/system/cpu/cpuX/cpuidle/stateN/usage
+Date: September 2007
+KernelVersion: v2.6.24
+Contact: Linux power management list <linux-pm@vger.kernel.org>
+Description:
+ The directory /sys/devices/system/cpu/cpuX/cpuidle contains per
+ logical CPU specific cpuidle information for each online cpu X.
+ The processor idle states which are available for use have the
+ following attributes:
+
+ name: (RO) Name of the idle state (string).
+
+ latency: (RO) The latency to exit out of this idle state (in
+ microseconds).
+
+ power: (RO) The power consumed while in this idle state (in
+ milliwatts).
+
+ time: (RO) The total time spent in this idle state (in microseconds).
+
+ usage: (RO) Number of times this state was entered (a count).
+
+
+What: /sys/devices/system/cpu/cpuX/cpuidle/stateN/desc
+Date: February 2008
+KernelVersion: v2.6.25
+Contact: Linux power management list <linux-pm@vger.kernel.org>
+Description:
+ (RO) A small description about the idle state (string).
+
+
+What: /sys/devices/system/cpu/cpuX/cpuidle/stateN/disable
+Date: March 2012
+KernelVersion: v3.10
+Contact: Linux power management list <linux-pm@vger.kernel.org>
+Description:
+ (RW) Option to disable this idle state (bool). The behavior and
+ the effect of the disable variable depends on the implementation
+ of a particular governor. In the ladder governor, for example,
+ it is not coherent, i.e. if one is disabling a light state, then
+ all deeper states are disabled as well, but the disable variable
+ does not reflect it. Likewise, if one enables a deep state but a
+ lighter state still is disabled, then this has no effect.
+
+
+What: /sys/devices/system/cpu/cpuX/cpuidle/stateN/residency
+Date: March 2014
+KernelVersion: v3.15
+Contact: Linux power management list <linux-pm@vger.kernel.org>
+Description:
+ (RO) Display the target residency i.e. the minimum amount of
+ time (in microseconds) this cpu should spend in this idle state
+ to make the transition worth the effort.
+
+
What: /sys/devices/system/cpu/cpu#/cpufreq/*
Date: pre-git history
Contact: linux-pm@vger.kernel.org
--- /dev/null
+What: /sys/bus/platform/devices/INT3407:00/dptf_power/charger_type
+Date: Jul, 2016
+KernelVersion: v4.10
+Contact: linux-acpi@vger.kernel.org
+Description:
+ (RO) The charger type - Traditional, Hybrid or NVDC.
+
+What: /sys/bus/platform/devices/INT3407:00/dptf_power/adapter_rating_mw
+Date: Jul, 2016
+KernelVersion: v4.10
+Contact: linux-acpi@vger.kernel.org
+Description:
+ (RO) Adapter rating in milliwatts (the maximum Adapter power).
+ Must be 0 if no AC Adaptor is plugged in.
+
+What: /sys/bus/platform/devices/INT3407:00/dptf_power/max_platform_power_mw
+Date: Jul, 2016
+KernelVersion: v4.10
+Contact: linux-acpi@vger.kernel.org
+Description:
+ (RO) Maximum platform power that can be supported by the battery
+ in milliwatts.
+
+What: /sys/bus/platform/devices/INT3407:00/dptf_power/platform_power_source
+Date: Jul, 2016
+KernelVersion: v4.10
+Contact: linux-acpi@vger.kernel.org
+Description:
+ (RO) Display the platform power source
+ 0x00 = DC
+ 0x01 = AC
+ 0x02 = USB
+ 0x03 = Wireless Charger
+
+What: /sys/bus/platform/devices/INT3407:00/dptf_power/battery_steady_power
+Date: Jul, 2016
+KernelVersion: v4.10
+Contact: linux-acpi@vger.kernel.org
+Description:
+ (RO) The maximum sustained power for battery in milliwatts.
The device IDs are arbitrary hex numbers (vendor controlled) and normally used
only in a single location, the pci_device_id table.
-Please DO submit new vendor/device IDs to http://pciids.sourceforge.net/.
+Please DO submit new vendor/device IDs to http://pci-ids.ucw.cz/.
+There are mirrors of the pci.ids file at http://pciids.sourceforge.net/
+and https://github.com/pciutils/pciids.
Associate an event fd to an AFU interrupt so that the user process
can be notified when the AFU sends an interrupt.
+OCXL_IOCTL_GET_METADATA:
+
+ Obtains configuration information from the card, such at the size of
+ MMIO areas, the AFU version, and the PASID for the current context.
+
mmap
----
- RMW operations that have a return value are fully ordered.
-Except for test_and_set_bit_lock() which has ACQUIRE semantics and
+ - RMW operations that are conditional are unordered on FAILURE,
+ otherwise the above rules apply. In the case of test_and_{}_bit() operations,
+ if the bit in memory is unchanged by the operation then it is deemed to have
+ failed.
+
+Except for a successful test_and_set_bit_lock() which has ACQUIRE semantics and
clear_bit_unlock() which has RELEASE semantics.
Since a platform only has a single means of achieving atomic operations
--- /dev/null
+ARM Versatile Character LCD
+-----------------------------------------------------
+This binding defines the character LCD interface found on ARM Versatile AB
+and PB reference platforms.
+
+Required properties:
+- compatible : "arm,versatile-clcd"
+- reg : Location and size of character LCD registers
+
+Optional properties:
+- interrupts - single interrupt for character LCD. The character LCD can
+ operate in polled mode without an interrupt.
+
+Example:
+ lcd@10008000 {
+ compatible = "arm,versatile-lcd";
+ reg = <0x10008000 0x1000>;
+ };
interrupts.
Optional properties:
-- clocks: Optional reference to the clock used by the XOR engine.
+- clocks: Optional reference to the clocks used by the XOR engine.
+- clock-names: mandatory if there is a second clock, in this case the
+ name must be "core" for the first clock and "reg" for the second
+ one
+
Example:
"catalyst",
"microchip",
+ "nxp",
"ramtron",
"renesas",
- "nxp",
"st",
Some vendors use different model names for chips which are just
- "renesas,irqc-r8a7794" (R-Car E2)
- "renesas,intc-ex-r8a7795" (R-Car H3)
- "renesas,intc-ex-r8a7796" (R-Car M3-W)
+ - "renesas,intc-ex-r8a77965" (R-Car M3-N)
- "renesas,intc-ex-r8a77970" (R-Car V3M)
- "renesas,intc-ex-r8a77995" (R-Car D3)
- #interrupt-cells: has to be <2>: an interrupt index and flags, as defined in
+++ /dev/null
-ARM Versatile Character LCD
------------------------------------------------------
-This binding defines the character LCD interface found on ARM Versatile AB
-and PB reference platforms.
-
-Required properties:
-- compatible : "arm,versatile-clcd"
-- reg : Location and size of character LCD registers
-
-Optional properties:
-- interrupts - single interrupt for character LCD. The character LCD can
- operate in polled mode without an interrupt.
-
-Example:
- lcd@10008000 {
- compatible = "arm,versatile-lcd";
- reg = <0x10008000 0x1000>;
- };
- "renesas,etheravb-r8a7795" for the R8A7795 SoC.
- "renesas,etheravb-r8a7796" for the R8A7796 SoC.
- "renesas,etheravb-r8a77970" for the R8A77970 SoC.
+ - "renesas,etheravb-r8a77980" for the R8A77980 SoC.
- "renesas,etheravb-r8a77995" for the R8A77995 SoC.
- "renesas,etheravb-rcar-gen3" as a fallback for the above
R-Car Gen3 devices.
--- /dev/null
+Binding for MIPS Cluster Power Controller (CPC).
+
+This binding allows a system to specify where the CPC registers are
+located.
+
+Required properties:
+compatible : Should be "mti,mips-cpc".
+regs: Should describe the address & size of the CPC register region.
#size-cells = <0>;
button@1 {
- debounce_interval = <50>;
+ debounce-interval = <50>;
wakeup-source;
linux,code = <116>;
label = "POWER";
- clocks : thermal sensor's clock source.
Example:
+ocotp: ocotp@21bc000 {
+ #address-cells = <1>;
+ #size-cells = <1>;
+ compatible = "fsl,imx6sx-ocotp", "syscon";
+ reg = <0x021bc000 0x4000>;
+ clocks = <&clks IMX6SX_CLK_OCOTP>;
+ tempmon_calib: calib@38 {
+ reg = <0x38 4>;
+ };
+
+ tempmon_temp_grade: temp-grade@20 {
+ reg = <0x20 4>;
+ };
+};
+
+tempmon: tempmon {
+ compatible = "fsl,imx6sx-tempmon", "fsl,imx6q-tempmon";
+ interrupts = <GIC_SPI 49 IRQ_TYPE_LEVEL_HIGH>;
+ fsl,tempmon = <&anatop>;
+ nvmem-cells = <&tempmon_calib>, <&tempmon_temp_grade>;
+ nvmem-cell-names = "calib", "temp_grade";
+ clocks = <&clks IMX6SX_CLK_PLL3_USB_OTG>;
+};
+
+Legacy method (Deprecated):
tempmon {
compatible = "fsl,imx6q-tempmon";
fsl,tempmon = <&anatop>;
--- /dev/null
+#
+# Feature name: membarrier-sync-core
+# Kconfig: ARCH_HAS_MEMBARRIER_SYNC_CORE
+# description: arch supports core serializing membarrier
+#
+# Architecture requirements
+#
+# * arm64
+#
+# Rely on eret context synchronization when returning from IPI handler, and
+# when returning to user-space.
+#
+# * x86
+#
+# x86-32 uses IRET as return from interrupt, which takes care of the IPI.
+# However, it uses both IRET and SYSEXIT to go back to user-space. The IRET
+# instruction is core serializing, but not SYSEXIT.
+#
+# x86-64 uses IRET as return from interrupt, which takes care of the IPI.
+# However, it can return to user-space through either SYSRETL (compat code),
+# SYSRETQ, or IRET.
+#
+# Given that neither SYSRET{L,Q}, nor SYSEXIT, are core serializing, we rely
+# instead on write_cr3() performed by switch_mm() to provide core serialization
+# after changing the current mm, and deal with the special case of kthread ->
+# uthread (temporarily keeping current mm into active_mm) by issuing a
+# sync_core_before_usermode() in that specific case.
+#
+ -----------------------
+ | arch |status|
+ -----------------------
+ | alpha: | TODO |
+ | arc: | TODO |
+ | arm: | TODO |
+ | arm64: | ok |
+ | blackfin: | TODO |
+ | c6x: | TODO |
+ | cris: | TODO |
+ | frv: | TODO |
+ | h8300: | TODO |
+ | hexagon: | TODO |
+ | ia64: | TODO |
+ | m32r: | TODO |
+ | m68k: | TODO |
+ | metag: | TODO |
+ | microblaze: | TODO |
+ | mips: | TODO |
+ | mn10300: | TODO |
+ | nios2: | TODO |
+ | openrisc: | TODO |
+ | parisc: | TODO |
+ | powerpc: | TODO |
+ | s390: | TODO |
+ | score: | TODO |
+ | sh: | TODO |
+ | sparc: | TODO |
+ | tile: | TODO |
+ | um: | TODO |
+ | unicore32: | TODO |
+ | x86: | ok |
+ | xtensa: | TODO |
+ -----------------------
==================================
.. kernel-doc:: drivers/gpu/drm/tve200/tve200_drv.c
- :doc: Faraday TV Encoder 200
+ :doc: Faraday TV Encoder TVE200 DRM Driver
* Intel Wildcat Point (PCH)
* Intel Wildcat Point-LP (PCH)
* Intel BayTrail (SOC)
+ * Intel Braswell (SOC)
* Intel Sunrise Point-H (PCH)
* Intel Sunrise Point-LP (PCH)
+ * Intel Kaby Lake-H (PCH)
* Intel DNV (SOC)
* Intel Broxton (SOC)
* Intel Lewisburg (PCH)
- If you don't have an HCDP, the kernel doesn't know where
your console lives until the driver discovers serial
- devices. Use "console=uart, io,0x3f8" (or appropriate
+ devices. Use "console=uart,io,0x3f8" (or appropriate
address for your machine).
Kernel and init script output works fine, but no "login:" prompt:
--------------
Mutexes are represented by 'struct mutex', defined in include/linux/mutex.h
-and implemented in kernel/locking/mutex.c. These locks use a three
-state atomic counter (->count) to represent the different possible
-transitions that can occur during the lifetime of a lock:
-
- 1: unlocked
- 0: locked, no waiters
- negative: locked, with potential waiters
-
-In its most basic form it also includes a wait-queue and a spinlock
-that serializes access to it. CONFIG_SMP systems can also include
-a pointer to the lock task owner (->owner) as well as a spinner MCS
-lock (->osq), both described below in (ii).
+and implemented in kernel/locking/mutex.c. These locks use an atomic variable
+(->owner) to keep track of the lock state during its lifetime. Field owner
+actually contains 'struct task_struct *' to the current lock owner and it is
+therefore NULL if not currently owned. Since task_struct pointers are aligned
+at at least L1_CACHE_BYTES, low bits (3) are used to store extra state (e.g.,
+if waiter list is non-empty). In its most basic form it also includes a
+wait-queue and a spinlock that serializes access to it. Furthermore,
+CONFIG_MUTEX_SPIN_ON_OWNER=y systems use a spinner MCS lock (->osq), described
+below in (ii).
When acquiring a mutex, there are three possible paths that can be
taken, depending on the state of the lock:
-(i) fastpath: tries to atomically acquire the lock by decrementing the
- counter. If it was already taken by another task it goes to the next
- possible path. This logic is architecture specific. On x86-64, the
- locking fastpath is 2 instructions:
-
- 0000000000000e10 <mutex_lock>:
- e21: f0 ff 0b lock decl (%rbx)
- e24: 79 08 jns e2e <mutex_lock+0x1e>
-
- the unlocking fastpath is equally tight:
-
- 0000000000000bc0 <mutex_unlock>:
- bc8: f0 ff 07 lock incl (%rdi)
- bcb: 7f 0a jg bd7 <mutex_unlock+0x17>
-
+(i) fastpath: tries to atomically acquire the lock by cmpxchg()ing the owner with
+ the current task. This only works in the uncontended case (cmpxchg() checks
+ against 0UL, so all 3 state bits above have to be 0). If the lock is
+ contended it goes to the next possible path.
(ii) midpath: aka optimistic spinning, tries to spin for acquisition
while the lock owner is running and there are no other tasks ready
Disadvantages
-------------
-Unlike its original design and purpose, 'struct mutex' is larger than
-most locks in the kernel. E.g: on x86-64 it is 40 bytes, almost twice
-as large as 'struct semaphore' (24 bytes) and tied, along with rwsems,
-for the largest lock in the kernel. Larger structure sizes mean more
-CPU cache and memory footprint.
+Unlike its original design and purpose, 'struct mutex' is among the largest
+locks in the kernel. E.g: on x86-64 it is 32 bytes, where 'struct semaphore'
+is 24 bytes and rw_semaphore is 40 bytes. Larger structure sizes mean more CPU
+cache and memory footprint.
When to use mutexes
-------------------
replace typedef dmx_pes_type_t :c:type:`dmx_pes_type`
replace typedef dmx_input_t :c:type:`dmx_input`
-ignore symbol DMX_OUT_DECODER
-ignore symbol DMX_OUT_TAP
-ignore symbol DMX_OUT_TS_TAP
-ignore symbol DMX_OUT_TSDEMUX_TAP
+replace symbol DMX_BUFFER_FLAG_HAD_CRC32_DISCARD :c:type:`dmx_buffer_flags`
+replace symbol DMX_BUFFER_FLAG_TEI :c:type:`dmx_buffer_flags`
+replace symbol DMX_BUFFER_PKT_COUNTER_MISMATCH :c:type:`dmx_buffer_flags`
+replace symbol DMX_BUFFER_FLAG_DISCONTINUITY_DETECTED :c:type:`dmx_buffer_flags`
+replace symbol DMX_BUFFER_FLAG_DISCONTINUITY_INDICATOR :c:type:`dmx_buffer_flags`
+
+replace symbol DMX_OUT_DECODER :c:type:`dmx_output`
+replace symbol DMX_OUT_TAP :c:type:`dmx_output`
+replace symbol DMX_OUT_TS_TAP :c:type:`dmx_output`
+replace symbol DMX_OUT_TSDEMUX_TAP :c:type:`dmx_output`
replace ioctl DMX_DQBUF dmx_qbuf
the device is closed.
Applications call the ``DMX_DQBUF`` ioctl to dequeue a filled
-(capturing) buffer from the driver's outgoing queue. They just set the ``reserved`` field array to zero. When ``DMX_DQBUF`` is called with a
-pointer to this structure, the driver fills the remaining fields or
-returns an error code.
+(capturing) buffer from the driver's outgoing queue.
+They just set the ``index`` field withe the buffer ID to be queued.
+When ``DMX_DQBUF`` is called with a pointer to struct :c:type:`dmx_buffer`,
+the driver fills the remaining fields or returns an error code.
By default ``DMX_DQBUF`` blocks when no buffer is in the outgoing
queue. When the ``O_NONBLOCK`` flag was given to the
* Generic Segmentation Offload - GSO
* Generic Receive Offload - GRO
* Partial Generic Segmentation Offload - GSO_PARTIAL
+ * SCTP accelleration with GSO - GSO_BY_FRAGS
TCP Segmentation Offload
========================
fragmentation offload are the same as TSO. However the IPv4 ID for
fragments should not increment as a single IPv4 datagram is fragmented.
+UFO is deprecated: modern kernels will no longer generate UFO skbs, but can
+still receive them from tuntap and similar devices. Offload of UDP-based
+tunnel protocols is still supported.
+
IPIP, SIT, GRE, UDP Tunnel, and Remote Checksum Offloads
========================================================
fact that the outer header also requests to have a non-zero checksum
included in the outer header.
-Finally there is SKB_GSO_REMCSUM which indicates that a given tunnel header
-has requested a remote checksum offload. In this case the inner headers
-will be left with a partial checksum and only the outer header checksum
-will be computed.
+Finally there is SKB_GSO_TUNNEL_REMCSUM which indicates that a given tunnel
+header has requested a remote checksum offload. In this case the inner
+headers will be left with a partial checksum and only the outer header
+checksum will be computed.
Generic Segmentation Offload
============================
is the outer IPv4 ID field. It is up to the device drivers to guarantee
that the IPv4 ID field is incremented in the case that a given header does
not have the DF bit set.
+
+SCTP accelleration with GSO
+===========================
+
+SCTP - despite the lack of hardware support - can still take advantage of
+GSO to pass one large packet through the network stack, rather than
+multiple small packets.
+
+This requires a different approach to other offloads, as SCTP packets
+cannot be just segmented to (P)MTU. Rather, the chunks must be contained in
+IP segments, padding respected. So unlike regular GSO, SCTP can't just
+generate a big skb, set gso_size to the fragmentation point and deliver it
+to IP layer.
+
+Instead, the SCTP protocol layer builds an skb with the segments correctly
+padded and stored as chained skbs, and skb_segment() splits based on those.
+To signal this, gso_size is set to the special value GSO_BY_FRAGS.
+
+Therefore, any code in the core networking stack must be aware of the
+possibility that gso_size will be GSO_BY_FRAGS and handle that case
+appropriately. (For size checks, the skb_gso_validate_*_len family of
+helpers do this automatically.)
+
+This also affects drivers with the NETIF_F_FRAGLIST & NETIF_F_GSO_SCTP bits
+set. Note also that NETIF_F_GSO_SCTP is included in NETIF_F_GSO_SOFTWARE.
from docutils import nodes, statemachine
from docutils.statemachine import ViewList
-from docutils.parsers.rst import directives
-from sphinx.util.compat import Directive
+from docutils.parsers.rst import directives, Directive
from sphinx.ext.autodoc import AutodocReporter
__version__ = '1.0'
flag KVM_VM_MIPS_VZ.
-4.3 KVM_GET_MSR_INDEX_LIST
+4.3 KVM_GET_MSR_INDEX_LIST, KVM_GET_MSR_FEATURE_INDEX_LIST
-Capability: basic
+Capability: basic, KVM_CAP_GET_MSR_FEATURES for KVM_GET_MSR_FEATURE_INDEX_LIST
Architectures: x86
-Type: system
+Type: system ioctl
Parameters: struct kvm_msr_list (in/out)
Returns: 0 on success; -1 on error
Errors:
+ EFAULT: the msr index list cannot be read from or written to
E2BIG: the msr index list is to be to fit in the array specified by
the user.
__u32 indices[0];
};
-This ioctl returns the guest msrs that are supported. The list varies
-by kvm version and host processor, but does not change otherwise. The
-user fills in the size of the indices array in nmsrs, and in return
-kvm adjusts nmsrs to reflect the actual number of msrs and fills in
-the indices array with their numbers.
+The user fills in the size of the indices array in nmsrs, and in return
+kvm adjusts nmsrs to reflect the actual number of msrs and fills in the
+indices array with their numbers.
+
+KVM_GET_MSR_INDEX_LIST returns the guest msrs that are supported. The list
+varies by kvm version and host processor, but does not change otherwise.
Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
not returned in the MSR list, as different vcpus can have a different number
of banks, as set via the KVM_X86_SETUP_MCE ioctl.
+KVM_GET_MSR_FEATURE_INDEX_LIST returns the list of MSRs that can be passed
+to the KVM_GET_MSRS system ioctl. This lets userspace probe host capabilities
+and processor features that are exposed via MSRs (e.g., VMX capabilities).
+This list also varies by kvm version and host processor, but does not change
+otherwise.
+
4.4 KVM_CHECK_EXTENSION
4.18 KVM_GET_MSRS
-Capability: basic
+Capability: basic (vcpu), KVM_CAP_GET_MSR_FEATURES (system)
Architectures: x86
-Type: vcpu ioctl
+Type: system ioctl, vcpu ioctl
Parameters: struct kvm_msrs (in/out)
-Returns: 0 on success, -1 on error
+Returns: number of msrs successfully returned;
+ -1 on error
+
+When used as a system ioctl:
+Reads the values of MSR-based features that are available for the VM. This
+is similar to KVM_GET_SUPPORTED_CPUID, but it returns MSR indices and values.
+The list of msr-based features can be obtained using KVM_GET_MSR_FEATURE_INDEX_LIST
+in a system ioctl.
+When used as a vcpu ioctl:
Reads model-specific registers from the vcpu. Supported msr indices can
-be obtained using KVM_GET_MSR_INDEX_LIST.
+be obtained using KVM_GET_MSR_INDEX_LIST in a system ioctl.
struct kvm_msrs {
__u32 nmsrs; /* number of msrs in entries */
|| || before enabling paravirtualized
|| || tlb flush.
------------------------------------------------------------------------------
+KVM_FEATURE_ASYNC_PF_VMEXIT || 10 || paravirtualized async PF VM exit
+ || || can be enabled by setting bit 2
+ || || when writing to msr 0x4b564d02
+------------------------------------------------------------------------------
KVM_FEATURE_CLOCKSOURCE_STABLE_BIT || 24 || host will warn if no guest-side
|| || per-cpu warps are expected in
|| || kvmclock.
when asynchronous page faults are enabled on the vcpu 0 when
disabled. Bit 1 is 1 if asynchronous page faults can be injected
when vcpu is in cpl == 0. Bit 2 is 1 if asynchronous page faults
- are delivered to L1 as #PF vmexits.
+ are delivered to L1 as #PF vmexits. Bit 2 can be set only if
+ KVM_FEATURE_ASYNC_PF_VMEXIT is present in CPUID.
First 4 byte of 64 byte memory location will be written to by
the hypervisor at the time of asynchronous page fault (APF)
# mkdir p1
Move the cpus 4-7 over to p1
-# echo f0 > p0/cpus
+# echo f0 > p1/cpus
View the llc occupancy snapshot
The number of online threads is also printed in /proc/cpuinfo "siblings."
- - topology_sibling_mask():
+ - topology_sibling_cpumask():
The cpumask contains all online threads in the core to which a thread
belongs.
ARM/ATMEL AT91RM9200, AT91SAM9 AND SAMA5 SOC SUPPORT
M: Nicolas Ferre <nicolas.ferre@microchip.com>
-M: Alexandre Belloni <alexandre.belloni@free-electrons.com>
+M: Alexandre Belloni <alexandre.belloni@bootlin.com>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
W: http://www.linux4sam.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/nferre/linux-at91.git
M: Jason Cooper <jason@lakedaemon.net>
M: Andrew Lunn <andrew@lunn.ch>
M: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
-M: Gregory Clement <gregory.clement@free-electrons.com>
+M: Gregory Clement <gregory.clement@bootlin.com>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
S: Maintained
F: Documentation/devicetree/bindings/soc/dove/
ARM/Marvell Kirkwood and Armada 370, 375, 38x, 39x, XP, 3700, 7K/8K SOC support
M: Jason Cooper <jason@lakedaemon.net>
M: Andrew Lunn <andrew@lunn.ch>
-M: Gregory Clement <gregory.clement@free-electrons.com>
+M: Gregory Clement <gregory.clement@bootlin.com>
M: Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
S: Maintained
M: Alexandre Torgue <alexandre.torgue@st.com>
L: linux-arm-kernel@lists.infradead.org (moderated for non-subscribers)
S: Maintained
-T: git git://git.kernel.org/pub/scm/linux/kernel/git/mcoquelin/stm32.git
+T: git git://git.kernel.org/pub/scm/linux/kernel/git/atorgue/stm32.git stm32-next
N: stm32
+F: arch/arm/boot/dts/stm32*
+F: arch/arm/mach-stm32/
F: drivers/clocksource/armv7m_systick.c
ARM/TANGO ARCHITECTURE
F: scripts/Makefile.kasan
KCONFIG
+M: Masahiro Yamada <yamada.masahiro@socionext.com>
+T: git git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild.git kconfig
L: linux-kbuild@vger.kernel.org
-S: Orphan
+S: Maintained
F: Documentation/kbuild/kconfig-language.txt
F: scripts/kconfig/
F: scripts/leaking_addresses.pl
LED SUBSYSTEM
-M: Richard Purdie <rpurdie@rpsys.net>
M: Jacek Anaszewski <jacek.anaszewski@gmail.com>
M: Pavel Machek <pavel@ucw.cz>
L: linux-leds@vger.kernel.org
M: Paul Burton <paul.burton@mips.com>
L: linux-mips@linux-mips.org
S: Supported
+F: Documentation/devicetree/bindings/power/mti,mips-cpc.txt
F: arch/mips/generic/
F: arch/mips/tools/generic-board-config.sh
OBJTOOL
M: Josh Poimboeuf <jpoimboe@redhat.com>
+M: Peter Zijlstra <peterz@infradead.org>
S: Supported
F: tools/objtool/
S: Supported
F: drivers/pinctrl/pinctrl-at91-pio4.*
+PIN CONTROLLER - FREESCALE
+M: Dong Aisheng <aisheng.dong@nxp.com>
+M: Fabio Estevam <festevam@gmail.com>
+M: Shawn Guo <shawnguo@kernel.org>
+M: Stefan Agner <stefan@agner.ch>
+R: Pengutronix Kernel Team <kernel@pengutronix.de>
+L: linux-gpio@vger.kernel.org
+S: Maintained
+F: drivers/pinctrl/freescale/
+F: Documentation/devicetree/bindings/pinctrl/fsl,*
+
PIN CONTROLLER - INTEL
M: Mika Westerberg <mika.westerberg@linux.intel.com>
M: Heikki Krogerus <heikki.krogerus@linux.intel.com>
VERSION = 4
PATCHLEVEL = 16
SUBLEVEL = 0
-EXTRAVERSION = -rc1
+EXTRAVERSION = -rc5
NAME = Fearless Coyote
# *DOCUMENTATION*
CHECK = sparse
CHECKFLAGS := -D__linux__ -Dlinux -D__STDC__ -Dunix -D__unix__ \
- -Wbitwise -Wno-return-void $(CF)
+ -Wbitwise -Wno-return-void -Wno-unknown-attribute $(CF)
NOSTDINC_FLAGS =
CFLAGS_MODULE =
AFLAGS_MODULE =
KBUILD_AFLAGS += $(CLANG_TARGET) $(CLANG_GCC_TC)
endif
+RETPOLINE_CFLAGS_GCC := -mindirect-branch=thunk-extern -mindirect-branch-register
+RETPOLINE_CFLAGS_CLANG := -mretpoline-external-thunk
+RETPOLINE_CFLAGS := $(call cc-option,$(RETPOLINE_CFLAGS_GCC),$(call cc-option,$(RETPOLINE_CFLAGS_CLANG)))
+export RETPOLINE_CFLAGS
+
ifeq ($(config-targets),1)
# ===========================================================================
# *config targets only - make sure prerequisites are updated, and descend
# To avoid any implicit rule to kick in, define an empty command
$(KCONFIG_CONFIG) include/config/auto.conf.cmd: ;
-# If .config is newer than include/config/auto.conf, someone tinkered
-# with it and forgot to run make oldconfig.
-# if auto.conf.cmd is missing then we are probably in a cleaned tree so
-# we execute the config step to be sure to catch updated Kconfig files
+# The actual configuration files used during the build are stored in
+# include/generated/ and include/config/. Update them if .config is newer than
+# include/config/auto.conf (which mirrors .config).
include/config/%.conf: $(KCONFIG_CONFIG) include/config/auto.conf.cmd
$(Q)$(MAKE) -f $(srctree)/Makefile silentoldconfig
else
KBUILD_CFLAGS += $(ARCH_CFLAGS) $(KCFLAGS)
# Use --build-id when available.
-LDFLAGS_BUILD_ID := $(patsubst -Wl$(comma)%,%,\
- $(call cc-ldoption, -Wl$(comma)--build-id,))
+LDFLAGS_BUILD_ID := $(call ld-option, --build-id)
KBUILD_LDFLAGS_MODULE += $(LDFLAGS_BUILD_ID)
LDFLAGS_vmlinux += $(LDFLAGS_BUILD_ID)